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Antenna Correlation and Its Impact on Multi-Antenna System

Xiaoming Chen*

Abstract—It is generally believed that antenna correlations of up to 0.5 in magnitude have negligible
effects on the performance of multi-antenna systems, and that antenna correlation only affects the system
performance via its magnitude. In this paper, we show that antenna correlations of 0.5 in magnitude that
has negligible effect in capacity (i.e., theoretically maximum data rate) can cause noticeable degradation
on the throughput (i.e., actual achievable data rate); and that, when the number of antennas is larger
than two, the phase of the correlation also has an impact on the performance of multi-antenna system.
We demonstrated these via simulations and measurements in a reverberation chamber.

1. INTRODUCTION

Due to its high spectral efficiency, multiple-input multiple-output (MIMO) system has received enormous
attentions and found applications in many modern wireless systems (e.g., long term evolution (LTE)
and wireless local area network (WLAN)) over the past decade. One of the practical limiting factors
of the MIMO system is the correlations between antennas at the transmitter and/or receiver. Take the
cellular system for example: antennas at the base station (BS) usually experience high correlation due
to limited angular spread resulting from sparse scatters around the BS; whereas the mobile station (MS)
also suffers from correlations due to limited space in the mobile terminal. The correlations seen at the
antenna ports (i.e., antenna correlations) are the combined effects of the channel and the antennas. This
work is devoted to studying antenna correlations and their effects on the performances of multi-antenna
systems.

It is commonly believed in the literature that a correlation of up to 0.5 in magnitude is negligible
for the performance of multi-antenna system, e.g., [1], and that the correlation affects the MIMO
performances only via its magnitude, e.g., [2]. In this paper, however, we show that the antenna
correlations (even with small magnitudes) can have a noticeable adverse effect on the MIMO throughput.
We also show that for a two-port antenna, the correlation affects the MIMO performance only via its
magnitude, whereas for antennas with more than two ports, the phases of the correlations also affect
the MIMO performance. We demonstrate these both theoretically and experimentally via simulations
and measurements.

The work has been partially presented in a conference paper [3]. In this work, we extend the paper
with different correlation models and analyses of their feasibilities (i.e., the positive semidefiniteness of
the resulting correlation matrices); we also include new performance metric and new measurements in
a reverberation chamber (e.g., [4]) for further demonstrating the correlations’ effects.

2. ANTENNA CORRELATION

Based on the considered random variables [e.g., (equivalent baseband) signal, signal envelope, and
signal power], there are three types of correlations in the literature, namely, signal correlation, envelope
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correlation, and power correlation. The correlation between two signals at the mth and nth antenna
ports, Xm and Xn, is given according to the definition of correlation coefficient [5]

ρmn =
E [(Xm − E[Xm]) (Xn − E[Xn])∗]√

E
[
|Xm − E[Xm]|2

]
E

[
|Xn − E[Xn]|2

] (1)

where E represents the expectation operator, and the superscript ∗ denotes complex conjugate. Envelop
and power correlations are obtained by replacing Xi in (1) with |Xi| and |Xi|2 (i = m, n), respectively.
It is shown that the power correlation is equal to the magnitude square of the signal correlation, and
approximately equal to the envelope correlation [6]. We focus on the signal correlation in the sequel of
the paper.

By approximating the expectation with sample mean, (1) can be used for estimating antenna
correlations when the channel samples are obtained from, e.g., reverberation chamber (RC)
measurements [7]. From the antenna point of view, there is a more tractable method for calculating
antenna correlation. It is given as [8]

ρmn =

∫∫
4π

gH
m(Ω)Pinc(Ω)gn(Ω)dΩ

√√√√∫∫
4π

gH
m(Ω)Pinc(Ω)gm(Ω)dΩ ·

∫∫
4π

gH
n (Ω)Pinc(Ω)gn(Ω)dΩ

(2)

where Ω denotes the solid angle; gi is the embedded far field function (a column vector with elements
representing for different polarizations) at the ith antenna port; the superscript H represents the
Hermitian operator (i.e., conjugate transpose); Pinc stands for the dyadic power angular spectrum
of the incident waves.

Once the antenna correlations are known, the correlation matrix at the N -port antenna can be
constructed as

Φ =

⎡
⎢⎢⎣

1 ρ12 . . . ρ1N

ρ∗12 1 . . . ρ2N
...

...
. . .

...
ρ∗1N ρ∗2N . . . 1

⎤
⎥⎥⎦ . (3)

Note that in polarization-balanced isotropic scattering environments, e.g., a well-stirred RC, Pinc(Ω) =
I. The resulting spatial correlation (without antenna effect) becomes a deterministic (sinc) function
of the antenna separation (see Appendix A) and the antenna correlation can be determined from the
antenna characteristics alone. Equation (2) shows the antenna correlation can be calculated from
the (embedded) antenna patterns, whereas Blanch et al. [9] showed that the antenna correlation can be
equivalently calculated from its S-parameters (provided that the Ohmic loss in the antenna is negligible).
The S-parameter based correlation expression in [9] is for the envelop correlation for two-port antennas.
The S-parameter based correlation is extended to the lossy antenna case and expressed for signal
correlation in [10]. Nevertheless, since the main purpose of this paper is to investigate the impact
of antenna correlations on multi-antenna systems, for practical antennas, it is suffice to use the more
general correlation Expressions (1) and/or (2).

3. CORRELATION MODELS

For the convenience of analysis and without confining to specific antennas, it is common in the literature
to assume a simplified correlation model for MIMO performance evaluations, e.g., [11, 12]. We discuss
several correlation models in this section.

Correlation matrices consisting of antenna correlations calculated using (1) or (2) from measured
or simulated channel samples are undoubtedly physical (or feasible). Using the jargons of matrix
theory and statistics, they are positive semidefinite [13] almost surely [5]. However, correlation matrices
constructed from correlation models may not necessarily be positive semidefinite. Therefore, we ought
to check the feasibility of each correlation model.
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Figure 1. Minimum eigenvalues of correlation matrices as function of uniform correlation. The asterisk
points are (−1/(N − 1), 0) for different N values.

3.1. Uniform Correlation

Arguably the simplest correlation model is uniform correlation,

ρmn = ρ. (4)

Although this model may seem too simple to be realistic, it does result in useful conclusions under
certain circumstances for system evaluation. Moreover, some practical multi-port antennas indeed have
uniform correlations (e.g., see Figure 3 in [14]).

To satisfy the Hermitian property of the correlation matrix, i.e., Φ = ΦH , ρ in (4) has to be real-
valued. Thus, the correlation phase effect of the uniform correlation model can only be studied using
positive- and negative-valued ρ. Furthermore, for the feasibility of the resulting correlation matrix, i.e.,
for Φ to be positive semidefinite, ρ must be no smaller than −1/(N − 1). (See Appendix B for a proof
of this).

To illustrate fact that ρ must be no smaller than −1/(N − 1) for Φ to be feasible, we calculated
the minimum eigenvalues as a function ρ for different N values and plotted them in Figure 1, where the
asterisk points are (−1/(N − 1), 0) for different N values. According to matrix theory, Φ is positive
semidefinite if all its eigenvalues are nonnegative (i.e., its smallest eigenvalue should be larger than or
equal to zero). As can be seen from Figure 1, for all the N values, the correlation matrix becomes
positive semidefinite when

ρ ≥ −1/(N − 1). (5)

3.2. Exponential Correlation

The exponential correlation [11, 12] is a popular correlation model in the communications society. It is
given as

ρmn = exp
(
−xmn

x0

)
(6)

where xmn is the distance between the mth and nth antenna elements and x0 the decorrelation distance
(at which the correlation reduces to 1/e). Clearly, the correlation value depends on both xmn and x0.
For a fixed x0, the correlation decreases with increasing antenna separation xmn ; for a fixed xmn , the
correlation increases with increasing x0. For a BS located well above the roof, x0 can be up to dozens
of wavelength; whereas for a MS in dense urban scenario, x0 is around half-wavelength [15]. The fact
that the correlation matrix constructed from (3) is positive semidefinite can be readily proved based on
Theorem 2 in [16].

3.3. Bessel Correlation

Perhaps a more plausible correlation model is zeroth order Bessel function of the first kind [15],

ρmn = J0 (kxmn ) (7)
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where k is wave number. It can be readily derived as the spatial correlation in a two-dimension (2-D)
uniform scattering environment (by following the same lines in Appendix A for 2-D uniform instead
for 3-D isotropic scattering environment). Like the exponential correlation, the correlation matrix of
the Bessel correlation model is also positive semidefinite. (The proof follows the same lines as for the
correlation case using Theorem 2 in [16]). Yet unlike (6) that can be used to model correlation in dense
or sparse scattering environment by adjusting the decorrelation distance x0, (7) is a reasonable model
for only dense scattering environment.

4. PERFORMANCE METRICS AND EVALUATIONS

In order to evaluate the impacts of correlations on multi-antenna systems, we need to choose certain
performance metrics first. In this section, we use diversity gain [1], diversity measure [17], MIMO
capacity [21] and throughput [23] as performance metrics.

4.1. Diversity Gain

For an N -port antenna in a Rayleigh-fading environment, the correlation matrix is

R = E
[
hhH

]
(8)

where h is the column-vector diversity channel including the overall antenna effect, superscript H the
Hermitian operator, and E the expectation. The output power of the MRC combiner is PMRC = hHh.
Assuming independent, identically distributed (i.i.d.) Gaussian noises with unity variance, PMRC then
equals in value to the instantaneous signal-to-noise ratio (SNR), denoted as γ. The diversity gain (DG)
is defined as the output SNR of a diversity antenna relative to that of a single ideal (i.e., with 100%
total radiation efficiency) antenna at 1% outage probability level [1],

DG = F−1(γ)
/
F−1

ideal (γ)
∣∣
1%

(9)

where (·)−1 denotes the functional inversion, F the cumulative distribution function of the MRC output
SNR, and Fideal (γ) = 1 − exp(−γ) the CDF of the output SNR of the ideal reference antenna in the
Rayleigh fading environment.

To examine the effect of the correlation on the DG, we define the DG degradation as the ratio
of DG in the presence of correlation to the DG in the i.i.d. channel case. Figure 2 shows the DG
degradation for the special cases of positive and negative uniform correlations among antenna ports,
respectively. Note that the assumption of a uniform correlation of −0.3 is valid up to four-port antenna
only due to (5). It can be seen that the DG degradation due to the uniform correlation is larger for the
diversity antenna with more ports and that the negative correlation causes more DG degradation than
the positive correlation. Hence, the phase of the correlation also affects the diversity performance.

Before giving an explanation of this, we show first that, for a two-port antenna (N = 2), the DG
depends only on the magnitude of the correlation: In a two-port antenna, the CDF of the MRC output
SNR reduces to [8]

F (γ) = 1 − λ1 exp(−γ/λ1) − λ2 exp(−γ/λ2)
λ1 − λ2

. (10)

It was shown in [8] that (10) converges to the true value as λi → λ (i = 1, 2). The eigenvalues of the
covariance matrix

R =
[

1 ρ
ρ∗ 1

]
(11)

are
λ1 = 1 + |ρ| , λ2 = 1 − |ρ|. (12)

Combining (9), (10), and (12), it follows that the DG of the two-port antenna depends only on the
correlation magnitude. This implies that, for mobile handset antenna that has only two antenna ports, it
is sufficient to characterize its correlation by the correlation magnitude (or envelop or power correlation).

We resort to majorization theory [17] to show why the phase of the correlation affects the DG for
antennas with more than two ports: For two real-valued M × 1 vectors a and b in descending order,
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a majorizes b, denoted as a � b, if
∑m

i=1 ai ≥
∑m

i=1 bi (m = 1, . . . , M − 1) and
∑M

i=1 ai =
∑M

i=1 bi.
Assume that a and b are two eigenvalue vectors associated with correlation matrices Ra and Rb,
Ra is more correlated than Rb if a � b. For two correlation matrices with the same correlation
magnitudes but different correlation phases, their eigenvalue vectors are different. Note that throughout
this paper without loss of generality eigenvalue vectors are assumed to be in descending order. For better
illustration, we give a numerical example next: For a correlation matrix of a four-port antenna with
uniform correlation of 0.3,

Ra =

⎡
⎢⎢⎢⎣

1 0.3 0.3 0.3
0.3 1 0.3 0.3
0.3 0.3 1 0.3
0.3 0.3 0.3 1

⎤
⎥⎥⎥⎦ , (13)

the eigenvalue vector is a = [1.9 0.7 0.7 0.7]T ; for a correlation matrix of a four-port antenna with
uniform correlation of −0.3,

Rb =

⎡
⎢⎢⎢⎣

1 −0.3 −0.3 −0.3
−0.3 1 −0.3 −0.3
−0.3 −0.3 1 −0.3
−0.3 −0.3 −0.3 1

⎤
⎥⎥⎥⎦ , (14)

the eigenvalue vector is b = [1.3 1.3 1.3 0.1]T . Hence, a � b and Rb are more correlated than Ra. This
explains why the DG of a four-port antenna with a uniform correlation of −0.3 is smaller than that
with a uniform correlation of 0.3 (see Figure 2).

Note that a uniform correlation of −0.3 has been observed in a practical four-port antenna [14].
Nevertheless, it might be impractical to design a large array (with many elements) that has uniform
correlation. That is why our simulation for the uniform correlation has been limited up to four-port
antennas.

For antennas with more ports, we resort to exponential and Bessel correlations by assuming uniform
rectangular arrays (URA) with a fixed inter-element spacing of half-wavelength. Figure 3 shows the
diversity degradations of various URA sizes for both exponential and Bessel correlations. Note that for
fair comparison of the two correlation models, the decorrelation distance in (6) is set to half-wavelength
(cf. Section 3). It can be seen that the Bessel correlation causes more degradation than the exponential
correlation; yet for both models the diversity gain performance improves as the number of antennas
increases (i.e., as the array size increases with a fixed inter-element separation).
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Figure 2. DG degradation due to uniform correlation. (a) Graph corresponds to positive correlation;
(b) graph corresponds to negative correlation.
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Figure 3. DG degradations due to exponential
and Bessel correlations for half-wavelength inter-
element spacing and decorrelation distance.
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Figure 4. Numbers of independent antennas for
exponential and Bessel correlations.

4.2. Diversity Measure

In contrast to the popular diversity gain, there is an easier way to characterize the diversity performance.
That is diversity measure [17]

Nind =
(

tr(R)
‖R‖F

)2

(15)

where tr(·) is trace operator, and the subscript F denotes Frobenius norm. The diversity measure is
simply the number of independent antennas. Actually, it has been used for estimating independent
sample number in RC measurements [18–20].

For evaluating the correlations of two-port antennas, it is sufficient to compare the correlations
of different antennas in that each two. However, for antennas with more than two ports, multiple
correlations exist between the antenna ports. One may use the majorization theory to compare the
correlations of two arrays with the same number of antenna ports. Yet a simpler way is to use the
diversity measure. Assume URA with a fixed inter-element spacing (and decorrelation distance) of
half-wavelength. Figure 4 shows the diversity measures (or independent antenna numbers) of different
array sizes under exponential and Bessel correlations. It can be seen that the exponential correlation
results in less correlated correlation matrix (and therefore more independent antenna number) than the
Bessel correlation. This implies massive MIMO results obtained by assuming exponential correlation
may be optimistic.

4.3. Capacity and Throughput

Capacity is the theoretically maximum achievable data rate. To achieve the capacity, the input signal
needs to be Gaussian distributed [22] and the MCS should have an infinitesimal granularity in order
to support any data rate that is matched with the fading channel. As a result, capacity is usually not
achievable in practical systems. Nevertheless, we still characterize the MIMO system using it in this
paper in that it is the most popular MIMO performance metric [2, 3, 8, 11, 12].

The instantaneous capacity (or strictly speaking mutual information) of a MIMO system, where
only the receiver knows the channel state information (i.e., open-loop MIMO system), is, e.g., [11]

C = log2

[
det

(
I +

γ0

Nt
HHH

)]
(16)

where I is the identity matrix, det the determinant, log2 the logarithm to the base 2, γ0 the average
SNR per receive antenna, and H the MIMO channel matrix.

To illustrate the correlation phase effect on MIMO capacity, we assume a 4 × 4 MIMO system,
where the transmit antennas are uncorrelated, whereas the receive antennas have uniform correlations
of 0.3 and −0.3 [i.e., (13) and (14)], respectively. Figure 5 shows the ergodic capacity (i.e., the average
of the instantaneous mutual information) as well as the CDF of the instantaneous capacity. As can
be seen, the uniform correlation of −0.3 yields a worse MIMO capacity performance than that of the
uniform correlation of 0.3; and the difference is more noticeable at high SNR. Note that the capacity-
achieving system allows adaptive transmission of arbitrary streams according to the instantaneous
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Figure 5. (a) Ergodic capacity and (b) CDF of the instantaneous capacity of a 4× 4 open-loop MIMO
system.

-10 -5 0 5 10 15 20 25 30 35 40
 

 

4X2 i.i.d.
4X4 i.i.d.

4X2 ρ = 0.3 

4X4 ρ = 0.3

-10 -5 0 5 10 15 20 25 30 35 40
 

 

4X2 i.i.d.

4X4 i.i.d.

4X2 ρ = -0.3

4X4 ρ = -0.30

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
th

ro
ug

hp
ut

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
th

ro
ug

hp
ut

γ    /γ    (dB)av thγ    /γ    (dB)av th

(a) (b)

Figure 6. Relative throughput of 4×2 and 4×4 MIMO systems with full spatial multiplexing gains. (a)
Graph corresponds to the uniform correlation of 0.3; (b) graph corresponds to the uniform correlation
of −0.3. Note that for a fixed MCS the (absolute) throughput of the 4× 4 system is twice of that of the
4× 2 system. However, their relative throughputs (i.e., probabilities of detecting 4 and 2 data streams)
are both normalized to one.

channel condition, e.g., in a rank-deficient MIMO channel the capacity is achieve by a combination
of spatial multiplexing and diversity by transmitting less than four streams (each stream with arbitrary
payload). Therefore, the correlation effect on the capacity is less profound than that on the throughput
with fixed MCS and number of streams (cf. Section 2.2). Nevertheless, it is shown again that the phase
of the correlation affects the MIMO performance.

Unlike capacity, throughput is the actual data rate that can be achieved by practical wireless
systems. A simple throughput model has been presented in [23], based on which, the average throughput
of a system with fixed MCS in a fading channel can be approximated by

Tput (γ̄) = Tput ,max (1 − F (γth/γ̄)) (17)

where γ̄ represents the average γ, γth is the threshold value, F denotes the CDF of γ, and Tput ,max

denotes the maximum data rate. We define the relative throughput as Tput/Tput ,max and use the relative
throughput hereafter.

For simplicity, we assume open-loop MIMO systems with zero-forcing (ZF) receivers and that the
transmit antennas are uncorrelated. The MIMO channel then can be modeled as

H = R1/2Hw (18)

where Hw denotes the spatially white MIMO channel with i.i.d. and unit variance complex Gaussian
variables, and R1/2 is the (Hermitian) square root of R. For simplicity and without loss of generality,
we assume unity input signal power and noise variance, the SNR of the ith stream is then [21]

γi = 1
/[(

HHH
)−1

]
i,i

(19)

where [X]i,i denotes the ith diagonal element of the matrix X.
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Figure 6 shows the relative throughputs of 4 × 2 and 4 × 4 open-loop MIMO systems with ZF
receivers supporting 2 and 4 data streams (with and without correlation), respectively. We see that
a small uniform correlation of −0.3 degrades the 4 × 2 throughput by about 1 dB (i.e., it needs 1 dB
more power to achieve the same throughput as in i.i.d. channel case); but the same correlation of −0.3
will degrades the 4 × 4 MIMO systems by about 5 dB. On the other hand, a uniform correlation of
the same magnitude but with opposite phase, i.e., 0.3, results in negligible throughput performance
degradations. This can be explained intuitively: the eigenvalues of the correlation matrix with uniform
correlation of −0.3 are 1.3, 1.3, 1.3, and 0.1, whereas the eigenvalues of the correlation matrix with
uniform correlation of 0.3 are 1.9, 0.7, 0.7, 0.7; and it is the smallest eigenvalue of 0.1 that makes it
difficult to detect the fourth data stream, implying a worse throughput performance for the 4×4 MIMO
system with full spatial multiplexing. For the 4 × 2 MIMO system with full spatial multiplexing, the
throughput performance degradation of the uniform correlation of −0.3 is not severe because the best
two eigenvalues ensure the reliable transmission of the two streams.

Comparing Figures 2 and 6, it seems that the correlation (e.g., the uniform correlation of −0.3)
may have a much more profound effect on the throughput performance than that on the diversity
performance. This is because it suffices to have one large enough eigenvalue for the diversity techniques
to work (since the diversity techniques handle only one stream); for the spatial multiplexing, it is vital
to have M strong enough eigenvalues in order to support the transmission of M streams.

5. MEASUREMENTS

The reverberation chamber (RC) has been used for various measurements of wireless devices due to
its convenience and measurement repeatability [24–27]. In this paper, we use the RC measurement for
studying the effects of antenna correlations. The RC is basically a metal cavity with many excited modes
which are stirred to create an isotropic rich scattering environment. The RC used in this work has a
size of 1.75 × 1.25× 1.8 m3. Figure 7 shows a drawing of the RC: it is equipped with two plate stirrers,
a turn-table platform (on which the antenna under test is mounted), and three wideband antennas
(mounted on three orthogonal walls with different polarizations inside the chamber). We hereafter refer
to these three antennas as wall antennas. Note that the wall antennas need not to be in the RC’s
working volume; whereas the antenna under test (AUT) must be in the working volume, where the field
uniformity is guaranteed. In this work, the AUT is a compact wideband four-port Bowtie antenna [14];
and it was placed on the turn-table platform (which is in the working volume) during the measurement.
In the measurements, the platform was moved to 20 positions spaced by 18◦ and at each platform
position each of the two plates move simultaneously to 10 positions. At each stirrer position and for
each of the three wall antennas a full frequency sweep was performed by a vector network analyzer
(VNA) and the S-parameter S21 between the wall antennas and each port of the Bowtie antenna were
recorded. Using the jargon of communications S21 is the channel transfer function, which is random
due to the mode stirring in the RC.

Figure 7. Drawing of the RC. Figure 8. CST model of the bowtie antenna.
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Figure 8 shows a model of the Bowtie antenna in CST. It was designed to cover the frequency range
of 1.7∼2.7 GHz. The 4 ports of the Bowtie antenna are marked in the figure. Due to the symmetry of
the antenna, it is sufficient to present correlations between Ports 1 and 2, Ports 1 and 3, and Ports 1
and 4. From the CST simulation, we obtain embedded radiation patterns of the Bowtie antenna, from
which we can calculate the correlations using (2). From RC measurement, we obtain the samples of the
channel transfer function (i.e., S21) from which we can calculate the correlations using (1), where the Xm

is S21 seen at the mth port of the Bowtie antenna. Note that the expectation in (1) is approximated by
averaging the 600 samples (20 platform positions ×10 plate positions ×3 wall antennas) of S21. Figure 9
shows the correlations calculated from the simulated antenna patterns and the measured channels. It
should be noted that due to manufacture tolerance and measurement uncertainty (it is difficult to
measure small correlation accurately) the measured correlations slightly differ from the simulated ones.
Nevertheless, from both CST simulation and RC measurement, it is evident that the Bowtie antenna
has a uniform correlation (among antenna ports). This indicates that the uniform correlation does exist
in practical antennas.

The measured correlation uncertainty has been experimentally characterized in [28], where it is
concluded that the number of samples and the correlation level are the dominant contributions to
the uncertainty of the measured correlation. The distribution of the estimated correlation coefficient
using (1) is given by [29], based on which it is easy to derive the standard deviation (STD) of the
measured correlation for a given expected real-valued ρ:

STD [ρ̂] ≈
√

(1 − ρ2)2

N

(
1 +

11ρ2

2N

)
(20)

where N is the number of samples. Since the Bowtie antenna’s correlation ranging from −3.0 to −1.5
(over frequency) and N = 600, the variance of the measured correlation ranges approximately from 0.037
to 0.040. This uncertainty is certainly not enough to explain the discrepancy in Figure 9. Hence, it is
believed that the measurement tolerance of the Bowtie antenna is the main reason of the discrepancy,
given the fact that curves of the four bended petals of the manufactured Bowtie antenna has noticeable
differences between each other and deviate from that of the model.

To further study the correlation effect on MIMO systems, MIMO LTE systems are measured in the
RC. Note that due to practical measurement constraints (e.g., currently all available communication
tester support only up to two antenna ports), throughput measurements are limited to 2 × 2 MIMO
systems.
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Figure 9. Amplitudes and phases of correlations of Bowtie antenna: (a) simulated correlations, i.e.,
correlations calculated from antenna patterns obtained from CST simulation; (b) measured correlations,
i.e., correlations calculated from channel samples measured in the RC.
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Figure 10. (a) Measured MIMO capacity of the CTIA reference antennas and (b) relative throughput
of a LTE phone connected to the CTIA reference antennas.

A commercial communication tester is used as the LTE base station. The device under test (DUT)
is a commercial LTE mobile phone with external antenna ports available for wireless testing. To
introduce known antenna correlation in the throughput measurement, the DUT was connected with
the two-port power-balanced good, nominal, and bad CTIA reference antennas [30] that were located
inside the RC. Note that the CTIA reference antennas include RF shielding boxes in which DUT was
placed. Measurements of DUT were performed on the LTE band 13, i.e., 751 MHz, with 10-MHz system
bandwidth in closed-loop configuration. The LTE system was set to a fixed 64 QAM modulation with
maximum rates of about 35 Mbps for the spatial multiplexing measurements. The magnitudes of the
complex (antenna) correlation coefficients of the good, nominal, and bad CTIA reference antennas are
about 0.14, 0.56, and 0.90, respectively. The CTIA reference antennas are power-balanced and the
efficiencies of the good, nominal, and bad CTIA reference antennas are about −1.4, −3.1, and −4.0 dB,
respectively. In order to focus on the correlation effect alone, we calibrated out the antenna efficiencies
in post-processing of the measured data.

In addition, we performed passive measurement of the CTIA reference antennas as receive antennas
in the RC, while using two uncorrelated RC wall antennas as transmit antennas. The ergodic MIMO
capacity of the measured 2 × 2 MIMO channel is calculated and shown in Figure 10(a), whereas the
measured relative throughput is shown in Figure 10(b). Note that only absolute power values are
available from the testing instrument. Thus, the measured throughputs are shown as a function of the
(received) average power. It can be seen that, even for the two-port antennas, the correlation has a
much greater impact on the throughput than on the capacity (a correlation of 0.5 has negligible effect
on capacity, whereas it degrades the throughput by approximately 2 dB); the effect of the correlation
on capacity increases with increasing SNR, whereas the correlation’s effect on the throughput is almost
independent on the SNR (or received power). This implies that the rule-of-thumb of smaller than
0.5 correlation in magnitude is not a good criterion in MIMO antenna designs even for two-port antennas.
In fact, a correlation no larger than 0.3 in magnitude is needed to ensure throughput degradation that
is smaller than 0.5 dB [31].

6. CONCLUSION

This work revisits signal correlation and its effect on MIMO performances. In contrast to the common
beliefs that the correlation magnitude of 0.5 is negligible for MIMO performance, we show that a
correlation of 0.5 has noticeable impact on the throughput of a 2×2 MIMO LTE system (even though it
does has little impact on the 2×2 MIMO capacity). Moreover, it is usually assumed that the correlation
affects the MIMO performance only via its magnitude, it is found in this work that the latter is only
true for two-port antennas; and in general the correlation’s effect on the MIMO performances depends
on its phase and the number of antennas. Correlations with the same magnitudes but different phases
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may result in different MIMO performances, especially for the spatial multiplexing throughput. The
paper justifies the uniform correlation assumption using a practical multi-port antenna as an example.
In addition to the uniform correlation model, two more realistic correlation models are presented; and
their feasibilities are analyzed.

APPENDIX A.

The spatial channel correlation without antenna effect can be calculated by

ρ =

2π∫
0

π∫
0

exp(jkd sin θ cos φ)p(θ, φ)dθdφ (A1)

where k is wave number, d is the separation between two (imaginary) isotropic antennas, φ and θ
represents the azimuth and elevation angles, respectively, and p(θ, φ) is their joint probability density
function (PDF). In a 3-D isotropic scattering environment,

p(θ, φ) =
sin θ

4π
(0 ≤ θ < π, 0 ≤ φ < 2π) (A2)

Substituting (A2) into (A1), the spatial correlation becomes

ρ =
sin(kd)

kd
(A3)

which is a sinc function.

APPENDIX B.

For the uniform correlation model, the correlation matrix of an N -port antenna becomes

Φ =

⎡
⎢⎢⎣

1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

⎤
⎥⎥⎦ . (B1)

For Φ to be positive semidefinite, it must satisfy

Φ = LLT (B2)

where L is real-valued matrix with proper dimensions. The actual entries of L depend not only on
the value of ρ but also on the decomposition (or matrix square root). Several methods exist for
the decomposition. Nevertheless, the feasibility of the correlation matrix should not depend on the
decomposition method. Hence, we choose a simplest decomposition for (B1):

L =

⎡
⎢⎢⎣
a b . . . b
b a . . . b
...

...
. . .

...
b b . . . a

⎤
⎥⎥⎦ (B3)

where a and b are solutions for the following set of equations

a2 + (N − 1)b2 = 1

2ab + (N − 2)b2 = ρ
. (B4)

All the solutions to (B4) involve the square root of (N−1)ρ+1. Since a and b are real-valued, (N−1)ρ+1
should be no smaller than zero, i.e.,

ρ ≥ −1/(N − 1). (B5)
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20. Pirkl, R. J., K. A. Remley, and C. S. L. Patané, “Reverberation chamber measurement correlation,”
IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 533–544, 2012.

21. Paulraj, A., R. Nabar, and D. Gore, Introduction to Space-time Wireless Communication,
Cambridge University Press, 2003.

22. Cover, T. M. and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, 1991.
23. Chen, X., P.-S. Kildal, and M. Gustafsson, “Characterization of implemented algorithm for MIMO

spatial multiplexing in reverberation chamber,” IEEE Trans. Antennas Propag., Vol. 61, No. 8,



Progress In Electromagnetics Research B, Vol. 62, 2015 253

4400–4404, Aug. 2013.
24. Recanatini, R., F. Moglie, and V. Mariani Primiani, “Performance and immunity evaluation of

complete WLAN systems in a large reverberation chamber,” IEEE Trans. Electromagn. Compat.,
Vol. 55, No. 5, 806–815, Oct. 2013.

25. Genender, E., C. L. Holloway, K. A. Remley, J. M. Ladbury, G. Koepke, and H. Garbe, “Simulating
the multipath channel with a reverberation chamber: Application to bit error rate measurements,”
IEEE Trans. Electromagn. Compat., Vol. 52, 766–777, 2010.

26. Im, Y.-T., M. Ali, and S.-O. Park, “Slow modulation behavior of the FMCW radar for wireless
channel sounding technology,” IEEE Trans. Electromagn. Compat., Vol. 56, No. 5, 1229–1237, 2014.

27. Ferrara, G., M. Migliaccio, and A. Sorrentino, “Characterization of GSM non-line-of-sight
propagation channels generated in a reverberating chamber by using bit error rates,” IEEE Trans.
Electromagn. Compat., Vol. 49, No. 3, 467–473, Aug. 2007.

28. Chen, X., P.-S. Kildal, and J. Carlsson, “Measurement uncertainties of capacities of multi-antenna
system in anechoic chamber and reverberation chamber,” 8th International Symposium on Wireless
Communication Systems, 216–220, Aachen, Germany, Nov. 6–9, 2011.

29. Olkin, I. and J. W. Pratt, “Unbiased estimation of certain correlation coefficients,” The Annals of
Mathematical Statistics, Vol. 29, No. 1, 201–211, 1958.

30. Szini, I., “Reference antenna proposal for MIMO OTA,” CTIA Contribution MOSG110504R1,
May 2011.

31. Chen, X., “Throughput multiplexing efficiency for MIMO antenna characterization,” IEEE
Antennas Wireless Propag. Lett., Vol. 12, 1208–1211, 2013.


