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Array Aperture Extension Algorithm for 2-D DOA Estimation
with L-Shaped Array

Xi Nie* and Ping Wei

Abstract—In this paper, an array aperture extension algorithm is developed for two-dimensional (2-D)
direction-of-arrival (DOA) estimation with L-shaped array. We enlarge the dimension of the covariance
matrix by using the rotational invariance in conjunction with the property that the signal covariance
matrix is real diagonal matrix. Estimation of DOAs is performed by processing this larger dimensional
matrix. The simulation results indicate that our method can improve the DOA estimation accuracy.

1. INTRODUCTION

Estimation of two-dimensional (2-D) direction of arrival (DOA) of multiple incident signals using sensor
array techniques has attracted considerable attention in many applications including radar, sonar,
wireless communication, and seismic sensing [1], and lots of high-resolution algorithms were proposed
in literatures [2–6] in the past decade. Most of the above-mentioned approaches directly deal with the
covariance matrix of the received signals to estimate the DOAs of the signal sources. In this paper,
we introduce a method to enlarge the dimension of the covariance matrix with L-shaped array. Our
method extends the dimension of the covariance matrix by employing the rotational invariance and the
property that the covariance matrix of the signal sources is real diagonal matrix. Then, the signal DOAs
are found by processing the larger dimensional matrix. Computer simulations show that the proposed
approach can obtain good DOA estimation performance.

Notations: The superscript ∗, T , H, and † denote the conjugate, the transpose, the conjugate
transpose, and Moore-Penrose inverse respectively. E{·}, J, and M[i : j, :] stand for the statistical
expectation, an exchange matrix with ones on its antidiagonal and zeros elsewhere, and a matrix
consisting of the ith to jth rows of matrix M respectively.

2. DATA MODEL

Consider K narrowband far-field plane signals {sk(t)}K
k=1 from distinct directions impinging on an L-

shaped array composed of two uniform linear arrays (ULAs) along x and z axes respectively. Each ULA
consists of N isotropic sensors, and the inter-sensor spacing d along x and z axes is half-wavelength
λ/2. Let αk and βk, k = 1, 2, . . . , K, be the azimuth and elevation angles of the kth source. Note that
the azimuth angle αk is taken between the signal arrival direction and x axis, and the elevation angle
βk is taken between signal arrival direction and z axis, as shown in Figure 1.

The array manifold matrices can be given as

A(α) = [a(α1),a(α2), . . . ,a(αK)] (1)
A(β) = [a(β1),a(β2), . . . ,a(βK)] (2)

where a(αk) = [1, ξk, . . . , ξN−1
k ]T , ξk = ejπ cos αk , a(βk) = [1, ηk, . . . , ηN−1

k ]T , ηk = ejπ cos βk .
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Figure 1. L-shaped array configuration for 2-D DOA estimation.

The observed vectors x(t) and z(t) can be written as
x(t) = A(α)s(t) + nx(t) (3)
z(t) = A(β)s(t) + nz(t) (4)

where x(t) = [x1(t), x2(t), . . . , xN (t)]T , z(t) = [z1(t), z2(t), . . . , zN (t)]T , s(t) = [s1(t), s2(t), . . . , sK(t)]T ,
nx(t) = [nx1(t), nx2(t), . . . , nxN (t)]T , nz(t) = [nz1(t), nz2(t), . . . , nzN (t)]T . s(t) is a K × 1 source vector,
and nx(t) and nz(t) are additive noise in the x and z axes subarrays, respectively. Assume that the
sources are uncorrelated with each other, and the noise is a white Gaussian random processes with
zero-mean and variance σ2, and is statistically independent of signal samples.

3. PROPOSED ALGORITHM

From the above assumption, we calculate the covariance matrix of the observations as
Rxz = E

{
x(t)zH(t)

}
= A(α)E

{
s(t)sH(t)

}
AH(β) + E

{
nx(t)nH

z (t)
}

= A(α)RsAH(β) (5)
where the diagonal matrix Rs = diag{p1, p2, . . . , pK} is the signal covariance matrix, and positive real
number pk stands for the power of the kth signal source. Note that nx(t) and nz(t) are spatially
independent of each other, i.e., E{nx(t)nH

z (t)} = 0.

3.1. Covariance Matrix for Signal Subspace Identification

Performing the singular value decomposition (SVD) of Rxz

Rxz = A(α)RsAH(β) = UΣVH (6)
where Σ = diag(d1, d2, . . . , dK) with d1 ≥ d2 ≥ . . . ≥ dK > 0, d1, d2, . . . , dK stand for the K largest
singular values of Rxz, U and V stand for the left and right singular vectors of Rxz corresponding to
K largest singular values, respectively.

It is well known that the K columns of U and A(α) span the same range space. Therefore, there
exists an invertible matrix W1 such that

U = A(α)W1. (7)
Divide U into two (N−1)×K matrices U1 and U2 such that U1 = U[1 : N−1, :], U2 = U[2 : N, :].

Accordingly, U1 and U2 can be represented as
U1 = A1(α)W1 (8)
U2 = A2(α)W1 (9)
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where A1(α) = A(α)[1 : N − 1, :], A2(α) = A(α)[2 : N, :].
According to the rotational invariance, we have

A2(α) = A1(α)Dα (10)

where Dα is a diagonal matrix with Dα = diag(ξ1, ξ2, . . . , ξK).
Combining (7), (8), (9) with (10), we get

U
(
U†

2U1

)N
= A(α)W1

(
W−1

1 A†
2(α)A1(α)W1

)N
= A(α)D−N

α W1 = Anew1(α)W1 (11)

where Anew1(α) = [anew1(α1),anew1(α2), . . . ,anew1(αK)], anew1(αk) = [ξ−N
k , ξ

−(N−1)
k , . . . , ξ−1

k ]T .
Substituting (7) into (6), we obtain

RsAH(β) = W1ΣVH . (12)

We define the first matrix R12 as

R12 � U
(
U†

2U1

)N
ΣVH . (13)

According to (11) and (12), R12 can be rewritten as

R12 = Anew1(α)RsAH(β). (14)

Likewise, the K columns of V and A(β) span the same range space. There exists an invertible
matrix W2 satisfied the following equality

V = A(β)W2. (15)

Divide V into two (N−1)×K matrices V1 and V2 such that V1 = V[1 : N−1, :], V2 = V[2 : N, :].
Accordingly, V1 and V2 can be represented as

V1 = A1(β)W2 (16)
V2 = A2(β)W2 (17)

where A1(β) = A(β)[1 : N − 1, :], A2(β) = A(β)[2 : N, :].
By means of the rotational invariance, we obtain

A2(β) = A1(β)Dβ (18)

where Dβ is also a diagonal matrix with Dβ = diag(η1, η2, . . . , ηK).
Combining (15), (16), (17) with (18), we have

V
(
V†

2V1

)N
= A(β)W2

(
W−1

2 A†
2(β)A1(β)W2

)N
= A(β)D−N

β W2 = Anew1(β)W2 (19)

where Anew1(β) = [anew1(β1),anew1(β2), . . . ,anew1(βK)], anew1(αk) =
[
η−N

k , η
−(N−1)
k , . . . , η−1

k ]T .
Substituting (15) into (6), we get

A(α)Rs = UΣWH
2 . (20)

We define the second matrix R21 as

R21 � UΣ
(
V

(
V†

2V1

)N
)H

. (21)

From (19) and (20), R21 can be rewritten as

R21 = A(α)RsAH
new1(β). (22)

Next, we define the third matrix R11 as

R11 � J
(
UU†

1U2Σ
(
VV†

1V2

)H
)∗

J. (23)
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According to (6), (7), (8), (9), (10), (15), (16), (17) and (18), R11 can be expressed as

R11 = J
(
A(α)DαW1Σ(A(β)DβW2)

H
)∗

J = Anew1(α)R∗
sA

H
new1(β). (24)

Since Rs is real diagonal matrix, the equality Rs = R∗
s holds. Thus, R11 can be represented as

R11 = Anew1(α)RsAH
new1(β). (25)

Combining R11, R12, R21 with Rxz, we construct a new matrix Rnew

Rnew =
[
R11 R12

R21 Rxz

]
(26)

According to (5), (14), (22) and (25), Rnew can be expressed as

Rnew =
[
Anew1(α)

A(α)

]
Rs

[
Anew1(β)

A(β)

]H

= Anew (α)RsAH
new (β) (27)

where Anew (α) = [anew (α1),anew (α2), . . . ,anew (αK)], anew1(αk) = [ξ−N
k , ξ

−(N−1)
k , . . . , ξ−1

k , 1, ξ1
k , . . .,

ξ
(N−1)
k ]T , Anew (β) = [anew (β1),anew (β2), . . . ,anew (βK)], anew (βk) = [η−N

k , η
−(N−1)
k , . . . , η−1

k , 1, η1
k, . . .,

η
(N−1)
k ]T .

It is evident that Anew (α) and Anew (β) correspond to an array manifold matrix of a ULA with
2N array elements and Rnew corresponds to a covariance matrix of a cross-array with 2N + 2N array
elements, which indicates that the number of array elements increases from N + N to 2N + 2N .

3.2. Estimation of the Azimuth α and the Elevation β

Performing the SVD of Rnew

Rnew = Anew (α)RsAH
new (β) = U′Σ′V′H (28)

where Σ′ = diag(d1,d2, . . . , dK) with d1 ≥ d2 ≥ . . . ≥ dK > 0, d1, d2, . . . , dK stand for the K largest
singular values of Rnew , U′ and V′ stand for the left and right singular vectors of Rnew corresponding
to the K largest singular values, respectively.

Next, we define three matrices Σ, U and V as Σ � Σ′1/2, U � U′Σ and V � V′Σ. Accordingly,
(28) could be rewritten as

Anew (α)RsAH
new (β) = UVH . (29)

We have known that U and Anew (α) span the same range space, and V and Anew (β) span the
same range space. Hence, the following two equalities hold

Anew (α) = UP1 (30)
Anew (β) = VP2 (31)

where P1 and P2 are two invertible matrices.
Then, we can utilize the conventional ESPRIT procedure [7] to estimate the azimuth αk and the

elevation βk. Divide U into two (2N − 1) × K matrices U1 and U2 such that U1 = U[1 : 2N − 1, :],
U2 = U[2 : 2N, :].

Performing the eigenvalue decomposition (EVD) of U†
1U2, the eigenvectors P1

′ of U†
1U2 must

satisfy the following equality

P1
′ = P1C1 (32)

where C1 is a permutation matrix composed of a single nonzero constant along every row or column and
zeros elsewhere. The eigenvalues λαk

of U†
1U2 must be equal to ejπ cos αk , k = 1, 2, . . . ,K. Accordingly,

the azimuth αk, k = 1, 2, . . . ,K, could be obtained by solving the following nonlinear equation

αk = cos−1

[
arg(λαk

)
π

]
k = 1, 2, . . . ,K. (33)
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Similarly, performing the EVD of V†
1V2, where V1 = V[1 : 2N − 1, :], V2 = V[2 : 2N, :]. The

eigenvectors P2
′ of V†

1V2 must satisfy the following equality

P2
′ = P2C2 (34)

where C2 is also a permutation matrix. The eigenvalues λβk
of V†

1V2 must be equal to ejπ cos βk ,
k = 1, 2, . . . ,K. The elevation βk, k = 1, 2, . . . ,K, could be obtained by solving the following nonlinear
equation

βk = cos−1

[
arg(λβk

)
π

]
k = 1, 2, . . . ,K. (35)

3.3. Pair Matching

Combining (29), (30) with (31), we have [8]

PH
1 P2 = R−1

s . (36)

Since Rs is a diagonal matrix, R−1
s is also a diagonal matrix.

We define a matrix P as

P � P1
′HP2

′. (37)

According to (32), (34) and (36), P can be represented as

P = CH
1 PH

1 P2C2 = CH
1 R−1

s C2. (38)

Since C1 and C2 are two permutation matrix and R−1
s is a diagonal matrix, P is also a permutation

matrix. (38) implies that if the eigenvectors of U†
1U2 and V†

1V2 are unit vectors, only one element
value is close to 1 for every row or column in P. We can pair 2-D angles of the signals by utilizing this
property. Let the eigenvectors of U†

1U2 and V†
1V2 be unit vectors, if pi,j is close to 1, the ith azimuth

and jth elevation angles come from a couple of incident angles, where pi,j denotes the element value of
the ith row jth column in P.

4. COMPUTATIONAL COMPLEXITY

In this section, we analyse the computational complexity of the proposed method. From the derivation
of the presented method, we can see that the computational complexity of our method mainly
focuses on two SVD. One is to perform the SVD of a N × N matrix, and the computational cost
is 24N3 +48N3 +54N3 = 126N3 flops [10]. The other is to perform the SVD of a 2N ×2N matrix, and
the computational burden is 24(2N)3 + 48(2N)3 + 54(2N)3 = 1008N3. Since our method need to deal
with a larger dimensional matrix, the computational cost of our method increases somewhat. However,
our method can enhance the DOA estimation accuracy, and the simulation would verify this conclusion
in the next section.

5. SIMULATION RESULTS

In this section, we illustrate the performance of our method by simulations. We compare our method
with CCM-ESPRIT in [2], JSVD in [3] and Cramer Rao bound (CRB) in [9]. An L-shaped array is
employed with 8 sensors for each ULA. The elements of each antenna array are separated by a half-
wavelength. For simplicity, we suppose that all signal sources are of equal power σ2

s , and the input SNR
is defined as 10log10(σ2

s/σ
2
n). Define the root-mean-square-error (RMSE) of the DOA estimates from N

Monte Carlo trials as

RMSE =

√√√√ 1
NK

N∑
n=1

K∑
k=1

((
α̂

(n)
k − αk

)2
+

(
β̂

(n)
k − βk

)2
)

(39)
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where α̂
(n)
k and β̂

(n)
k are the estimates of αk and βk for the nth Monte Carlo trial respectively, and K

is the source number.
In the first simulation, we examine the estimation performance of three methods in terms of SNR.

Three signal directions are set to [α1, α2,α3] = [100◦, 90◦, 80◦], and [β1, β2, β3] = [70◦, 80◦, 90◦]. The
snapshot number is fixed at 500. The SNR varies from 0 dB to 15 dB.

In the second simulation, we research the RMSE of three methods with respect to the snapshot
number. The incident directions of three sources are set to [α1, α2, α3] = [120◦, 110◦, 100◦] and
[β1, β2, β3] = [100◦, 110◦, 90◦]. The SNR is fixed at 5 dB. The snapshot number ranges from 200 to 2000.

From Figure 2 and Figure 3, it can be observed that our method is superior to CCM-ESPRIT and
JSVD in different SNR and the snapshot number. It is because that our method utilizes the information
Rs = R∗

s to estimate the DOAs of signal sources, while CCM-ESPRIT and JSVD do not utilize this
information.

In the third simulation, we investigate the estimation accuracy of the azimuth angles of three
methods for different SNR. Three signal directions are set to [α1, α2, α3] = [60◦, 70◦, 80◦], and
[β1, β2, β3] = [110◦, 120◦, 130◦]. The snapshot number is fixed at 500. The SNR varies from 0 dB
to 15 dB.
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Figure 2. RMSE versus the SNR for 500
snapshots.
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Figure 3. RMSE versus the snapshot number,
SNR = 5 dB.
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Figure 4. RMSE of azimuth angles versus the
SNR for 500 snapshots.
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Figure 5. RMSE of elevation angles versus the
SNR for 500 snapshots.
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In the fourth simulation, we test the estimation accuracy of the elevation angles of three methods
for different SNR. The simulation condition is the same as the third one.

From Figure 4 and Figure 5, we can see that the DOA estimation accuracy of azimuth angles and
azimuth angles is improved respectively by using our array aperture extension algorithm. The reason
for this is that our method exploits more information to detect the DOAs of the signal sources.

6. CONCLUSION

This paper proposes an array aperture extension algorithm for 2-D DOA estimation with L-shaped array.
Our method exploits rotational invariance, as well as the property that the signal covariance matrix is
real diagonal matrix to construct a larger dimensional covariance matrix corresponding to a cross-shaped
array with more array sensors. It is equal to enlarging the array aperture. Thus, our method achieves
higher DOA estimation accuracy. Simulation results confirm the validity of the proposed method.
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