Progress In Electromagnetics Research, Vol. 150, 183-196, 2015

An Efficient and Accurate Method to Solve Low Frequency
and Non-Conformal Problems Using Finite Difference
Time Domain (FDTD)

Kadappan Panayappan! and Raj Mittra®ls 2 *

(Invited Paper)

Abstract—In this article we present vFDTD (New FDTD), an efficient and accurate method for
solving low frequency problems and with those non-conformal geometries by using the Finite Difference
Time Domain (FDTD) method. The conventional time domain technique FDTD demands extensive
computational resources when solving low frequency problems, or when dealing with dispersive media.
The vFDTD technique is a new general-purpose field solver, which is designed to tackle the above
mentioned issues using some novel approaches, which deviate significantly from the legacy methods that
only rely on minor modifications of the FDTD update algorithm. The vFDTD solver is a hybridized
version of the conformal FDTD (CFDTD), and a novel frequency domain technique called the Dipole
Moment (DM) approach. This blend of time domain and frequency domain techniques empowers the
solver with potential to solve problems that involve: (i) calculating low frequency response accurately
and numerically efficiently; (ii) handling non-Cartesian geometries such as curved surfaces accurately
without staircasing; (iii) handling thin structures, with or without finite losses; and (iv) dealing with
multi-scale geometries.

1. INTRODUCTION

The conventional time domain technique FDTD demands extensive computational resources when
solving low-frequency problems, or when dealing with dispersive media. To tackle some of these
challenges, the conventional techniques are often modified in a manner that is tailored to solve a
particular problem of interest. However, more often than not, these tailored methods turn out to be
computationally expensive, and they often lead to instabilities. Hence, it is useful to develop techniques
that can overcome the above limitations, while preserving the advantages of the existing methods. The
vFDTD (New FDTD) technique, which is described in this chapter, is a new general-purpose field solver,
which is designed to tackle the above issues by using some novel approaches, which deviate significantly
from the legacy methods that only rely on minor modifications of the FDTD update algorithm to
address the problems.

2. v/FDTD SOLVER

The vFDTD solver [1] is a hybridized version of conformal FDTD (CFDTD) [2], and a novel frequency
domain technique called the Dipole Moment (DM) approach described in [1,3]. This blend of time
domain and frequency domain techniques empowers the solver with potential to solve problems that
require:
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Calculating low frequency response accurately and numerically efficiently

Handling non-Cartesian geometries such as curved surfaces accurately without staircasing

Handling thin structures, with or without finite losses
e Dealing with multi-scale geometries

Advantages Some of the notable features of vFDTD are:

e Unlike the conventional FDTD, the mesh size utilized by the vFDTD is not dictated by the finest
feature of the geometry, and this size is usually maintained at the conventional A/20 level. This
helps to reduce the computational burden by a large factor.

e The vFDTD algorithm incorporates a novel post-processing technique which requires relatively
few time steps, in comparison to the number of steps required by the conventional FDTD to reach
numerical convergence.

3. LOW-FREQUENCY RESPONSE

Despite many advances in Finite methods, such as the FEM and the FDTD, as well as in integral-
equation-based techniques such as the MoM, accurately calculating the low frequency response for
radiation and scattering problems continue to pose a challenge. The frequency domain techniques, such
as the FEM and MoM, both experience difficulties at low frequencies, because they have to deal with ill-
conditioned matrices at these frequencies. On the other hand, while the time-domain-based techniques,
such as the FDTD, can accurately generate results at high frequencies, usually above 1 GHz, the same
cannot be said about their performance at low frequencies. This is not only because the FDTD results
are often corrupted by the presence of non-physical artifacts at low frequencies, but also because the
FDTD requires exorbitantly large number of time steps for accurate calculation of the response. The
required number of time steps can exceed a few million in some cases before convergence is achieved.

As an example, let us consider a 32-port connector circuit example shown in Fig. 1. This connector
geometry has been analyzed by using a commercial FDTD solver and the variation of the transmission
co-efficient So; is plotted in Fig. 2 as a function of the frequency, and we observe that the results
shows ripples that are numerical artifacts. Table 1 compares the number of time steps required for
the solution to converge at different frequencies for the connector geometry. It can be inferred from
this Table that the number of time steps required for the convergence increases as we go down in
frequency, and eventually it becomes totally impractical to solve the problem at very low frequencies.
Accurate calculation of the low-frequency response becomes especially critical in the area of RF and
digital circuits, since inaccurate results can affect the causality behavior of the overall system. The
vFDTD utilizes a new technique, which is based on analytic continuation of the results derived at
higher frequencies, and which is implemented by using the DM Approach and related techniques. This
new technique is universal in nature, and it covers the entire range of frequencies, including the limiting
case of f — 0. Also, the vFDTD can not only handle both the RF/Digital circuit problems, but also
the radiation/scattering type problems with equal ease, by employing unique methodologies tailored for
each of these categories. We present these methodologies in detail in the sections that follow.

Table 1. Comparison of time steps required for convergence for the circuit shown in Fig. 1.

Frequency 10MHz 1MHz 1Hz
Time Steps in Millions 0.7 7 70

3.1. RF and Digital Circuits

Consider the variation of the isolation co-efficient S3; shown in Fig. 3 for the connector geometry (Fig. 1).
This plot is divided into three regions, namely:

e Region-1: Low-frequency regime
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Figure 1. A 32-port connector with a overall
dimension of 5.6 x 11.88 x 27.35 mm (Housing
not shown here).

0.035 fL f1 f2 fH
1 1
0.03f '
Region:  Region Region
1 2 3
0.025 '
€ oo2f
2
g
g
= 0.015}
0.01F
0.005
0 : 1 :u 1 1 ]
0 + 1000 2000 3000 4000 5000

Frequency in MHz

Figure 3. Variation of the isolation co-efficient
Ss1 for the 32-port connector shown in Fig. 1.

e Region-2: Validation region
e Region-3: High-frequency regime
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Figure 2. Variation of the transmission co-efficient
So1 for the 32-port connector shown in Fig. 1.
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Figure 4. Variation of the transmission co-
efficient So; for the 32-port connector shown in
Fig. 1 calculated using vFDTD.

There are four frequency values which delimit the above three regions. The frequency fr describes
the lowest frequency of interest defined by the user. The frequency f;, which divides the regions 1 and
2, is typically chosen to be between 500 MHz to 1000 MHz, while the frequency fs dividing the regions
2 and 3 is chosen to be on the order of 2f; or 3f;. The frequency fy is the user input indicating
the highest frequency of interest. In each of these three regions the results are calculated by using a
different method. The results in the high-frequency regime are generated by using the conventional
FDTD, using a DC Gaussian pulse as the excitation source, whose 3 dB cut-off frequency is set to be
fm. In the low-frequency regime, the results are generated by using the proposed new technique, which

involves the following steps:
(i) Smooth the “DC Gaussian” Results.
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(ii) Fit the curve from fr, to f; with the DC values using a quadratic, for instance. The choice of f;
can be fine-tuned based on the quality of the resulting fit.

(iii) Validate the smoothed “DC Gaussian” results in region-2 by comparing them with those generated
by “single frequency” simulations at a few points (typically 2 or 3).

We have recalculated the results for the 32-port connector geometry, shown in Fig. 1, by using the
above method. The new results for the variation of the transmission co-efficient Ss; and the isolation
co-efficient S3;1 are shown in Figs. 4 and 5. From these figures we can clearly see that the conventional
FDTD simulation utilizing the DC Gaussian pulse does not generate an accurate low-frequency response
and has numerical artifacts, while the vFDTD does not suffer from the same. These artifacts often
introduce instabilities in the time domain when using SPICE-type simulation for instance.

For the next example, we consider an 8-port connector as shown in Fig. 6, which operates in the
frequency range 50-800 MHz. Fig. 7 compares the variation of Ss; calculated by using the vFDTD with
those obtained by using the DC Gaussian in the conventional FDTD algorithm. Again we find that the
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Figure 5. Variation of the isolation co-efficient Figure 6. A 8-port connector (Housing not

S31 for the 32-port connector shown in Fig. 1  shown here).
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DC Gaussian results show spurious spikes, while the vFDTD is able to calculate it accurately.

3.2. Scattering Problems

In this section we turn to the solution of scattering problems by using the vFDTD. The methodology
for handling the radiation and scattering problems is different from that used for RF/Digital circuits,
as we will explain below. For the high-frequency regime, we use the conventional FDTD and employ
a Gaussian excitation source to generate the results. However, we utilize a different procedure, in the
low-frequency regime, as outlined below:

(i) Run a “Single Frequency” simulation at a frequency f;, where the largest dimension of the geometry
is A/100, to calculate the fields at a point located A/20 from the surface of the object.

(ii) Extract the dipole moment from the field values calculated above by using the analytical expressions
for the fields radiated by an infinitesimal dipole [4].

(iii) Use the extracted dipole moment to calculate the results from f7 to fo, where fr is the lowest
frequency of interest, and f, is typically chosen to be 2f; or 3f;. It has been found that the results
generated by using this dipole moment is not only valid for frequencies, even as low as 0, but also
up to frequencies where the largest dimension of the geometry becomes A/10; hence it enables us
to seamlessly dovetail the low-frequency results with the lower end of the high frequency response.

(iv) Validate the “DC Gaussian” results in the range between f; and fo by comparing them with those
calculated by using the analytical expression at a few points (typically 2 or 3).

In order to extract the dipole moment from a single-frequency simulation, one can either use the
method proposed by Furse [5], or use the DFT to process the time signature. In the Furse method, we
choose two samples of the time signature and we fit the time signature to a sinusoidal curve using those
two samples. Even though this method appears to be computationally inexpensive when compared to
the DFT approach, the choice of the two samples determines the accuracy of the method, and these
samples should not lie within the transient region; hence we always use the DFT to extract the DM
because of its robustness.

As an example application of the procedure just outlined, we consider a sphere with a diameter of
A/20, with A defined at 10 GHz. The sphere is illuminated by a plane wave traveling in the negative-z
direction, with its E-field polarized along y. Fig. 9 compares the fields calculated by the proposed
technique, in the frequency range of 1Hz to 30 GHz, with those derived analytically. We find that
the fields calculated by using the proposed technique based on DM extraction exhibits good agreement
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Figure 9. Amplitude variation of the scattered Figure 10. Amplitude variation of the scattered
E, at a point z = 0.25cm with frequencies from FE, with distance along z from 6—>‘7 to %, at
1Hz to 30 GHz. 1.8 GHz.
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Figure 11. A PEC cube of side length 2% at  Figure 12. Amplitude variation of the scattered
10 GHz. E, at a point with frequencies from 1Hz to
30 GHz.

with those calculated by using analytical expressions. The small deviation between the two curves is
attributable to the staircase modeling of the sphere in the conventional FDTD, and it can be corrected by
using an effective radius in the analytical expression. It is important to recognize the fact that we have
used the same technique to calculate the response over the entire frequency range, including frequencies
as low as 1 Hz, without using either the quasi-static approximation or other special treatments that are
employed in the conventional computational electromagnetic (CEM) techniques. Even after the use of
these special treatments in the existing techniques, such as the FEM and MoM, the accuracy of the
low-frequency solution is often questionable because of the large condition numbers of the associated
matrix. Thus, despite all the special treatments implemented in these methods to address the low-
frequency breakdown problem, it is totally impractical to go down to frequencies on the order of 1 Hz
in the existing techniques.

The amplitude variation of the scattered field with the distance along z, calculated by using the
proposed technique, is shown in Fig. 10 for a frequency of 1.8 GHz. This plot also compares the results
with those calculated by using analytical expressions. Again we find good agreement between the
vFDTD results and those generated from the analytical expression for a A/67 sphere, for the chosen
frequency of 1.8 GHz. The field variation derived by using the vFDTD matches well with that generated
from the analytical expression, both in the near and far field regions.

For the next example we consider the problem of scattering by a PEC cube of side length /20,
as shown in Fig. 11; at a frequency of 10 GHz. Fig. 12 plots the scattered E,-field as a function of
frequency, calculated at z = 2.5 mm (A/12 at 10 GHz) by using the vFDTD, and compares it with the
result obtained by using the DM approach. The comparison is seen to be good even at a frequency as
low as 1 Hz.

Based on the illustrative examples presented above, we list below some of the advantages of the
proposed method:

e RF and Digital Circuit Problems:
Efficient for constructing low-frequency solutions, compared to the long runs in FDTD.

e Scattering Problems:
(a) Can be used for an arbitrary geometry.
(b) Can be used to efficiently calculate not only the frequency response, but the near and far fields
as well.
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4. NON-CARTESIAN GEOMETRIES

The conventional FDTD uses a staircase approximation to model non-Cartesian geometries, as shown
in Fig. 13, and requires the use of a very fine mesh to mitigate the effects of this staircase approximation
when dealing with curved objects. This, in turn, makes the simulation computationally expensive, both
in terms of memory and CPU time. Even though methods such as FEM and MoM can handle curved
geometries with much ease because they do not restrict themselves to a Cartesian type of meshing, often
they are not necessarily computationally efficient when dealing with inhomogeneous media. Hence, it
would be advantageous to modify the existing FDTD algorithm so that it can handle curved geometries,
enabling us to conveniently model arbitrary objects, regardless of their material parameters. In the past,
a generalization of the conventional FDTD, namely the CFDTD algorithm [2], has been developed for
this purpose. In CFDTD, the magnetic field update equations are modified by using the areas of the
partially-filled cells, as opposed to those of the entire cells.

To explain the concept, we consider a partially-filled cell, shown in Fig. 14. The equation for this
partially-filled cell is derived by using Farady’s law, to get:

-

E-dl = H - ds (1)

_LL_

o ot Js,
where C is the loop ABCDA and S is the area enclosed by loop C7. Upon discretizing this equation,
we obtain:

n+%.. n—%.. dt e - n/e - /- .
H, 2(i,j,k) = H, 2(i,j,k) — A [—E}(i,j. k) - lap + Ey(i,j,k) - dh + E} (i + 1,4,k) - lep]  (2)
The update magnetic equation for the partially-filled cell is shown above in (2). But, as S; — 0, this
modified update equation becomes unstable because, as we see from (2), the expression for the updated
H contains 57 in the denominator. The update equation can be modified to circumvent this instability
problem that arises when the partial area is small, albeit at the cost of compromising the accuracy.
Hence, in order to improve the accuracy, we propose two new approaches for handling non-Cartesian
geometries, as explained below.

—»Ex
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Figure 13. Meshing of a non-Cartesian geometry by the Figure 14. A partially-filled
conventional FDTD. (a) A PEC wedge geometry. (b) A PEC cell.
wedge with staircase approximation.

4.1. Asymptotic Method
In this asymptotic type of implementation, the field values as opposed to the update equations, are

modified by using the local field solution. The proposed new technique is described below:

e For the partially-filled cells with a fill factor < 50%, the E-fields are updated by using the H-fields
derived from the modified CFDTD equation given in (2).
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e For the partially-filled cells with a fill factor > 50%, the E-fields are updated by using local solutions,
generated on the basis of concepts of reflection or diffraction, rather than the use of the H-fields
employed in the CFDTD approach.

Because we use the asymptotic method to compute the reflection or diffraction coefficients, the
proposed technique requires a “single-frequency” simulation. However, this technique can be extended
to “DC Gaussian” simulations with a slight modification as described next in the Section 4.2. Also,
the proposed technique can be extended to dielectrics and inhomogeneous geometries without any
modification, while the CFDTD cannot handle either of them without compromising the accuracy.

Let us consider the case of a square PEC sheet whose sides are approximately 4\ (A referenced at
10 GHz) that are inclined at an angle of 0.72° with respect to the z-axis, as shown in Fig. 15. The tilt
angle has been chosen to be 0.72° so that the edges of the sheet are offset only by +A/40 above or below
the z-axis, i.e., half the FDTD cell size of A/20. We calculate the amplitude variation of the scattered
E, field at a frequency of 10 GHz, when the plate is illuminated by a plane wave, which travels along
the negative-y direction and is polarized along z. Fig. 16 compares the results obtained by using the
proposed technique, with those returned by the CFDTD, and by a commercial MoM code, for the same
problem. The results generated by using the proposed technique show good agreement with the results
from the commercial MoM code, while the CFDTD results exhibits spurious ripples in the lit region
because of the instability problem it encounters when the area S; — 0. Moreover, this is true even when
a fine mesh size of %0 is used in the CFDTD, in contrast to the % mesh size used in vFDTD. Table 2
presents a comparison of the mesh size and the memory requirements, and shows that the proposed
technique easily out-performs the CFDTD, which still suffers from inaccuracies, even when a very fine
mesh is used.
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Figure 15. A inclined PEC sheet (not to scale). Figure 16. Amplitude variation of the scattered
E, with distance along y at 10 GHz.

Table 2. Comparison of mesh size and memory required for convergence for PEC geometry shown in
Fig. 15.

Parameter vFDTD CFDTD?
Mesh Size Used % ﬁ
Memory Required | 413 MB 31GB
% Results still have numerical artifacts

For the next example, let us change the inclination of the PEC plate in the previous problem from
0.72° to 1.43°. Fig. 17 compares the scattered E,-field calculated by using the vFDTD/Asymptotic
method, with those obtained by using the CFDTD algorithm with a mesh size of A/160, and with the
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commercial MoM code results. We again find that the results from the vFDTD match well with those
obtained by using the commercial MoM code, while the results from the CFDTD show spurious ripples
due to the instability problem alluded to above.

For the next example, we consider a faceted PEC surface (see Fig. 18) whose projected length is A
at a frequency of 10 GHz. Fig. 19 compares the backscattered F.-field calculated by using the vFDTD
with those obtained from: (i) the CEFDTD with a mesh size of \/20; (ii) a commercial MoM code; and
(iii) a commercial FEM. Again we find that the results calculated by using the vYFDTD compares well
with those obtained from the commercial MoM code, while the results from the commercial FEM code
shows numerical artifacts.

For the next example, let us consider a PEC wedge of side length 4\, as shown in Fig. 20. Fig. 21
plots the scattered field at a frequency of 10 GHz along the specular direction, obtained by using the
vFDTD, and compares it with those obtained by using the CFDTD with a mesh size of \/50; with a
commercial MoM code; and, with a commercial FEM code. We find a good comparison between the
scattered field calculated by using the vFDTD with that obtained from the commercial MoM code,
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while the results from the CFDTD and the commercial FEM codes show spurious ripples.

For our next example, we consider a finite PEC cylinder, as shown in Fig. 22, which has a height of
21X/20 at a frequency of 10 GHz, for the next example. In order to calculate the field in the asymptotic
limit in the vFDTD method, we use the fields scattered by an infinite PEC sheet multiplied by the

factor f, defined in (3)
- ’

where a’ is the effective phase center and r the distance of the observation point from the effective phase
center. A wide range of numerical experiments has shown that this effective phase center for a PEC
cylinder is always 0.5a, where a is the radius of the cylinder.

Figure 23 compares the backscattered F.-fields calculated by using the vFDTD with those obtained
from the CFDTD with a mesh size of \/20; with a commercial MoM code; and, with a commercial
FEM code. We find that the fields calculated by using the vFDTD compare well with those obtained by
using the commercial MoM solver. The results calculated using the commercial FEM shows numerical
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Figure 21. Amplitude variation of the scattered Figure 22. A PEC cylinder.
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artifacts and the CFDTD does not generate the correct scattered field on the surface of the cylinder;
however the vFDTD is able to solve this problem with good accuracy.

While modeling dielectric objects using the CFDTD approach, the medium parameters in the
partially-filled cells are replaced by an average dielectric constant over the entire volume of the cell.
The asymptotic method proposed here in can be used as an alternative approach to model dielectric
objects without any modifications, and with better accuracy than that of the CFDTD method. As an
example, let us consider the dielectric slab of thickness A\/8 at a frequency of 10 GHz, with €, = 4.2
as shown in Fig. 24. Fig. 25 compares the backscattered F,-field calculated by using the vFDTD with
those generated by using the CFDTD, and with the commercial FEM code. We find that the results
generated by using the commercial FEM and CFDTD codes exhibit spurious ripples, while those from
the vFDTD have a smooth behavior, which is realistic.

In order to demonstrate the efficacy of the vFDTD method, we vary the thickness of the slab, and
choose it to be 9A/80, 10A\/80 and 11A/80 at a frequency of 10 GHz. We calculate the phase variation
at y = A\/40 and plot it in Fig. 26, which shows the comparison of the phase variation against the
thickness, generated by using the infinite slab analytical expression; the CFDTD; and a commercial
FEM code. We find that the results calculated by using the vFDTD compares well with those derived
from the analytical expressions for the infinite slab, while the results generated by using the other
methods deviate from the analytical results.
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Figure 25. Amplitude variation of the Figure 26. Phase variation of the backscattered

backscattered F, with distance along y at 10 GHz.  E, at y = \/40.

4.2. Averaging Technique

)

As mentioned in Section 4.1, the proposed vFDTD technique requires a “single frequency” simulation
because we use the asymptotic limit to compute the reflection or diffraction coefficients. In this section,
we describe a modified approach in which we use the “DC Gaussian” simulation that enables us to
generate results for a wide range of frequencies. In order to demonstrate the usefulness of this approach,
we consider the example of a rectangular cylinder of height 4\ at a frequency of 10 GHz, which has
mitered corners as shown in Fig. 27. The problem is handled in three steps as shown in Fig. 28 and
we use scattered-field type of formulation in all of these steps. Even though it shows three steps, it
is important to note the fact that we need only two simulations, since the calculation of the scattered
field in step-2 is trivial when the boundary condition on the PEC is used. The simulation for the first
step does not call for any modifications to the FDTD algorithm. However, for the third step we need to
modify the field value at the nodes of the partially filled cells by using the weighted average of the fields
at these nodes, obtained from steps 1 and 2, based on the partially filled space in the actual geometry.

Figure 29 compares the backscattered E,-field calculated by using the vFDTD with that generated
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by using the commercial MoM code, and the comparison is seen to be good. For the next example, we
consider the faceted PEC geometry shown in Fig. 30, whose projected footprint is 4\ at a frequency
of 10 GHz. Fig. 31 compares the backscattered E,-field, calculated by using the vFDTD/Averaging
technique, and with that obtained from a commercial MoM solver. From Fig. 31, we find that the
solution generated by using the commercial MoM code shows a spurious spike near the surface of the
geometry, while the vFDTD results are smooth.

For the last example, we consider a curved PEC surface of height 4\ at a frequency of 10 GHz, as
shown in Fig. 32. Fig. 33 compares the scattered E,-field calculated by using the YFDTD method, and
with that from a commercial MoM code, and once again we find that the comparison is good.

4.3. Advantages

Below, we summarize some of the advantages of the proposed method:

(a) Usable for arbitrary geometries, even if the surfaces do not coincide with the Cartesian mesh, e.g.,
thin sheets, with or without a slant.

(b) More accurate than the conventional Conformal FDTD.

(c) Retains A\/20 cell size even for thin, slanted and curved bodies, offering memory advantage and
computational efficiency over conventional conformal FDTD.
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(d) Free of instability problems even when the fractional area of the partially filled cell is very small,
even when it tends to zero.

(e) Can be extended to dielectric objects, with just a few modifications.

5. OBSERVATIONS AND CONCLUSIONS

In this article, we have introduced the vFDTD solver, which is a blend of time and frequency domain
techniques designed to generate accurate electromagnetic responses at low frequencies; deal with
non-Cartesian geometries accurately without any instability issues that are often encountered in the
conventional CEFDTD; and, handle lossy/lossless thin structures with ease. In all of the cases for which
we have carried out comparison studies with the existing algorithms and commercial codes, the vFDTD
was not only accurate but also computationally the most efficient. Finally, since vFDTD builds on the
conventional FDTD to solve different types of problems, its performance can be further enhanced by
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parallelizing the algorithm [6], which can be carried out as easily as in the case of the conventional
FDTD.
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