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Incomplete Bessel Polynomials: A New Class of Special Polynomials
for Electromagnetics

Diego Caratelli1, 2, *, Galina Babur3, Alexander Shibelgut3, and Oleg Stukach2

Abstract—A new class of incomplete Bessel polynomials is introduced, and its application to the
solution of electromagnetic problems regarding transient wave radiation phenomena in truncated
spherical structures is discussed. The general definition and main analytical properties of said special
functions are provided. The definition is such that the interrelationships between the incomplete
polynomials parallel, as far as it is feasible, those for canonical Bessel polynomials.

1. INTRODUCTION

Special functions are used to express exact or approximate analytical solutions of complex physical
problems [1]. They are widely adopted in various scientific fields, such as mathematical physics and
electromagnetics. Recently, incomplete Hankel functions have been introduced in [2] to determine the
electromagnetic field distribution associated with progressive and evanescent wave contributions excited
in truncated cylindrical structures. On the other hand, as shown in [3], the transient electromagnetic
field radiated in Fraunhofer region by a general antenna can be expressed as a non-uniform spherical
wave expansion in terms of incomplete modified spherical Bessel functions (IMSBFs) [4].

In this paper, a new class of incomplete Bessel polynomials (IBPs) is introduced in order to allow for
the analytical closed-form evaluation of IMSBFs of arbitrary integral order n. The analytical properties
of the considered class of functions, with particular attention to the relevant governing differential
equation and recurrence formulae, are derived and discussed thoroughly. Furthermore, the general
theory is validated by application to the electromagnetic characterization of a dielectric lens antenna
and comparison with a brute-force numerical procedure.

2. DEFINITION

Let us consider an antenna operating in free-space, enclosed by a Huygens spherical surface Sh having
radius Rh (see Fig. 1). By using the approach based on the singularity expansion method (SEM )
detailed in [3], the space-time distribution of the electromagnetic field radiated by the structure under
analysis is found to be:
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Figure 1. Dielectric lens antenna enclosed by a spherical Huygens surface Sh. The coordinate system
adopted to express the electromagnetic field quantities is also shown.

where Y m
n (ϑ,ϕ) denotes the spherical harmonic of orders n and m [5], and:

ψn (ξ, w) = ξeξwin (ξ,min {1, w}) u (1 + w) , (3)
with in (·, ·) being the IMSBF of order n and u (·) the usual Heaviside distribution [6]. In equations (1)
and (2), c0 and η0 denote the speed of light and the free-space wave impedance respectively, th = Rh/c0
is the propagation time from the center to the surface of the Huygens sphere Sh enclosing the antenna
under test, and τ = t − r/c0 is the spherical-wave delayed time. As it can be easily inferred, the
considered electromagnetic field expansion consists in the superposition of non-uniform spherical waves
propagating with complex frequencies sn,m,k and residual polarization vectors en,m,k depending on the
damped natural resonant processes occurring in the structure, whose characterization is carried out by
means of the pole/residue fitting procedure detailed in [3].

According to the definition in [4], the following integral representation in Whittaker’s form [7] holds
true:
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1
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where Pn (·) is the Legendre polynomial of degree n featuring the explicit expression [6]:
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It is straightforward to show, from combining (5) with (4), that:
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and making use of the following integral expression of the modified spherical Bessel function of the
second kind and order n > −1/2:
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it may be easily verified that:
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holding for integer values of the parameter k, one can derive, after some mathematical manipulations:
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this explicit expansion being expressed in terms of IBPs defined by the series:
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From Equation (12), it can be easily seen that yn,k(z) coincides, for k = 0, with the canonical Bessel
polynomial (BP) of order n [9, 10]:

yn,0 (z) = yn (z) =
2
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)
, (13)

explaining why the terminology of calling yn,k(z) an incomplete polynomial is pertinent. Actually, there
is a strong interrelationship between these sequences of special polynomials, the analytical properties
of the former paralleling and generalizing those of the latter.

Finally, combining Equations (6), (9), and (11) yields the following closed-form analytical expression
of the IMSBF of order n:
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The typical distribution of an IMSBF, as evaluated by (14), is shown in Fig. 2. It is worth noting that,
in the electromagnetic field theory regarding radiation and scattering from truncated structures, the
right-hand side of (14) may be regarded as the superposition of a uniform wave contribution and different

Figure 2. Distribution of the incomplete modified spherical Bessel function in(ξ, w) of order n = 10.
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Figure 3. Relative deviation between the distributions of the incomplete modified spherical Bessel
function in(ξ, w) of order n = 3 as computed by numerical integration of the Whittaker’s representation,
and by means of the relevant IBP expansion.

higher-order terms, depending on the parameter w, related to the edge diffraction process occurring at
the truncation of the sub-domain Ωh (ϑ,ϕ, τ) = {(ϑ′, ϕ′) : sinϑ sinϑ′ cos (ϕ− ϕ′) + cos ϑ cosϑ′ > −τ/th}
of the Huygens sphere Sh that actually contributes to the radiated electromagnetic field value excited
along the general angular direction (ϑ,ϕ) at a given delayed time τ .

The soundness of the theoretical findings reported in this section has been assessed numerically
by evaluating the relative deviation Δn between the distributions of the IMSBF of general order n
as computed by brute-force integration of the Whittaker’s representation (4), and by using the IBP
expansion (14), respectively. In this way, it has been observed that Δn is almost everywhere practically
negligible (see Fig. 3) proving the correctness of the derived formulas. It is apparent, furthermore, that
the IBP expansion is not only accurate but provides, also, a clear benefit in terms of computational
efficiency, defined as the ratio of the time required for the calculation of the IMSBFs by means of the
numerical integration of (4) and that using the closed-form expression (14). As a matter of fact, it has
been numerically found out that the latter allows for a reduction of the computational burden by at
least one order of magnitude.

3. ANALYTICAL PROPERTIES

In the previous section, the IBPs have been introduced and derived as the polynomial factors of
the incomplete modified spherical Bessel functions in(·, ·) of integral order n. We now turn to the
consideration of the analytical properties of this important class of special polynomials (see Fig. 4).

Upon setting for shortness:
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the series representation of the general IBP can be written in a concise way as yn,k (z) =
∑n
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m,

this expression being valid for every positive or negative integral order m ∈ Z. In order to derive the
differential equation defining yn,k(·), let us first introduce the conventional Bessel operator [9, 10]:
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Figure 4. Distribution of the incomplete Bessel polynomial yn,k(z) for different orders n (a) and k (b).

it is straightforward to show, after some algebra, that:

yDz,n yn,k (z) = 2kγn,kz
k−1, (18)

for every k ∈ Z. In a similar way, by using the explicit expansion (12), one may easily verify that the
IBPs satisfy the following recurrence equations:
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where the superscript ′ denotes differentiation with respect to the variable z. It is not difficult to find
out that formulas (19)–(23) degenerate into the well-known recurrence equations for canonical BPs as
the index k is set to zero [9].

Starting from the expansion (12), the incomplete reverse Bessel polynomials (IRBPs) can be defined
as the class of functions (see Fig. 5):
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featuring governing the differential equation:
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Clearly, θn,k (·) generalize the canonical reverse BP of order n introduced in [10] as:
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such that θDz,n θn (z) = 0. The definition (24) can find direct application in circuit theory, and synthesis
of complex filter networks [11]. Here it is worth noting that, by trivial manipulation of (14), the general
IMSBF can be expressed in terms of IRBPs as:
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Figure 5. Distribution of the incomplete reverse Bessel polynomial θn,k(z) for different orders n (a)
and k (b).

4. NUMERICAL APPLICATION

The general theory detailed in the previous sections has been validated by application to the
electromagnetic characterization of the hemispherical dielectric lens antenna sketched in Fig. 1. The
considered lens features radius rl = 2.75 cm, and is assumed to be made out of polyvinylchloride (PVC )
with relative permittivity εr = 2.7 and electrical loss tangent tan δ = 0.003. In order to reduce the
back-radiation level, the radiating structure is integrated with a circular ground plane having radius
rg = 5.0 cm and thickness tg = 1.5 mm. Furthermore, as it appears from Fig. 1, the antenna is fed by
means of a WR90 rectangular waveguide with dimensions a = 2.286 cm and b = 1.016 cm filled up with
the same dielectric material forming the lens.

The near-field full-wave analysis of the device has been performed by means of a locally
conformal finite-difference time-domain (FDTD) scheme introduced in [12] for the accurate modeling of
complex metal-dielectric electromagnetic structures avoiding the staircase approximation and the use of
unstructured and/or stretched space lattices potentially suffering from significant numerical dispersion
and instability [13]. In particular, the antenna has been meshed on a uniaxial perfectly matched
layer backed uniform grid with spatial increment Δh = 0.75 mm, where the excitation is carried out by
means of the sinusoidally modulated Gaussian pulse with central frequency f0 = 7.0 GHz and bandwidth
B = 2.0 GHz defined by the expression:

Πg (t) = exp

[
−

(
t− T0

Tg

)2
]

sin (2πf0t) u (t) . (28)

where the parameters Tg = 2
π

√
ln 10/B � 0.483 ns and T0 = 4Tg have been selected in order to give the

source signal significant energy in the range between the cut-off frequencies at −10 dB level, namely
fmin = f0−B/2 = 6.0 GHz and fmax = f0 +B/2 = 8.0 GHz. As can be noticed in Fig. 6(a), the antenna
with the described geometry turns to be well-matched to the feeding waveguide in a pretty wide band
around the resonant frequency fr � 7.075 GHz corresponding to the peak value of the return loss.

Using the SEM -based approach described in [3], a spherical harmonic representation of the
equivalent surface current densities excited on the Huygens sphere Sh with radius Rh = 5.5 cm have
been computed on-the-fly in step with the numerical FDTD simulation, and then fitted to a pole/residue
expansion with orders N = 10 and K = 20 selected heuristically in such a way as to ensure an adequate
degree of accuracy in the modeling of the natural resonant processes occurring in the structure. The
resulting resonant pole distribution in the complex frequency domain is shown in Fig. 6(b). The pair of
conjugate dominant poles with minimal damping coefficient value σp � −0.68 × 109 s−1 can be readily
noticed. The relevant mode is characterized by resonant frequency fp = 1

2ωp/π � 7.025 GHz, in good
agreement with the return-loss response of the antenna (see Fig. 6(a)). In this way, the transient
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Figure 6. Frequency-domain behavior of the input reflection coefficient (a) and distribution of the
resonant poles, (b) featured by the hemispherical dielectric lens antenna shown in Fig. 1.

electromagnetic field radiated outside Sh can be evaluated, without any limitation involving the time,
by using Equations (1) and (2) in combination with the analytical closed-form expression (14) of the
general IMSBF. On the other hand, the electromagnetic field behavior in the frequency domain can be
readily derived by application of the unilateral Laplace transform operator Lt {·} to both sides of (1)
and (2). So, making judicious use of the time scaling and frequency shifting properties of Lt{·} yields,
after some algebra, the following vector representation:

E (r, p) = Lt {E (r, τ)} (p) =
∫ +∞

0
E (r, τ) e−ptdt

= th
e−jk0r

4πrc0

N∑
n=0

n∑
m=−n

K∑
k=1

Ψn (sn,m,kth, pth)Y m
n (ϑ,ϕ) en,m,k, (29)

H (r, p) = Lt {H (r, τ)} (p) =
1
η0

r̂ × E (r, p) , (30)

(a) (b)

Figure 7. Transient (a) and frequency-domain, (b) behavior of the co-polarized electric field component
excited by the hemispherical dielectric lens antenna shown in Fig. 1 at a distance RO = 6.0 cm from the
ground plane along the boresight direction (x-axis in the adopted coordinate system).
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with k0 = −jp/c0 denoting the complex wavenumber in free space, and where [see Equation (31)]:

Ψn (ξ, p) = Lw {ψn (ξ, w)} (p) =
∫ +∞

0
ψn (ξ, w) e−pwdt =

in (p)
p/ξ − 1

. (31)

As in Fig. 7, the agreement with the numerical results obtained using the aforementioned full-wave
locally conformal FDTD technique is pretty good. But, it is here worth stressing that the computational
times and memory usage required to derive the pole/residue spherical harmonic expansion of the radiated
electromagnetic field are just negligible in comparison with those relevant to the FDTD -based simulation
aimed at computing the antenna far-field distribution. Furthermore, the fully numerical modeling
approach is unable to provide an integral physical insight into the mechanisms which are responsible
for the electromagnetic behavior of the structure under analysis. As far as the considered test case is
concerned, it is apparent from Fig. 7 that the late-time characteristics of the radiating structure are
primarily determined by the pair of dominant poles, whereas the poles having larger damping coefficients
affect and shape mainly the very early transient response.

The extension of the presented theoretical formulation to the analytical time-domain modeling of
general linear arrays [14] is currently ongoing and will be detailed in a separate research paper.

5. CONCLUSIONS

A new sequence of special polynomials for electromagnetics and mathematical physics has been
presented. This class, formed by the incomplete Bessel polynomials, can be usefully employed to
describe electromagnetic radiation and diffraction phenomena regarding truncated spherical structures.
The general properties of the considered functions have been derived and discussed. In particular,
the differential and recurrence equations feature additional terms with respect to those relevant to the
classical Bessel polynomial theory.

By using said class of special functions, the transient electromagnetic field radiated by a general
antenna can be determined in analytical closed form as the superposition of non-uniform spherical
waves attenuating along with the radial distance and time according to the complex poles related to the
resonant processes occurring in the structure. The presented formulation gives a meaningful insight into
the physical mechanisms which are responsible for the electromagnetic behavior of a radiating structure,
and can be used to optimize the performance of antennas for a wide variety of applications.
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