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Resolution Enhancement for LASAR 3D Imaging

via �1 Regularization and SVA

Gao Xiang*, Xiaoling Zhang, Jun Shi, and Shunjun Wei

Abstract—Linear array SAR (LASAR) has been attracting more and more attention for its capability
of obtaining three dimensional (3D) resolutions. However, the low resolution in cross track (CT)
direction limited by the length of its linear antenna array has become the bottleneck of its practical
applications. To overcome this problem, we present a novel algorithm based on sparse reconstruction
(SR) to improve the resolution in CT direction. First, it establishes a 1D real-valued sparse model for
LASAR, which deals with the 3D image column by column along CT direction in each equi-range slice.
This enables it to handle large scenes. Second, it employs the spatially variant apodization (SVA) to
filter bases of the measurement matrix. As a result, the cross coherence gets suppressed as well, and it
is helpful to improve the performance of sparse reconstruction algorithms (SRAs). Third, we propose
the resolution enhancement ability (REA), which provides a new idea to evaluate how many times the
resolution could be improved. Experimental results validate that when the signal to noise ratio (SNR)
is 30 dB, LASAR could usually obtain 2 times of resolution improvement in CT direction, while the
proposed method further improves the REA by a factor about 2.5. Moreover, the 3D surface terrain
simulation shows a great improvement for the digital elevation map (DEM) in resolution enhancement.

1. INTRODUCTION

Three-dimensional (3D) SAR imaging has been attracting more and more researchers’ attention over
the recent years, since it has broad application prospects [1], such as safe navigation, terrain mapping,
and disaster monitoring. As known to all, there are mainly three types of 3D SAR imaging system,
namely, Interferometric SAR (InSAR) [2, 3], LASAR [4] and Circular/Curvilinear SAR (CSAR) [5–7].
Compared with InSAR, LASAR and CSAR are usually considered to obtain true 3D spatial resolutions
of a scatter, while InSAR obtains only a height of the 2D resolution cell, such that it cannot distinguish
two scatters in the same 2D resolution cell in elevation direction. Besides, LASAR has a better peak
sidelobe ratio (PSLR) and easier flight path controlling than CSAR [8]. Thus, LASAR is more promising
practical application, and we are concerned about LASAR in our paper.

LASAR was first proposed by Mahafza and Sajjadi in [4]. From 2005 to 2006, the FGAN
of Germany developed the Airborne Radar for Three-dimensional Imaging and Nadir Observation
(ARTINO) system, which employed phase center approximation (PCA) and multiple input multiple
output (MIMO) concepts to reduce the system costs [1, 9]. In 2009, Shi et al. reported some experimental
results of the One-active LASAR system [10]. Besides, LASAR can also be extended to forward-looking
model [11, 12]. However, the low resolution in CT direction, which is limited by the length of the physical
linear array, becomes the bottleneck of practical applications of LASAR. Therefore, it is necessary to
develop effective resolution enhancement (RE) algorithms for LASAR.
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To improve the resolution of SAR image, there have been many methods based on spectral
estimation and spectrum extrapolation. López-Dekker et al. have proposed to focus the SAR image
by spectral estimation algorithms Capon and Amplitude and Phase Estimation (APES) in [13]. They
found that the Capon- and APES- based methods could improve resolutions and reduce sidelobes of
SAR image. Xu and Narayanan have researched an iterative method based on super-SVA for SAR
resolution improvement [14]. And it could usually improve the resolution by about 2 times. Lim et al.
have presented a non-iterative super-resolution technique combining super-SVA with modified geometric
mean filter [15]. It could avoid iterative calculations to save computational complexity and improve the
resolution by about 40%.

In recent decades, sparse reconstruction (SR) has been greatly developed and applied to many
fields [16, 17]. Because 3D imaging needs only to recovery the surface of an object, its images are
usually sparse in 3D imaging space. This property encourages researchers to apply SR to 3D imaging.
In [17], Potter et al. introduced that compressive sensing (CS) could be used to enhance the CSAR
image. In [18], Zhu and Bamler researched the resolution enhancement problem for Tomographic SAR
in elevation direction with CS methods. It aimed to resolve two closely spaced complex-valued points
from a certain number of measurements. LASAR is different from Tomographic SAR that LASAR
has lower resolution in CT direction and might have more than two scatters to be recovered. For
LASAR, Wei and Zhang [19] and Shi et al. [20] presented CS based frameworks for 3D SAR imaging
by handling the problem slice by slice in elevation direction. However, they are still storage consuming
and not suitable for large slice images. In [21], Wei and Zhang proposed a 1D complex-valued CS based
algorithm to focus the data of CT direction. It reduced the size of measurement matrix and obtained
enhanced 3D images. However, [19–21] mainly address how to apply CS to LASAR imaging, but do
not focus on resolution enhancement. In this paper, we concentrate on the RE of LASAR. There are
two main contributions: (1) It proposes a novel resolution enhancement algorithm based on a 1D real-
valued sparse model of LASAR, which employs SVA [22] to filter bases of the measurement matrix. This
model is suitable for large problems and promising to have better performance in RE; (2) It presents the
resolution enhancement ability (REA) parameter to evaluate how many times the resolution could be
improved by SRAs. It could provide a proper pixel interval (resolution) for the sparse recovery image.

The remaining sections of this paper are organized as follows. In Section 2, we present a 1D
real-valued sparse model for LASAR, then the pixel interval and cross coherence of the measurement
matrix are analyzed in detail. In Section 3, for a better performance in RE, we suggest to filter bases of
the measurement matrix by SVA [22]. In Section 4, we propose the REA of LASAR and examine the
proposed method by Monte Carlo experiments and a 3D surface terrain simulation.

2. RESOLUTION ENHANCEMENT FRAMEWORK

In this section, we first introduce the geometrical model of LASAR briefly. Then a 1D sparse model of
LASAR, which concentrates on the resolution enhancement in CT direction, is established. Finally, the
pixel interval and cross coherence of the measurement matrix are analyzed in detail.

2.1. 1D Sparse Model of LASAR

Though LASAR usually uses a sparse MIMO array to transmit and receive signals, it can always be
interpreted as a uniform linear array (ULA) contributed to the PCA principle. Thus, without loss of
generality, we assume the LASAR mounts a ULA directly in this paper, as shown in Figure 1. Where x-
axis, y-axis and z-axis denote the along-track (AT) direction, cross-track (CT) direction and elevation
direction, respectively. The ULA is fixed along the y-axis. When the platform moves forward, only
one element is activated to transmit and receive the linear frequency modulated (LFM) signal during
each pulse repetition time (PRT). These elements transmit signals sequentially with a high switching
frequency.

Here we are to establish a 1D sparse model for LASAR. Because it is easy to obtain high resolutions
in AT and elevation directions, we concentrate on the resolution improvement in CT direction only.

Since the resolution in CT direction is obtained by beamforming, it is convenient to use the polar
coordinate in yoz plane [1]. Thus, the scatter P(xP, yP, zP) can also be expressed as P(xP, rP, θP),
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Figure 1. Geometrical model of 3D SAR with a ULA.

where rP =
√

(yP)2 + (zP)2 and θ = arcsin(yP/rP) (usually very small). When LASAR works under
the downward-looking mode, its point spread function (PSF) [1, 23] can be formulated as:

g̃ (x, r, θ;P) = σPe
jψ(P)sinc

(
x− xP

ρx

)
sinc

(
r − rP
ρr

)
sinc

(
θ − θP
ρθ

)
(1)

where the sinc function is defined as sinc(v) � sin(πv)/πv, and ψ(P) is the residual phase of P after
image focusing. ρx, ρθ and ρr denote resolutions in AT, CT and range directions respectively.

The column image g(x = xi, r = rk, θ), for the kth equi-range slice and the ith column, can be
expressed as:

g (x = xi, r = rk, θ) =
∑
P

s(P)sinc
(
θ − θP
ρθ

)
+ n1(θ) (2)

where

s(P) = σPe
jψ(P)sinc

(
xi − xP

ρx

)
sinc

(
rk − rP
ρr

)
(3)

n1(θ) denotes the noise item. Further, formula (2) can be expressed as a linear system

g(i,k) = Hθs(i,k) + n (4)

where g(i,k) denotes the column image g(x = xi, r = rk, θ), s(i,k) the sparse vector to be recovered, and
Hθ the measurement matrix, defined by

Hθ =
[
Hθ

1 , H
θ
2 , · · · ,Hθ

q , · · · , Hθ
Q

]
(5)

where Hθ
q = sinc(θ − θq) denotes the qth column of Hθ, θ = [0, dθ , · · · , (Q − 1)dθ], and dθ is the pixel

interval. How to determine the pixel interval dθ will be discussed in Sections 2.3 and 4.
So far, we have obtained the 1-D sparse model of LASAR (4). Compared with the implementation

in [20], the size of the measurement matrix has been reduced from MQ ×MQ to Q × Q for the slice
image of size Q×M .
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2.2. Recovery by �1 Regularization

After establishing the sparse model of LASAR, we reformulate problem (4) as a series of �1 regularization
problems:

ŝ�(i,k) = min ‖Hθs�(i,k) − g�
(i,k)‖22 + η‖s�(i,k)‖11 (6)

ŝ�(i,k) = min ‖Hθs�(i,k) − g�
(i,k)‖22 + γ‖s�(i,k)‖11 (7)

where the superscripts � and � mean taking the real and imaginary parts, respectively. ŝ(i,k) represents
the estimate of s(i,k). η and γ are the regularization parameters, and can be determined by the methods
in [24]. Alternatively, in this paper, the least absolute selection and shrinkage operator (LASSO) [25],
which does not require regularization parameters explicitly, is invoked to solve the problems (6) and
(7).

Compared with [21], the proposed model can divide the complex-valued problem into the real and
imaginary parts. It will not increase the size of the measurement matrix as in [21], thus this model can
be suitable for larger scale problems.

2.3. The Pixel Interval and the Cross Coherence

Here we aim to find the influence of the pixel interval. It is important to note that we use SR to
improve the resolution rather than to save the antenna elements [21], so we assume that the signals are
full-sampled in CT direction. Define the cross coherence μc(Hθ, l) of Hθ as:

μc

(
Hθ, l

)
=

〈
Hθ
q ,H

θ
q+l

〉
‖Hθ

q ‖2‖Hθ
q+l‖2

(8)

where l ∈ [−Q/2, · · · , 0, · · · , Q/2− 1] represents the index interval between two columns. As a result,
the mutual coherence μ(Hθ) is the second largest value of μc(Hθ, l).

μ
(
Hθ

)
= max

l �=0
|μc(Hθ, l)| (9)

Property 1 The cross coherence μc
(
Hθ, l

)
of Hθ, defined in (8), is a sinc function with respect to the

interval l.
Proof: Consider this problem in its continuous form, then (8) can be reformulated as

μc

(
Hθ, l

)
=

1
ρθ

∫
sinc

(
θ

ρθ

)
sinc

(
θ − l
ρθ

)
dθ (10)

where l is the continuous form of column interval. Owing to the convolution theorem, we obtain

μc

(
Hθ, l

)
= sinc

(
l

ρθ

)
(11)

If dθ → 0, then μ(Hθ) → 1. Thus the mutual coherence is usually very high in RE. However, a larger
mutual coherence leads to more difficulty in SR. Property 1 indicates that dθ should not be too small.
In other words, the ability of resolution improvement is limited. According to Subsection 4.1, it is
recommended that dθ should better meet 1 ≤ ρθ

dθ
≤ 5.

Figure 2 draws the cross coherence μc(Hθ, l) with Q = 1024 and ρθ
dθ

= 5. It compares the cross
coherence of Hθ(α = 22), Hθ(α = 3) and a Gaussian random matrix in uniform spherical ensemble
(USE) [26], which is considered to have good performance in SR. It demonstrates that Hθ usually has
much higher mutual coherence in RE. That is why Hθ performs worse than Gaussian random matrix
in SR.

In order to improve the performance of Hθ, it had better reduce the mutual coherence. However,
in RE, it is unable to reduce the mutual coherence for |ldθ| ≤ ρθ, such that we can concentrate only on
the cross coherence reduction for |ldθ| > ρθ, which can eliminate the influence from pixels |ldθ| > ρθ as
much as possible. For this purpose, according to Equations (8) and (11), we propose to filter bases in
Hθ and column images by applying SVA (or adding windows).
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3. FILTERING BASES BY SVA

Besides, the sidelobes of the sinc basis can be easily influenced by noise and interference, and they
might cause the unstability of resolution enhancement. Thus, it is necessary to filter the bases of Hθ.
In this section, SVA [22] is employed to suppress the sinc kernel. For the sake of simplicity, we use g(m)
to refer to the column image g(x = xi, r = rk, θ). Here, its Fourier data is G(f) with a support region
−f0 < f < f0, where f0 represents half of the bandwidth, and m indexes the image pixel.

SVA can be described as a frequency domain aperture function:

W (f) = a+ 2w(m) cos
(

2π
f

fs

)
(12)

where fs denotes the sampling frequency. It imposes two constraints to W (f), in order to obtain unit
gain and monotonic gain:

a = 1− 2w(m)
sinws
ws

(13)

0 ≤ w(m) ≤ wmax =
ws

2[sinws −ws cosws]
(14)

where ws = 2πf0/fs. Let the 1-D column image pass though the filter (12), then get

g′(m) = ag(m) + w(m)[g(m − 1) + g(m+ 1)] (15)

In fact, SVA attempts to find proper a and w(m) such that |g′(m)|2 is minimized. Generally, it can be
implemented through the following three steps:
Step1. Calculate g′(m) for w(m) = 0 (g1(m)) and wmax (g2(m)) by (15);
Step2. If g1(m)× g2(m) < 0, the output g′(m) = 0;
Step3. Otherwise, the output pixel is the g′(m) with the lowest magnitude, that is, g′(m) = {|g′(m)| =

min{|g1(m)|, |g2(m)|}}.
SVA can suppress sidelobes of the sinc kernel without widening the mainlobe [22]. Therefore, it is

reasonable to assume that each column of Hθ keeps only the mainlobe of the sinc kernel after applying
SVA, that is

Hθ
p = sinc(θ − θp) ◦

(
|θ − θp| < α

ρθ
2

)
(16)

where the symbol ◦ denotes the elementwise product, and α ∈ [2, 4], whereas α = 22 is used for the
situation without SVA.

Figure 2 shows that though the cross coherence μc(Hθ, l) within |ldθ| ≤ 1.5ρθ is still large, the cross
coherence for |ldθ| > 1.5ρθ has been greatly reduced by filtering bases of Hθ. Therefore, it is promising
to improve the performance of Hθ in RE. This will be validated by numerical simulations in Section 4.
The steps of the proposed RE algorithm are summarized in Algorithm 1.

4. NUMERICAL EXPERIMENT

In this section, plenty of experiments are designed to examine the proposed method and find out how
many times the resolution can be improved in CT direction.

4.1. Resolution Enhancement Ability

Because SRAs are usually nonlinear methods, the traditional resolution definition for SAR is not suitable
for RE by SRAs. In RE, the resolution depends on the pixel interval dθ. In order to find out how many
times the resolution can be improved by SRAs, we propose the resolution enhancement ability (REA)
κ(ρθ) which is defined as

κ(ρθ) = max
dθ

ρθ
dθ

s.t.
‖ŝp − sp‖2
‖sp‖2 ≤ ε and ∀p ≤ ρθ

dθ
(17)
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Figure 2. Cross coherence of measurement matrix.

Algorithm 1 The resolution enhancement algorithm for LASAR
Require: LASAR echo data, radar parameters, maxNSlice {maxNSlice denotes the max number
of equi-range slices}
1: Determine ρθ, dθ, M , Q

Ensure: 1 ≤ ρθ
dθ
≤ 5

2: Use the polar coordinate in yoz plane and focus echo data by back projection (BP) algorithm
3: Build Hθ and apply SVA to bases of Hθ

4: for k = 1: maxNSlice do
5: G← kth elevation slice image
6: Set the values for η and γ
7: for i = 1 : M do
8: Apply SVA to Gi, g(i,k) ← Gi
9: g�

(i,k), g�
(i,k)

10: ŝ(i,k) ← sparse estimation by (6) and (7)
11: end for
12: end for

where sp denotes any p-sparse signal, and ŝp is the corresponding sparse recovery. ε is the acceptable
relative �2 norm error (RL2E). It implies that any sp with p ≤ κ(ρθ) should be recovered with the RL2E
within ε.

We designed several Monte Carlo experiments to find the approximate REA of Hθ under different
noise situations: SNR = 50 dB and SNR = 30 dB. In these experiments, the parameter α in (16) was
selected as α0 = 22 for the situation without SVA and α1 = 3 for the situation with SVA. Let dθ = 1
and Q = (10 + α0)�ρθ

dθ
�. The sparsity p varied from 1 to 
ρθ

dθ
�, and all p entries were randomly located

but fell into the same resolution cell. For each different ρθ, α and SNR, we carried out 200 Monte Carlo
simulations to calculate the average RL2E. The simulation results are summarized in Figure 3.

In noise situations, we set ε = 0.1. From Figure 3(a) (SNR = 50 dB), it is clear that ρθ = 4
satisfies RL2Es ≤ ε for p ≤ 4, but the RL2E for ρθ = 5 is more than ε when p = 5. Meanwhile, the
(ρθ = 10, α = 3) and (ρθ = 9, α = 3) situations show much less RL2Es than those for α = 22. Therefore,
a conclusion is drawn that when SNR = 50 dB, the REA is about 4 for the situation without SVA; if
SVA is applied, the REA can reach to about 9.

Figure 3(b) shows the RL2E curves when SNR = 30 dB. It is obvious that the noise degrades the
performance of the measurement matrix. At this moment, the REA for the situation without SVA is
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Figure 3. The results of Monte Carlo experiments: (a) the RL2E curves for SNR = 50 dB, (b) the
RL2E curves for SNR = 30 dB, (c) the RL2E curves with respect to different SNRs with ρθ = 5 and
α = 3.

about 2, but when SVA is applied, the REA is about 5. It is indicated that when SNR = 30 dB, the
resolution can be improved only about 2 times without SVA, but if SVA is employed, the resolution can
be improved by about 5 times. Thus, we suggest 1 ≤ ρθ

dθ
≤ 5.

To find the influence of SNR, we chose 7 different SNRs to perform Monte Carlo experiments with
ρθ = 5 and α = 3. The RL2E curves corresponding to these SNRs are gathered in Figure 3(c). It is
obvious that the higher SNR is, the better RL2E is obtained. We also find that only when SNR is better
than about 30 dB, the proposed method performs well. This is because sparse reconstruction methods
are usually noise sensitive, especially when the measurement matrix has a high mutual coherence.
However, it is important to know that the resolution enhancement in CT direction is applied to a 3D
focused data, which are acquired by 3D match filtering. Therefore, it is possible that the data in CT
direction have a high SNR around 30 dB.

4.2. 3D Surface Terrain Simulation

In this subsection, we simulate a 3D surface terrain with flat tops to examine our sparse model for
LASAR and to exhibit the ability of resolution enhancement. The original DEM data are shown in
Figure 4(a), and the scatters are assumed to have equal amplitudes but uniform random phases. Assume
the resolution ρθ = 0.01(rad), the pixel interval dθ = 0.002(rad) and SNR = 30 dB. The measurement
matrix Hθ is the size of 256 × 256. According to Figure 4, it is obvious that the DEM of BP recovery
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Figure 4. Resolution enhancement results for the 3D surface terrain with ρθ = 0.01, dθ = 0.002:
(a) The original DEM, (b) the DEM of BP recovery (clipped), (c) the DEM of sparse recovery (clipped,
without SVA α = 22), (d) the DEM of sparse recovery (clipped, with SVA α = 3), (e) the residual error
of DEM for BP recovery, (f) the residual error of DEM for sparse recovery (with SVA).

(see Figure 4(b)) shows lower resolution in CT direction; however, the DEM of sparse recovery with
SVA (see Figure 4(d)) is very similar to the original DEM. The recovery errors shown in Figure 4(e) and
Figure 4(f) also prove that our proposed method provides a more accurate reconstruction. However, in
Figure 4(c), lots of pixels are not recovered correctly when SVA is absent. Therefore, it implies that
the filtering bases of Hθ can improve the performance of Hθ in RE.

5. SUMMARY

In this paper, we focus on the resolution enhancement of LASAR and present a 1D sparse model for
LASAR, which handles the 3D image column by column along CT direction in each equi-range slice.
As a result, it greatly reduces the size of resolution enhancement problems, and it is suitable for large
problems. In addition, for LASAR, its cross coherence is proven to be a sinc function in theory. Thus,
the mutual coherence in resolution enhancement can be very high, such that the performance of SRAs
will be greatly degraded. For a better performance, we propose to filter bases of the measurement
matrix and the column images. The experimental results validate that when SNR = 30 dB, LASAR
can usually obtain 2 times of resolution improvement in CT direction. Meanwhile, the filtering bases
operation can further improve the REA by about 2.5 times, and the 3D surface terrain simulation shows
a great improvement for the DEM reconstruction by our method. Besides, the proposed method can
be applied to other situations with sinc kernel.
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