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Equivalent Model from Two Layers Stratified Media
to Homogeneous Media for Overhead Lines

Zeyneb Belganche1, Abderrahman Maaouni2, *, Ahmed Mzerd1, and Amine Bouziane2

Abstract—Overhead power transmission line is influenced by the resistivity of earth return path. The
topic is developed in literature by considering a homogeneous and isotropic earth, or verily the soil is
more represented by several layers. The scope of this paper is to provide an equivalent homogeneous
soil to the two layers stratified soil. The equivalent electromagnetic properties of the soil are calculated
using an accurate minimization method. Numerical results presented in this paper, show the efficiency
of the proposed model.

1. INTRODUCTION

To analyze power line carrier and extra low frequency communications, surge problems, impedance
and admittance correction terms are important. Consequently, it is mandatory to have an accurate
transmission line modelling. Modelling of Transmission line (TL) above an imperfect earth claims to
consider the impact of the imperfect soil on the conductors parameters. The primordial assumptions,
which must be taken into account, are to consider the conductor cables as thin wires of infinite length
above a stratified media with adoption of a quasi-TEM approach. Many approaches have been used
and reported by the literature to include earth return path effects in the transmission line impedances.
The first approach is the Carson’s homogeneous earth model [1], which considers an infinite earth but
neglects displacement current and the influence of the imperfect earth on shunt admittance. Or the soil
is composed of many layers with different electromagnetic properties (resistivities, permittivities and
permeabilities), and that is why a lot of models have been developed taking into account the stratified
media and also the displacement current. Sunde [2], and Iwamoto [3], for the cases of two-layer earth,
developed a stratified earth impedance. Nevertheless, the boundary conditions are not sufficiently
general, and the propagation of current along a line is neglected in Sunde’s solution and Iwamoto’s
formula.

As a matter of fact, displacement current appears to be added as a correction term, although
Wedepohl and Wasley [4] calculated a two-layer earth impedance using double-integral transform. Later
Nakagawa et al. [5] have developed an accurate and general solution for the earth-return impedance of an
overhead line. They considered the soil consisting of three layers with arbitrary resistivity, permittivity
and permeability.

The authors reported an accurate analytical approximation of integrals relating to overhead
transmission line. More recently, Papadopoulos et al. [6] have presented a paper about a generalized
model for the calculation of the impedances and admittances of an overhead power line above stratified
earth. The authors have reported a formulation whose purpose is to calculate the series impedances
and shunt admittances which present the influence of the imperfect earth.

In their paper, Papadopoulos’s impedance and admittance are applied to investigate the effects of
a stratified earth on wave propagation. The assumption of quasi-TEM field propagation is the base
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of the analysis. The Hertzian Vector approach is used to solve the electromagnetic field equations.
The present work demonstrates a simplified methodology to determine the electrical parameters for an
equivalent homogeneous soil with resistivity and permittivity which respond to the two layers stratified
media.

2. IMPEDANCE AND ADMITTANCE OF OVERHEAD LINES ABOVE A
STRATIFIED EARTH

Consider a system of N parallel thin wires located in the air above the stratified media. The j-th
(j = 1, 2, . . . , N) wire has a radius of aj, and is located at a height hj , and a position x = xj . The air
has a conductivity σ0 equal to zero, permeability μ0 and permittivity ε0 equal to those of the free space.
The soil is assumed to be composed by two horizontal layers. The first layer has a depth d with μ1, ε1
and σ1 respectively the permeability, permittivity and the conductivity. The second layer has electrical
parameters μ2, ε2, σ2 and is considered to be of infinite depth. Figure 2 illustrates the geometry of the
problem.

In accordance with Papadopoulos, the system is governed by the telegrapher’s equations:

∂V
∂x

= −Z I (1)

∂I
∂x

= −Y V (2)

V and I are the column matrices of voltages and currents at a distance x along the line. The differential
equivalent circuit of the line is shown in Figure 1. Z and Y are square matrices of the per-unit (pu)
length impedance and admittance. The admittance matrix is related to the potential coefficient matrix
P [5, 7], by the relation:

Y = jωP−1 (3)

The pu length impedance matrix can be expressed [5] at the following forms:

Z = Zc + Zs + Ze (4)

where

- Zc is the internal impedance matrix of the conductor.
- Zs is the space impedance matrix.
- Ze is the ground return impedance matrix.

Figure 1. Differential equivalent circuit of
transmission line.

Figure 2. Geometry of the structure of N -wires
line over stratified earth.
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Papadopoulos’s two-layer mutual impedance for the system of Figure 2 is given in the following
form:

Z(s)
mn = jω

μ0

2π
ln
D+

mn

D−
mn

+ jω
μ0

π
×

∞∫
0

χ(s)(v)e−v(hm+hn) cos(xmnv)dv (5)

where
D±

mn =
√
x2

mn + (hm ± hn)2, xmn = |xm − xn|
and

χ(s) = μ1
s+12 + s−12e

−2α1d

s+01s
+
12 + s−01s

−
12e

−2α1d
(6)

αi =
√
v2 + γ2

i + k2
0 , γi =

√
jωμi (σi + jωεi)

s±ij = αiμj ± αjμi, i, j = 0, 1, 2
The superscript s is related to the layer structure, and k0 = ω

√
μ0ε0 is the propagation constant in the

air.
The first term in (5) is the pu length inductance due to the geometry of the conductor. It is

determined by adopting the method of images under the assumption of a perfectly conducting ground.
The second term is the pu length mutual ground return impedance. The formula for the pu length mutual
impedance between conductors is obtained using the quasi-TEM approximation. This approximation is
good only if the conductor radius is small compared to the freespace wavelength, the distance between
the conductors, and the heights of the conductors above the earth.

The pu length admittance is given by:

Y (s)
mn = jω

⎡
⎣ 1

2πε0
ln
D+

mn

D−
mn

+
1
πε0

×
∞∫
0

(χ+ Ψ)(s) e−(hm+hn)v cos(ymnv)dv

⎤
⎦
−1

(7)

where

Ψ(s) =
(
μ0μ1

(
γ2
0−γ2

1

)(
s+12+s−12e

−2α1d
)
×
(
S+

12 + S−
12e

−2α1d
)
+4μ0μ

2
1μ2α

2
1γ

2
0×
(
γ2
1−γ2

2

)
e−2α1d

)/
(δΔ) (8)

In these formulas:
S±

ij = μiγjαi ± μjγiαi, δ = s+01s
+
12 + s−01s

−
12e

−2α1d,

Δ = S+
01S

+
12 + S−

01S
−
12e

−2α1d,

j =
√−1,

ω = 2πf = radian frequency.
In dealing with the electromagnetic fields produced by current-carrying wires, it is convenient

to employ the Hertz vector Π. For a system of horizontal wires parallel to the earth’s surface, the
boundary conditions at the air-ground could not be met if the Hertz vector had only an x component.
As Sommerfeld pointed out many years ago [8], the situation could be remedied if Π was allowed to
have x and z components.

The electric and magnetic fields must satisfy the boundary conditions at each separating surface
(the planes z = 0 and z = −d). Thus the boundary conditions for the components of the Hertzian
potentials and their derivatives are the following:

γ2
i Πix = γ2

i+1Π(i+1)x

1
μi
γ2

i

∂Πix

∂z
=

1
μi+1

γ2
i+1

∂Π(i+1)x

∂z

γ2
i

μi
Πiz =

γ2
i+1

μ(i+1)
Π(i+1)z

∂Πix

∂x
+
∂Πiz

∂z
=
∂Π(i+1)x

∂x
+
∂Π(i+1)z

∂z

(9)
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where the subscript 0 specifies these quantities in the upper half space (z > 0). The nature of the
boundary conditions in this problem suggests the potential required forms [6, 9]:

Π0x =
∫ ∞

0

(
C
λ

u0
e−u0|z−h| + a0e

−u0z

)
J0(rλ)dλ

Π0z =
x

r

∫ ∞

0
a′0e

−u0zJ1(rλ)dλ, z > 0

Π1x =
∫ ∞

0

(
a1e

u1z + b1e
−u1z

)
J0(rλ)dλ

Π1z =
x

r

∫ ∞

0

(
a′1e

u1z + b′1e
−u1z

)
J1(rλ)dλ, −d < z < 0

Π2x =
∫ ∞

0
a2e

u2zJ0(rλ)dλ

Π2z =
x

r

∫ ∞

0
a′2e

u2zJ1(rλ)dλ, z < −d

(10)

where C is proportional to the dipole moment Ids. Jk(·) is the Bessel function of the first kind of order

k, uk =
√
λ2 + γ2

k , where k = 0, 1, 2, r =
√
x2 + y2.

This completes the formal integral solution for electromagnetic fields and consequently leads to the
pu length line parameters by integrating along the conductors.

3. EQUIVALENT CONDUCTIVITY AND PERMITTIVITY OF A TWO LAYER
STRATIFIED SOIL

For an horizontal wire structures located above an homogeneous dissipative earth, the soil effect is given
by the following Sommerfeld-type Fourier integrals [11]:

J(D+
mn) =

∫ ∞

0

e−u′
0(hm+hn)

u′0 + u′g
cos(vxmn)dv (11)

G(D+
mn) =

∫ ∞

0

e−u′
0(hm+hn)

n2
0u

′
0 + u′g

cos(vxmn)dv (12)

where u′0 =
√
τ2
0 + v2, u′g =

√
τ2
g + v2. τ and τg are the transverse propagation constant in the air

and in the ground respectively. n0 =
√
εrg + j

σg

ωε0
is the complex refractive index of the soil with

electrical parameters εg = εrgε0, μ0, and σg. The evaluation of the integrals such as (11) and (12)
requires considerable effort [10]. However, within the framework of the quasi-TEM approximation, the
transverse propagation constant in the air approaches zero, and the pu length line parameters for this
system of N parallel wires can be expressed as:

Z(h)
mn = jω

μ0

2π
ln
D+

mn

D−
mn

+ jω
μ0

π
×

∞∫
0

χ(h)e−v(hm+hn) cos(xmnv)dv (13)

and

Y (h)
mn = jω

⎡
⎣ 1

2πε0
ln
D+

mn

D−
mn

+
1
πε0

×
∞∫
0

Ψ(h)e−(hm+hn)v cos(xmnv)dv

⎤
⎦
−1

(14)
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where the operator [·]−1 denotes the matrix inversion. The superscript h denotes the homogeneous
earth. χ(h) and Ψ(h) are defined by:

χ(h)(v) =
1

v +
√
v2 + k2

0

(
1 − n2

0

) (15)

Ψ(h)(v) =
1

n2
0v +

√
v2 + k2

0

(
1 − n2

0

) (16)

From the analysis of the contribution of soil in terms of the pu length line parameters, it follows that
the behaviors of homogeneous and stratified structures are equivalent when the values of integrals are
similar. The electrical parameters of the equivalent homogeneous ground model to the layered structure
can therefore be deduced mathematically in terms of the following error minimization:

min
σg,εg

(∣∣∣χ(s) − χ(h)
∣∣∣2 +

∣∣∣(χ+ Ψ)(s) − Ψ(h)
∣∣∣2) Subject to σg > 0, μg = μ0, εg > 0, ∀v (17)

Minimizing the square error between the integrands on the semi-infinite interval is closely related to the
effective length of the integration interval which depends on the frequency. To remedy this frequency
sensitivity in the determination of the electrical parameters of the equivalent homogeneous ground
model, the following change of variables v(t) = 1−t

t is adopted so as to change the interval 0 ≤ v ≤ ∞
into the interval 0 ≤ t ≤ 1. By dividing the interval into Nmax subintervals of the same length, the
minimization problem (17) can be rewritten correctly as follows:

min
σg,εg

(
Nmax+1∑

i=1

{∣∣∣χ(s)(vi) − χ(h)(vi)
∣∣∣2 +

∣∣∣(χ+ Ψ)(s) (vi) − Ψ(h)(vi)
∣∣∣2}
)

Subject to σg > 0, μg = μ0, εg > 0 (18)

where vi = v(ti), and ti, (i=1, 2, ..., Nmax+1), are equally spaced samples of the interval 0 ≤ t ≤ 1. The
Nelder-Mead method [12] is used in this paper, to allow the determination of values of conductivity and
permittivity corresponding to an equivalent earth of only homogeneous layer, referred to an equivalent
soil with conductivity and permittivity, which has a behavior similar to a soil of two layers. The
frequency is set at the value of 500 kHz.

4. NUMERICAL RESULTS

The geometry of the layered structure is shown in Figure 2. In this first example, the thickness of the
first layer is d = 2.69 m. Its conductivity and relative permittivity are respectively σ1 = 3.666×10−3 S/m
and εr1 = 10. The second layer is characterized by the electrical parameters σ2 = 6.884 × 10−3 S/m
and εr2 = 12. The lower half space (z < 0) is assumed to have the free space permeability. The
minimization process leads to the equivalent homogeneous earth parameters σg = 3.3208 × 10−3 S/m
and εrg = 7.87. The number of samples in the interval is set to the value of Nmax = 40. Figure 3 shows
the behavior of integrals representing losses in the stratified earth in comparison with their counterparts
in the equivalent homogeneous soil model, as function of frequency. These integrals are defined by

J (s,h) =

∞∫
0

χ(s,h)e−vβ cos(αv)dv

G(s) =

∞∫
0

(χ+ Ψ)(s) e−vβ cos(αv)dv

G(h) =

∞∫
0

Ψ(h)e−vβ cos(αv)dv
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Analytical and accurate approximations of integrals J (h), and G(h) [13] representing losses in the
homogeneous earth are adopted in this paper. Moreover, since the integrands of J (s) and G(s) do
not contain ‘critical factors’ such as singularities and highly oscillating factors for the frequency range
concerning the quasi-TEM approach, usual numerical integration methods, such as Gaussian quadrature
and Clenshaw-Curtis quadrature may be employed. However, to overcome the subdivision of the semi-
infinite interval into a sequence of intervals of finite length, and the sum of the integrals over the
elements of the sequence until the convergence, a procedure based on a change of variable reducing an
integral over an infinite range to one over a finite range is utilized. The details of the procedure and
the analytical expressions for homogeneous soil integrals are reported in the Appendix.

Parameters related to the geometry of the conductors are β = 10 m and α = 8 m. As illustrated in
the Figure 3, the equivalent model is able to estimate accurately the effect of the stratified earth on the
multiwire structure.

In this second example, the effect of the ratio (ζ = σ1
σ2

) of the electrical conductivities of the two
layers on the result of the equivalent model is discussed. The thickness of the first layer is d = 4 m.
The parameters for conductors are α = 0 m, β = 8 m. The values ζ = 0.5 and ζ = 2 which respectively
correspond to (σ1, σ2) = (0.1, 0.2) S/m and (σ2, σ1) = (0.2, 0.1) S/m are used. The two layers admit
electrical permittivities εr1 = 8 and εr2 = 4. Figures 4(a), (b), (e), (f) show the integral G function of
frequency for different values of ζ. The contribution of this integral, representing displacement current
losses in the earth, is greater when the conductivity of the first layer is lower. The curves related to
stratified earth, and those obtained by the equivalent model are superposed. It is interesting to note
that any reduction in the displacement current losses in the earth is accompanied by an increase in the
conduction losses and vice versa. This is illustrated in Figures 4(c), (d), (g), (h). These figures give the
results of the equivalent homogeneous earth model (dashed curves) and those concerning the stratified
earth, which are in good agreement. Note that the results of the equivalent model estimate either by
lower values or higher values those related to stratified earth, and this according to the value of ζ.
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Figure 3. Variation as a function of a frequency of (a) G(s,h), (b) Re(J (s,h)), and (c) Im(J (h,s)). The
superscripts h and s are for homogeneous and stratified earth.
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Figure 4. G(h,s) and J (h,s) as function of frequency for different values of ζ.

Now, considering the effect of permeability layers on the accuracy of the proposed equivalent
homogeneous earth model. The geometrical parameters are set to values α = 0 m and β = 8 m. The
depth of the first layer is d = 1 m. The electrical properties of the two layers are (σ1, σ2) = (0.2, 0.1) S/m,
and (εr1, εr2) = (8, 4). The curves (Figures 5(a), (b), (c), (d)) show the variation of the integrals G(h,s)



70 Belganche et al.

and J (h,s) as a function of the frequency for μr1 = 1.2, and μr2 = 1. The variation of these integrals as
a function of frequency for μr1 = 1, and μr2 = 1.2 is represented in (Figures 5(e), (f), (g), (h)).

From the analysis of curves in Figure 5, particularly those relating to the integral J , it appears
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that the proposed model is more accurate when the permeability of the layer 1 is larger than that
of the layer 2. This discrepancy between the results of J (h) and J (s) relates to the fact that the
equivalent model assumes a soil permeability μ0. For more accuracy when the relative permeabilities
of the layers are different from the unit, it is necessary to develop a model of a homogeneous soil that
takes into account the permeability. The minimization process will therefore focus on three parameters
(εrg, σg, μrg) instead of two (εrg, σg) as is the case here.

5. CONCLUSION

An accurate method for determining the electrical parameters of an homogeneous earth equivalent to
a two-layer stratified earth, in an overhead lines structure is presented in this paper. The method is
based on minimizing the quadratic error between the integrands of the integrals representing conduction
and the displacement current losses in the stratified earth and in the equivalent homogeneous earth. A
suitable change of variables is adopted to bypass dependency on the frequency of the effective lengths
of the integration intervals. This has led to a better definition of minimization problem and gave results
in good agreement.

APPENDIX A.

Accurate analytical expressions for J (h) and G(h) have been developed in [13]. Only the result is quoted
here

J (h) =

∞∫
0

χ(h)e−vβ cos(αv)dv =

∞∫
0

1
v +

√
v2 + k2

0(1 − n2
0)
e−vβ cos(αv)dv � 1

2
ln
(
ρ∗J
ρ∗

)

where

ρ∗J =

√√√√α2 +

(
β +

2
k0

√
1 − n2

0

)2

, ρ∗ =
√
α2 + β2

For the integral G(h), we have

G(h) =

∞∫
0

Ψ(h)(v)e−vβ cos(αv)dv =

∞∫
0

1
n2

0v +
√
v2 + k2

0(1 − n2
0)
e−vβ cos(αv)dv

=
n2

0

4
(
n4

0 − 1
) (Q(bz) +Q (bz̄)) − 1

4b
(
n4

0 − 1
) (P (b, z) + P (b, z̄) − P (−b, z)

−P (−b, z̄)) − n2
0b (Q(−bz) +Q(−bz̄)))

where Q(z) = exp(−z)E1(z). The exponential integral is defined by E1(z) =
∫∞
z exp(−t)/t dt.

z = k0(α+ jβ), z̄ is the complex conjugate of z, and b = j/
√

1 + n2
0.

P (b, z) is defined by

P (b, z) = −1 − n2
0

2b

(
ln

(
1 +

2
z
√

1 − n2
0

)
+Q

(
bz +

2b√
1 − n2

0

))
+

1
z

+ bQ(bz)
(

1 +
1 − n2

0

2b2

)

APPENDIX B.

As mentioned in Section 3, the substitution v = (1 − t)/t changes the interval 0 ≤ v < ∞ into the
interval 0 ≤ t ≤ 1. The integrals J (s) and G(s) can be expressed as

∞∫
0

�(v)dv =

1∫
0

�

(
1 − t

t

)
1
t2
dt
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where F (v) = χ(s)(v)e−vβ cos(αv) or F (v) = (χ+Ψ)(s)e−vβ cos(αv). Then, we apply the following IMT
transformation [14] which alleviates the singularity at the end point t = 0

φ0(t) = exp
(
−1
t
− 1

1 − t

)

ψ0(t) =
1
K

t∫
0

φ0(t)dt, K =

1∫
0

φ0(t)dt � 0.00702985840

Adopting this transformation, we get
∞∫
0

�(v)dv =
1
K

1∫
0

φ0(t)�
(

1 − ψ0(t)
ψ0(t)

)
1

ψ0(t)2
dt

Finally, the Gauss-Legendre quadrature [14] leads to the following expression

∞∫
0

�(v)dv =
1

2K

n∑
i=1

wiφ0

(
xi + 1

2

)
�

⎛
⎜⎜⎝

1 − ψ0

(
xi + 1

2

)

ψ0

(
xi + 1

2

)
⎞
⎟⎟⎠ 1

ψ0

(
xi + 1

2

)2

where wi = 2
(1−x2

i )[P ′
n(xi)]2

, and xi are n zeroes of the nth-degree Legendre polynomial Pn(x).
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