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Electrodynamic Characteristics of a Radial Impedance Vibrator
on a Perfect Conduction Sphere
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Abstract—A problem of the spherical antenna consisting of a thin radial monopole located on a
perfectly conducting sphere is solved. The antenna is excited at the base by a voltage δ-generator. An
approximate analytical solution of the integral equation for the current on a thin impedance vibrator
was found by the method of successive iterations. The solution is physically correct for arbitrary
dimensions of the spherical antenna and for any value of surface impedance distributed along the
monopole. The validity of the problem formulation is provided by using the Green’s function for the
Hertz vector potential in unbounded space outside the perfectly conducting sphere and by writing the
initial integral equation for the current on the monopole. Influence of the monopole dimensions and
surface impedance upon the radiation characteristics and the input impedance of the spherical antenna is
studied by numerical evaluations using zero order approximation. The input impedance of the monopole
was determined by the method of induced electromotive forces (EMF) using the current distribution
function thus obtained.

1. INTRODUCTION

The electrodynamic theory of rectilinear impedance vibrators in an infinite medium is considered in [1]
and in the references therein. The theory for the vibrators inside the rectangular waveguide was also
presented in [1]. Almost all electrodynamic problems mentioned in these references were solved using
Cartesian coordinates. A system of spherical coordinates {ρ; θ; ϕ} was used in [1–7] where radially
oriented radiators near conducting spheres were investigated. The need to study characteristics of
spherical antenna is defined by practical interest, since dipole radiators are widely used on mobile
objects, including aircrafts [8]. It should be noted that impedance vibrators as radiators were studied
only in [1, 7] while a Hertz dipole was considered in [2], and perfectly conducting vibrators were
investigated in [3–6].

The results presented in [1, 7] are aimed at the construction of approximate analytical solution for
the current on the radial impedance vibrator located near (or on) a conducting sphere by the method
of successive iterations. To achieve this, a traditional approach based on the use of the Green’s function
constructed in [6] for the space outside a perfectly conducting sphere was used. The Green’s function
for the Hertz vector potential of electric type �Π(ρ, θ, ϕ) determined in [6] from the Helmholtz equation,
based on the full wave equation in spherical coordinates. The authors supposed that such form of the
Green’s function would allow writing the integral equation for the current on the vibrator in terms of a
differential operator graddiv �Π(ρ, θ, ϕ) applied to the true Hertz potential. However, as further studies
shown [9] the solution for the current obtained in [1, 7] is physically valid only for large spheres, when
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relation of radius to the wavelength is much greater than unity. Of course, such condition excludes the
possibility of analysis of resonant spherical scatterers, the most interesting for practical applications.

Thus, the problem of analytical solution of the integral equation for the current in the radial
impedance monopoles, physically correct for spherical antenna of arbitrary dimensions, remains actual
today. No less important is the study of influence of the surface impedance upon the radiation
characteristics and input impedance of the spherical antennas that are not yet covered extensively
in the literature. These issues are the subject of this paper.

2. PROBLEM FORMULATION AND INITIAL INTEGRAL EQUATIONS

Consider a perfectly conducting sphere and thin cylindrical impedance vibrator. The sphere radius
is R̃, the vibrator radius and length are r and L, respectively, such that inequalities (r/L) � 1 and
(r/λ) � 1 hold. The vibrator’s axis coincides with the direction ρ′, θ′ = θ0, ϕ′ = ϕ0 (Fig. 1).

Figure 1. The spherical antenna consisting of the impedance monopole and sphere.

According to the thin wire model, the field of the surface current is equivalent to the field of
linear current J(ρ′) flowing along the longitudinal axis of the vibrator. Then, the electric vector Hertz
potential will have only a radial component

Πρ (�r) =
1

iωε1

R̃+L∫

R̃

J
(
ρ′
)
Ge

ρρ′
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)
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where �r is a radius-vector of the observation point, ε1 the dielectric constant of the medium, ω the
angular frequency (time dependence is in the form eiωt), and Ge

ρρ′(ρ, θ, ϕ; ρ′, θ′, ϕ′) the electric Green’s
function for the space outside the perfectly conducting sphere [6]
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Pn[cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′)] are Legendre polinomials, h
(2)
n (k1ρ) = jn(k1ρ) − iyn(k1ρ) the

spherical Hankel functions of the second kind, and jn(k1ρ) and yn(k1ρ) the spherical Bessel and Neumann
functions, respectively [10].
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For the constant internal impedance per unit length, zi = const [Ohm/m] on the vibrator generatrix,
which can be approximate by a radial ray segment in the direction θ = θ0 and ϕ = ϕ0 + r/(R̃ + L/2),
the initial integral equation can be written as [11]

d2 [k1ρΠρ(ρ)]
dρ2

+ k2
1 [k1ρΠρ(ρ)] = −E0ρ(ρ) + ziJ(ρ), (3)

where E0ρ(ρ) is the radial component of the extraneous excitation field, k1 = k
√

ε1μ1, k = 2π/λ,
λ the wavelength in free space, and μ1 the permeability of the medium. Equation (3), in contrast

to that in [1, 7], is written in terms of the differential operator rotrot [�ρ0, �̃Π(ρ, θ, ϕ)] for the Hertz

pseudovector defined as �̃Π(ρ, θ, ϕ) = k1ρΠρ�ρ
0 + �θ0Πθ + �ϕ0Πϕ (�ρ0, �θ0, �ϕ0 are unit vectors) through

true Hertz vector of the electric type, whose components are expressed as in (1). Using well-known
relation, one can easily see that the self-consistency condition for the electromagnetic field is taken
into account separately for spherical waves of E-type. Using the expressions (1) and the notation
Ge

ρρ′(ρ, ρ′) = G(ρ, θ0, ϕ0 + r/(R̃ + L/2); ρ′, θ0, ϕ0), Equation (3) can be written as

[
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The structure of Equation (4) coincides with that of widely used Pocklington equation in the theory of
thin wire antennas [12, 13].

3. EQUATION SOLUTION FOR THE CURRENT BY THE METHOD OF
CONSISTENT ITERATIONS

The singularity of the quasi-stationary type in the kernel of the integral Equation (4) can be isolated
as in [12, 13], using the following identity transformations
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and a small parameter α = −1/Ω̄(ρ) ≈ 1
2 ln(r/L) . Then Equation (4) can be represented as

[
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vibrator can be written as[

d2

dρ2
+ ˜̃k2

1

]
[k1ρJ(ρ)] = α

{
iωε1E0ρ(ρ) + F̃ [k1ρ, J(ρ)]

}
, (8)



140 Penkin et al.

where F̃ [k1ρ, J(ρ)] = iωε1zi(ρ − 1)J(ρ) − F [k1ρ, J(ρ)]. Inverting the operator on the left side of
Equation (8), we obtain the general solution for arbitrary extraneous sources E0ρ(ρ):
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where C1 and C2 are arbitrary constants determined from the boundary conditions at the ends of the
monopole, and E0ρ(ρ) is exciting field. In accordance with the method of successive iterations [12], as a
zero approximation for the vibrator current J0(ρ), we choose from solution (9) the following expression:
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Consider excitation of vibrators by a point voltage δ-generator E0ρ(ρ) = V0δ(ρ− R̃), located at the
base of the monopole. Here V0 is amplitude of the extraneous field, and δ is the delta function. Then,
the zero approximation, according to (10), for the of the monopole current can be written as
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Squiggles over the constants are omitted. After substitution (14) into (12) we obtain
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The boundary condition J0(R̃ + L) = 0 is satisfied in expression (15) for arbitrary values of C1,
which can be found from the condition of the monopole excitation at the point of its contact with the
conducting sphere. At this point, by virtue of the continuity, the equality div[k1ρJ0(ρ)]|ρ=R̃ = 0 should
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hold. The product k1ρJ0(ρ) = Jact(ρ) should be considered as the current active value. Then after
identical transformations we obtain
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Thus, the expression for the monopole current can be represented in the form convenient for numerical
calculations
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Following from (17), the solution for the current in the impedance monopole is valid for both resonant
(|˜̃k1L| = nπ

2 , n = 1, 2, . . .) and nonresonant (|˜̃k1L| �= nπ
2 ) vibrators, i.e., for radiators of arbitrary

electrical length.
With regard to (13), expression (17) can be represented as
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where, for ease of comparison, transition to local coordinate s ∈ [0; L] was made. The structure of (18)
coincides with the trinomial formula of King and Wu defining the current on the thin impedance vibrator
in the free space [14] (with identical expressions for ˜̃k)
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where αK is a small parameter, and the coefficients FK1 and FK2 are found approximately by converting
Pocklington integral equation for the Hallen linearized equation [12] and using the properties of its
kernel. As can be seen, the formula King-Wu requires an alternative current presentation for resonant
and nonresonant vibrators.

4. RADIATION FIELDS OF THE RADIAL IMPEDANCE VIBRATOR ON THE
PERFECTLY CONDUCTING SPHERE

The actual current distribution (17) allows calculation of all electrodynamic characteristics of the
impedance vibrator on the sphere. In accordance with our model of a spherical surface antenna
(Fig. 1) consisting of the impedance vibrator and a metal spherical scatterer, its total radiation field is
determined by the radial component of the electric Hertz pseudovector Π̃ρ(�r) = k1ρΠρ(�r). To find the
fields, the current distribution J(ρ) = J0(ρ) along the impedance monopole in the form (17) should be
substituted into the formula (1). Then, the expressions for the total field components based on the use
of rotary formulas will be:
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.

(19)
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Formulas (19) allow us to find the radiation electromagnetic field at any distance from the antenna, i.e.,
at arbitrary ρ ≥ R̃. For homogeneous lossless media ε1 has the real value, and the formulas (19) for
the antenna far field (ρ 	 λ) can be simplified, since the terms proportional to coefficient 1/ρ2 may be
omitted.

As an example, we derive the explicit expression for the magnetic field components of spherical
antenna radiation by substituting the expressions (1) and (17) into formula (19)

Hθ(�r) =
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∂
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where ∂Pn(u)
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[Pn+1(u) − uPn(u)] du
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∂θ = n+1
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dθ .
In the far-field region expression (21) can be easily converted, since for k1ρ → ∞ and |k1ρ| 	 n

the spherical Hankel functions of the second kind have the known asymptotic h
(2)
n (k1ρ) ≈ (i)n+1 e−ik1ρ

k1ρ .
If the vibrator radiator is oriented along {0x} axis, i.e., if ϕ′ = 0 and θ′ = π/2, we obtain

u = sin θ cos ϕ. Than the field in the equatorial plane (θ = π/2) can be written as:
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Summation in formula (22) begins with n = 1, since for n = 0 the polynomial difference in brackets is
zero.

5. INPUT IMPEDANCE OF THE RADIAL VIBRATOR ON THE SPHERE

To find the input impedance of the monopole Zin = Rin + iXin or the input admittance Yin = 1/Zin =
Gin + iBin at the point of voltage supply, the well-known relation can be used

Zin[OM ] = Vact

(
R̃
)

/Jact

(
R̃
)

. (23)

Of course, operating voltage in (23) is defined by the formula Vact(R̃) = V0. However, it is known from
the literature [1, 12] that the use of the zero approximation for the current does not always provide the
required accuracy of input impedance calculation for the dipole radiators as opposed to their integral
characteristics. On the other hand, obtaining analytical formulas for the subsequent approximations
by the method of successive iterations may be very cumbersome. Therefore, it is appropriate to define
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the input impedance of the vibrator by the method of induced EMF with basis functions defined as
zero-order approximation for the current. Now let us solve the integral Equation (4) by this method.

On the basis of the expressions (15), using formula (13), after identity transformations, we obtain
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˜̃k1L

)
+sin

[
˜̃k1

(
R̃ − ρ

)]
cos
[
˜̃k1

(
R̃+L

)]]

k1
˜̃
k1ρ cos

[˜̃
k1

(
R̃ + L

)] .
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Let us call expression (24) by improved zero approximation, and leave only the first term in (24), as the
basis function. Thus, we exclude terms proportional to the small parameter α, until constant C1 will
be determined. Then we combine the multiplier cos[˜̃k1(R̃ + L)] in the denominator and the unknown
quantity J0 and get
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(
2˜̃k1R̃

)]

+ sin
[
2˜̃
k1

(
R̃ + L

)] [
Ci
[
2˜̃
k1

(
R̃ + L

)]
− Ci

(
2˜̃
k1R̃

)]
⎫⎪⎬
⎪⎭

+
(
k2

1 − ˜̃
k2

1

) R̃+L∫

R̃

ρf(ρ)

⎛
⎜⎝

ρ∫

R̃

f(ρ′)G2(ρ, ρ′)dρ′ +
R̃+L∫
ρ

f(ρ′)G1(ρ, ρ′)dρ′

⎞
⎟⎠ dρ

+
2 sin

(˜̃
k1L

)
(˜̃
k1R̃

)
R̃+L∫

R̃
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R̃

(˜̃
k1ρ

)
cos

[˜̃
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(
ρ−(R̃+L)

)]
−sin

[˜̃
k1

(
ρ−(R̃+L)

)]
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×

⎛
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ρ∫

R̃

f(ρ′)G2(ρ, ρ′)dρ′ +
R̃+L∫
ρ

f(ρ′)G1(ρ, ρ′)dρ′

⎞
⎟⎠ dρ −

R̃+L∫

R̃

f(ρ′)G2(R̃ + L, ρ′)dρ′

+
sin
(
˜̃k1L

)
˜̃k1

R̃+L∫

R̃

f(ρ′)
dG1(ρ, ρ′)

dρ

∣∣∣∣
ρ=R̃

dρ′ + cos
(˜̃
k1L

) R̃+L∫

R̃

f(ρ′)G1(R̃, ρ′)dρ′. (26)

Here Si(z) =
z∫
0

sin z
z dz and Ci(z) = −

z∫
−∞

cos z
z dz are integral sine and cosine functions of complex

argument;

G1(ρ, ρ′) = −k1

∞∑
n=0

(2n + 1)h(2)
n (k1ρ

′)
{

h(2)
n (k1ρ)Qn

[
yn(k1R̃)

]
− yn(k1ρ)

}
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(
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r
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)
;

G2(ρ, ρ′) = −k1

∞∑
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(2n + 1)h(2)
n (k1ρ)

{
h(2)

n (k1ρ
′)Qn

[
yn(k1R̃)

]
− yn(k1ρ

′)
}

Pn

(
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r

R̃ + L/2

)
;
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dG1(ρ, ρ′)
dρ

∣∣∣∣
ρ=R̃

= −k2
1

∞∑
n=0

(2n + 1)h(2)
n (k1ρ

′)Pn

(
cos

r

R̃ + L/2

)

×
{(

n

k1R̃
h(2)

n (k1R̃) − h
(2)
n+1(k1R̃)

)
Qn

[
yn(k1R̃)

]
−
(

n

k1R̃
y(2)

n (k1R̃) − y
(2)
n+1(k1R̃)

)}
.

Thus, using the formula (23), we obtain the expression for the input impedance of the radial impedance
monopole on the sphere

Zin =
30i˜̃k1

(˜̃
k1R̃

)
ZΣ

ε1k1 sin2
(˜̃k1L

) [Ohm]. (27)

The voltage standing-wave ratio in the antenna feeder line is VSWR = 1+|S11|
1−|S11| , where S11 = Zin−W

Zin+W is
reflection coefficient in the feeder, and W is wave resistance of the feeder line. Due to imperfections
of monopole excitation model, under the condition (1/k1R̃) � 1 the calculation results of the input
impedance may be improved by using relations obtained in [7]. Then the expression (25) takes the form

J(ρ) = J0f(ρ) = J0

⎧⎨
⎩

sin
[
˜̃k1(ρ − (R̃ + L))

]
˜̃
k1ρ

+
cos

[
˜̃k1(ρ − (R̃ + L))

]
˜̃
k1ρ

⎡
⎣ 1[˜̃

k1(R̃ + L)
] − 1

˜̃
k1ρ

⎤
⎦
⎫⎬
⎭ . (28)

To exclude the singularity defined by sin(˜̃k1L) = 0 in the denominator of (27), numerical calculation
should be performed adding a small losses (R̄S ≈ 0.0001) into ˜̃

k1.

6. NUMERICAL RESULTS

Various vibrator characteristics, such as radiation fields in any observation zone, can be determined
using function sin[k1(L−|s|)] approximating current along the cylindrical vibrator [1, 12, 13]. If required
quantities are integral characteristics of the current distribution function, small approximation errors
do not give significant contributions to the result. However, one must keep in mind that the vector
potential for the spherical antenna at a given point on the monopole is determined not only by the local
value of the current at this point, but by cumulative effects of the currents induced on other parts of
the monopole and spherical scatterer. This fact allows us to consider a system consisting of a monopole
and perfectly conducting sphere as a spherical antenna. Thus, it can be expected that the resulting
current distribution (17) can differ appreciably from the sinusoidal distribution. This difference is the
greater, the smaller diffraction radius of the sphere kR̃, i.e., the greater is the difference in interaction
between the monopole and scatterer as compared with that between the monopole and infinite screen.
This fact is true for both perfectly conducting and impedance monopoles. Formulas for calculating the
vibrator surface impedances for various geometric and electrical parameters are given in [1].

Figure 2 shows the calculation results for the normalized current distribution on the radial perfectly
conducting monopole located on the conducting sphere and the radiation pattern (RP) by power in the
equatorial plane θ = π/2 for this antenna. The calculations were made using the formulas (17) and (22)
for the local longitudinal coordinate s = ρ − R̃ and parameters R̄S = 0.0001, r/λ = 0.0033 and
λ = 10 cm. Analysis of the plots shown in Fig. 2, confirms the assumption that the spherical scatterer
of the small and resonant diffraction radii has a greater influence upon the current distribution on the
monopole than that of the larger electrical size. For small spheres, such influence leads to shortening of
the monopole electrical length. When the monopole length is varied, the RP of the spherical antenna
changes in a greater extent if spheres have small diffraction radii. For example, for the sphere radius
R̃ = 0.1λ both maximum of the single-lobed RP for the quarter-wave monopole and minimum for two-
lobed RP for monopoles 0.75 ≤ L ≤ λ can be observed in the direction ϕ = π/2. In the latter case, the
form of RP is defined by anti-phase areas in the current distribution.

Figure 3 shows the normalized current distributions and the RP for the quarter-wave monopole,
L = λ/4, characterized by surface impedance (Z̄S = iX̄S) of inductive (X̄S > 0) or capacitive (X̄S < 0)
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(a)

(b)

(c)

(d)

Figure 2. The current distributions and RP for the spherical antennas: (a) R̃ = 0.1λ (kR̃ = 0.2π); (b)
R̃ = 0.5λ (kR̃ = π); (c) R̃ = 2λ (kR̃ = 4π), (d) R̃ = 12λ (kR̃ = 24π).

type. The diffraction radius of the spherical antenna is kR̃ = π. As can be seen from the plots,
there exist fundamental differences between the resonant characteristics for perfectly conducting and
impedance monopoles. If the distributed surface impedance is used, the resonant length of impedance
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Figure 3. The current distributions and RP for impedance monopoles: L = λ/4, kR̃ = π.

monopoles can be lesser or greater λ/4, i.e., the monopole shortening for X̄S < 0 or lengthening for
(X̄S > 0) is observed.

Note that the monopole lengthening defined by the inductive impedance can be compensated by
influence of the spherical scatterer. Variation in current distribution caused by the impedance monopole
upon the antenna pattern is very small, since the physical length of the monopole remains constant when
its electrical length varies. The calculation results show that these trends remain similar for spherical
scatterers of any dimension.

Now let us pay attention to contribution of the spherical scatterer upon the antenna RP. To do
this, let us analyze the basic principles of RP formation for the spherical antenna in free space. If kR̃,
the diffraction radius of the sphere is increased, the RP for the magnetic field component Hθ(�r) in the
equatorial plane according to expression (22) becomes irregular and multi-lobed. As can be seen from
Fig. 4, the amplitude oscillations occurs mainly in the geometrical shadow region, ϕ > π/2 if ϕ0 = 0.

The observed oscillations may be explained by the fact that the waves propagating along the
spherical scatterer surface arrive into shadow zone along the meridians in the forward and backward
directions. The oscillations of the field amplitude are the result of interference of these waves. The
larger is kR̃, the greater is the number of standing waves on the sphere surface, and the greater is the
number of side lobes in the RP. The deepest oscillations are observed near the “dark pole”, θ = π/2,
ϕ = ϕ0 + π, where the amplitude of the interfering waves are almost the same. As the distance from
the “dark pole” grows larger, the propagation path of the forward wave decreases, and that of the
backward wave increases. Therefore, the difference in the degree of damping of these waves increases,
and the oscillations amplitude decreases. As expected, screening by the sphere increases if kR̃ grows
larger. Thus, if the sphere is large, RP of spherical antenna in the front half-space approaches that of
a vertical monopole over an infinite perfectly conducting plane. In the rear half-space the amplitude
of radiation field is significantly reduced. The directivity of the spherical antenna has been studied
previously in [4, 5] by the eigen-wave method. As seen from Fig. 4, the calculated data agree well with
the data presented in these articles. The small discrepancies between the data can be explained by a
different number of summation terms in expressions similar to (21) and (22).

The effectiveness of the spherical antenna is defined not only by the RP, but also by its input
impedance. Therefore, additional investigation of the antenna input impedance is required. First, the
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Figure 4. The RP of the spherical antenna for L = λ/4; the calculation results from [5] are labeled by
circles.

Figure 5. The series convergence in (27) for the monopole input impedance, normalized to the
impedance of the monopole over infinite plane Zin = RPI

in + iXPI
in , for L = λ/4.

Figure 6. The input impedance of the monopole on a perfectly conducting sphere versus wavelength:
Ω = 2 ln(L/r) = 8.2, L = R̃; the results obtained by the method of moments [5] are marked by circles.

convergence of complex impedance Zin = Rin+iXin calculation depending on the number N of spherical
harmonics in the formula (27) was analyzed. Data for a perfectly conducting quarter-wave monopole are
presented in Fig. 5. Quite good convergence achieved in this case depends upon the fact that in (26) the
inversion of differential operator was realized, allowing integrability for the singular kernel of the integral
Equation (4). Calculating the input impedance Zin = Rin + iXin one must perform the summation in
Equation (26), and substitute the results into (27). As can be seen from Fig. 5, the stabilization Rin

and Xin are achieved for N = 40 and N = 75, respectively.
Such a choice of summation terms allows the numerical integration in (26) with required precision

not only for the quarter-wave monopoles. This conclusion is confirmed by Fig. 6, where the input
impedance of the spherical antenna as a function of wavelength is compared with data obtained by the
method of moments [5]. Satisfactory agreement between the results shown in Fig. 6 also confirms the
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validity of function (25) usage and, in general, the implementation of more effective method of the input
impedance calculation as compared with that proposed in [5].

The calculations were carried out so that the equality L = R̃ holds. The wavelength dependence
thus obtained allows us to treat the antenna design as a hybrid heterobruchial vibrator which arms
are the straight wire segment and the conductive sphere. As seen from Fig. 6, such hybrid vibrator
can be resonantly tuned if L = R̃ ≈ 0.235λ. It is self-evident that the spherical antenna with
other relationship between L and R̃ may be resonant at other wavelengths. Therefore, the study of
wavelength dependence of Zin for the spherical antenna consisting of a fixed length monopole and
sphere of variable radius is of practical interest. As seen from Fig. 7, the calculated values of real
and imaginary parts of the input impedance for perfectly conducting monopoles have an oscillating
character. The amplitude oscillations are decreasing when the sphere radius is increased and the input

(a)

(b)

Figure 7. The input impedance and voltage standing-wave ratio (VSWR) for the spherical antenna
versus the sphere radius; (a) the dashed lines correspond to the input impedance Zin = RPI

in + iXPI
in of

the monopole over perfect conducting plane.

Figure 8. The antenna input impedance versus the monopole electrical length.
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impedance asymptotically approaches its limiting value. For example, the input impedance approaches
to Zin = RPI

in + iXPI
in = 36.5 + i21.25 [Ohm] and Zin = 52.75 + i22.75 [Ohm] corresponding to the input

impedances of the quarter-wave and the three quarter-wave monopoles over a perfectly conducting
plane, respectively. The plots Zin = f(R̃/λ) for the quarter-wave and three quarter-wave monopoles
are significantly different. The three quarter-wave monopole can be resonantly tuned for two different
sphere radii, since there exist two points where the imaginary part of the input impedance Xin is equal
to zero.

Resonant tuning is important for matching the antenna and feeder line. The closer are the values
of the wave impedance W of feeder line and the real part of the antenna input impedance Rin (when
Xin ≈ 0), the better is matching. This assertion is clearly illustrated in Fig. 7(b), where the VSWR in
the antenna feeder line is shown for two values of the wave impedance, W = 50 Ohm and W = 40 Ohm.

The electrical length of the monopole significantly affects the input impedance of the spherical
antenna. This is confirmed by direct calculations shown in Fig. 8. The computation has also shown

Figure 9. The monopole resonant length and input resistance in resonance of the spherical antenna
versus the sphere radius; Lres ∞ corresponds to the monopole over an infinite plane.

Figure 10. Dependences Zin and VSWR upon the imaginary part of normalized surface impedance
for various R̃ and L = 0.25λ.
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that spherical antennas of small diffraction radii R̃ < 0.1λ are characterized by lengthening of their
resonant length. If the sphere radius is increased up to the limiting case R̃ → ∞, the shortening of the
resonant length is observed. The values of the lengthening and shortening span relative to L = 0.25λ
are comparable (Fig. 9).

The electrical length of the monopole can be varied in limited extent by superimposing the reactive
impedance at its surface. Therefore, it is important to estimate the influence of the surface impedance
upon Zin. The computation has shown that the value of Xin for the spherical antenna can be varied
in sufficiently wide limits by varying the imaginary part of the surface impedance X̄S (Fig. 10). The
monopole impedance effectively influences the input impedance Xin only for spherical antennas with
small diffraction radii. The values of X̄S necessary for antenna resonant tuning essentially depends
upon the sphere radius. For spheres with small diffraction radius, matching between the antenna and
feeding line achieved by varying the wave impedance W leads to a narrowing of the VSWR range.

7. CONCLUSION

The physically correct analytical solution of the integral equation for the current in the thin radially
oriented impedance monopole located on the sphere was built by the successive iteration method for
arbitrary spherical antenna dimensions. The antenna input impedance was determined by the method of
induced EMF using zero-order approximation of the solution. The current distribution in the vibrator,
radiation fields, and input impedance of the spherical antenna were investigated by numerical simulation.
The comparison with the results obtained earlier for the spherical antenna with perfectly conducting
vibrator confirmed the accuracy of the calculated data. It was shown that the impedance monopoles on
spherical scatterers, may have different resonant wavelengths depending upon the geometric parameters
and the value of the monopole surface impedance. On the one hand, controlling the resonant length of
the monopole within wide limits is made possible, and on the other hand, allows resonant tuning of the
constant length monopole on the sphere of given radius.

REFERENCES

1. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance
Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.

2. Belkina, M. G. and L. A. Weinstein, “The characteristics of radiation of spherical surface antennas.
Diffraction of electromagnetic waves on some bodies of rotation,” Soviet Radio, Moscow, 1957 (in
Russian).

3. Bolle, D. M. and M. D. Morganstern, “Monopole and conic antennas on spherical vehicles,” IEEE
Trans. Antennas and Propagat., Vol. 17, 477–484, 1969.

4. Tesche, F. M. and R. E. Neureuther, “The analysis of monopole antennas located on a spherical
vehicle: Part 1, Theory,” IEEE Trans. EMC, Vol. 18, 2–8, 1976.

5. Tesche, F. M., R. E. Neureuther, and R. E. Stovall, “The analysis of monopole antennas located
on a spherical vehicle: Part 2, Numerical and experimental results,” IEEE Trans. EMC, Vol. 18,
8–15, 1976.

6. Penkin, Yu. M. and V. A. Katrich, Excitation of Electromagnetic Waves in the Volumes with
Coordinate Boundaries, Fakt, Kharkov, 2003 (in Russian).

7. Nesterenko, M. V., D. Yu. Penkin, V. A. Katrich, and V. M. Dakhov, “Equation solution for
the current in radial impedance monopole on the perfectly conducting sphere,” Progress In
Electromagnetics Research B, Vol. 19, 95–114, 2010.

8. Resnikov, G. B., “Antennas of flying vehicles,” Soviet Radio, Moscow, 1967 (in Russian).
9. Penkin, D. Yu., V. A. Katrich, V. M. Dakhov, M. V. Nesterenko, and S. L. Berdnik, “Radiation field

of radial impedance monopole mounted on a perfectly conducting sphere,” Proc. IX International
Conference on Antenna Theory and Techniques (ICATT’13), 123–125, Odessa, Ukraine, Sep. 16–
20, 2013.



Progress In Electromagnetics Research B, Vol. 62, 2015 151

10. Abramowits, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs
and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series-55, 1964.

11. Penkin, D. Yu., V. A. Katrich, V. M. Dakhov, and M. V. Nesterenko, “Input impedance of radial
monopole mounted on a perfectly conducting sphere,” Proc. 7-th International Conference on
Ultrawideband and Ultrashort Impulse Signals UWBUSIS’14, 146–148, Kharkiv, Ukraine, Sep. 15–
19, 2014.

12. King, R. W. P., The Theory of Linear Antennas, Harvard University Press, Cambr.-Mass., 1956.
13. Nesterenko, M. V., “The electromagnetic wave radiation from a thin impedance dipole in a lossy

homogeneous isotropic medium,” Telecommunications and Radio Engineering, Vol. 61, No. 10,
840–852, 2004.

14. King, R. W. P. and T. Wu, “The imperfectly conducting cylindrical transmitting antenna,” IEEE
Trans. Antennas and Propagat., Vol. 14, 524–534, 1966.


