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Abstract—Modern electrical and communication technologies benefit from classical electrodynamics
and electric circuits, both of which are based on the Maxwell’s equations. Using the property of
metric invariance in Maxwell’s Equations, transformation optics has been proposed and achieves a
rapid progress in the past decade. Transformation optics is a method for the conceptual design of
complex electromagnetic media, offering opportunities for the control of electromagnetic waves. In this
paper, we introduce the general theory of transformation optics and discuss the recent development
on the transformation devices in the microwave band, such as non-singular invisibility cloak and
its realization in dc circuit, three-dimensional ground-plane cloaks, flattened Luneburg lens, high-
performance antennas, and high-resolution imaging lens. Some of the transformation-optics-based
devices are expected to have further impact on the microwave engineering applications.

1. INTRODUCTION

Maxwell’s equations are a set of partial differential equations that underlie classical electrodynamics and
electric circuits [1], which form the foundation of modern electrical and communications technologies. In
the past a dozen years, a rapid progress has been achieved in the subject of structured metamaterials.
The rapid development of artificial metamaterials have provided many opportunities for new device
design, but brought the need for tools that can provide us an efficient design for a special functionality. In
2006, Pendry et al. proposed the technique of transformation optics (TO), which fulfilled the requirement
for such a tool [2]. TO is a means to visualize the interaction of a class of complex materials with
electromagnetic (EM) fields in terms of a warping of space. TO has been used to design new and
creative devices for conventional EM applications such as invisibility cloaks, perfect lens and flattened
Luneburg lens [3–6]. For TO devices, the composing material implements a coordinate transformation
for EM fields [7, 8], and the electric permittivity and magnetic permeability of the material could be
derived from the methodology of TO [2, 9]. Alternatively, an optical conformal mapping method was
used to design a medium that generates invisibility devices in the ray-tracing limit [10]. The invisibility
cloaks were analyzed in details using geometric ray tracing method [9], and verified numerically by full-
wave simulations [11] and experimentally by a two-dimensional (2D) near-field mapping configuration
at the microwave frequency [12]. Inspired by the theoretical and experimental results, more researches
have been conducted for cylindrical and spherical cloaks up to now [13–16]. All the basics of these
numerical, analytical and experimental investigations are Maxwell’s equations. Due to the possibilities
of the transformation medium to control EM fields, different devices with novel functionalities have
been constructed besides the invisibility cloaks, such as EM rotators [17, 18], EM concentrators [19, 20],
and planar focusing antennas [21–23], etc.
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To understand the principle of TO, we imagine a fictitious space with some geometrical character
that performs a desired EM phenomena, and TO yields the material property that facilitates the
behavior. As an example of TO, a cloak can be designed by performing a coordinate transformation
that squeezes the space from within a sphere to within a shell that has the same outer radius. Waves
do not interact with or scatter from the core because it is simply not part of the transformed space.
The form invariance of Maxwell’s equations implies that the coordinate transformation can instead be
applied to the permittivity and permeability tensors, yielding the prescription for a medium that will
accomplish the desired functionality.

The organization of this paper is as follows. In Section 2, we give a brief introduction to the concept
of TO and quasi-conformal mapping without proof of the property of metric invariance of Maxwell’s
equations. In Sections 3–8, we discuss some examples of transformation devices, such as, non-singular
invisibility devices, EM concentrators, ground-plane cloak, flattened Luneburg lens, high-resolution
imaging lens, and some other novel transformation devices. The summary comes in Section 9.

2. TRANSFORMATION OPTICS AND QUASI-CONFORMAL MAPPING

EM devices that perform coordinate transformations are known as transformation electromagnetic
devices. The transformation devices exhibit two interesting properties. First, the optical path in the
transformation device is exactly the same as that in the virtual space [8]. Second, the transformation
devices are reflectionless if the metric of the transformation space in the direction normal and parallel
to the interface between the transformation medium and the surrounding medium is continuous on
the boundary [24]. In this section, we will give a brief description of TO principle based on the form
invariance of Maxwell’s equations under coordinate transformations. We here restrict our discussions
to purely spatial coordinate transformations of EM fields [7–9]. In the original space, the Maxwell’s
equations are

∇× E + iωμ ·H = 0 (1)
∇×H − iωε · E = 0 (2)

where both ε and μ may depend on position, that is to say, the constitutive parameters are functions
of the space. Suppose that the coordinate transformation between the virtual space and the physical
space is

x′ = x′(x). (3)

As we know, such a transformation will give the equivalent relations because of the fact that Maxwell’s
equations can be written such that they are “form invariant” under coordinate transformations [25].
Under such coordinate transformations, the material parameters can be calculated. Maxwell’s equations
in the new coordinate system will keep the same form,

∇′ × E′ + iωμ′ ·H′ = 0, (4)
∇′ ×H′ − iωε′ · E′ = 0, (5)

in the new coordinate system, the fields will be

E′(x′) =
(
ΛT

)−1
E(x); H′(x′) =

(
ΛT

)−1
H(x); (6)

and the material property will be

μ′(x′) =
Λ · μ(x) · ΛT

det(Λ)
; ε′(x′) =

Λ · ε(x) · ΛT

det(Λ)
, (7)

where the Jacobian transformation matrix is defined as

Λki =
∂x′

k

∂xi
;

[
Λ−1

]
ij

=
∂xi

∂x′
j

. (8)

For most practical devices, Equations (7) are the primary tools for the transformation-based design.
Since some components of the relative permittivity and permeability of the required media are often
less than 1, generally, the transformation devices are composed of inhomogeneous and anisotropic
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metamaterials. In view of the difficulty to realize the full-parameter transformation devices, a published
theory has suggested a technique of quasi-conformal transformation optics (QCTO), which can relax
the request of the material parameters [26]. In recent years, QCTO has been widely used to design
nearly-isotropic metamaterial devices, such as ground-plane cloak (or carpet cloak) [26, 27], flattened
Luneburg lens [5, 6], and so on. Compared to spatial invisibility cloak, the carpet cloak does not require
anisotropy of the material parameters. Furthermore, the range of permittivity and permeability is much
smaller. By choosing a suitable spatial transformation, the anisotropy of carpet cloak can be minimized
and the magnetic response is not necessary. As a result, to construct a carpet cloak, only isotropic
dielectrics are needed. Moreover, the carpet cloak can be low-loss and broadband.

For understanding QCTO, we consider a carpet cloak design in two-dimensional (2D) problem with
E-field polarization in z direction. Suppose that an object is placed on a perfect conductor (ground
plane) and that a cloak is covered on the object, as shown in Figure 1(a). The objective is that the
system is perceived as a flat ground plane by using TO. In the physical space with coordinate (x1, y1),
we assume that the cloak is a rectangle of size (a1, b1) except for the cloaked region for the object.
The virtual space is the configuration that an observer perceives with coordinate (x2, y2), shown in
Figure 1(b). To design a carpet cloak mathematically, a coordinate transformation will be constructed,
which maps the rectangle (0 ≤ x2 ≤ a1, 0 ≤ y2 ≤ b1) in the virtual space to the cloaking region with
an arbitrary boundary.

(a) (b)

Figure 1. The principle of carpet cloak. (a) Physical space; (b) virtual space.

If the virtual space is filled with isotropic homogeneous medium of permittivity εref and unit
permeability, then corresponding physical medium induced by the coordinate transformation is given
by

ε = εref /|Λ|, μ = Λ · ΛT /|Λ|, (9)

where Λ is the Jacobian matrix of the transformation. To discuss the anisotropy of the transformed
medium, μ1 and μ2 are defined as the principal values of the permeability tensor in the physical medium,
and hence the corresponding refractive indices are n1 =

√
μ1ε and n2 =

√
μ2ε. An anisotropy factor α

is defined to indicate the extent of anisotropy as

α = max(n1/n2, n2/n1) (10)

If there is a very fine rectangular grid in the virtual domain with tiny cells sized δ × δ, every
such tiny square is transformed to a parallelogram in the physical domain with two sides ξ1δ and ξ2δ.
Li and Pendry’s approach is to minimize the induced anisotropy by choosing a suitable coordinate
transform. If the anisotropy is small enough, we can simply drop it and only keep the refractive index
n. The minimal of the anisotropy occurs at the quasi-conformal mapping [26]. Every small cell in the
transformed grid in the physical domain is now a rectangle with constant aspect ratio M : m where M
is called the conformal module of the physical domain and m = a1/b1 is the conformal module of the
virtual domain, i.e.,

|ξ1|/|ξ2| = M/m,
√

det(g) = |ξ1| |ξ2|. (11)

By substituting Equation (11) into Equation (10), we have

α = max
(

M

m
,

m

M

)
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independent of position. It should be noted that the quasi-conformal map approaches the conformal
map [10] in the limit M/m = 1. In general, a quasi-conformal map is required for an unchanged topology
of space without creating additional singular points in the coordinate transformation [26]. We remark
that compared with the optical conformal mapping [10], the technique of quasi-conformal mapping
allows the conformal module of the two domains to differ to a limited extent a crucial feature for the
design. For a two-dimensional transformation, this leads to the prescription of a material with very
limited anisotropy that can be well approximated by a dielectric-only response. Standard conformal
grid generation methods may be used to realize such a transformation [26].

For example, to design a carpet cloak in microwave band [27], the area of a rectangle bounded by
0 ≤ x2 ≤ 250 mm, 0 ≤ y2 ≤ 96 mm in the virtual space will be mapped to the same rectangle in the
physical space but with the bottom boundary specified by

y(x) =
{

12 cos2 ((x − 125)π/125) , 62.5 ≤ x ≤ 187.5,
0, for other case.

(12)

To test the effectiveness of the designed ground-plane cloak, a few experiments have been completed
at different frequencies. The first experimental realization of a carpet cloak was reported at microwave
frequencies in [27], in which a perturbation on a flat conducting plane was concealed. To match
the complex spatial distribution of the required constitutive parameters, a metamaterial consisting
of thousands of elements were constructed. We will discuss more details on carpet cloak in Section 5.

3. NON-SINGULAR CLOAK AND ITS REALIZATION IN DIRECT CURRENT

One challenge of the perfect cloak is that, on its inner boundary, some components of material
parameters often require singular values, which makes the full-parameter cloak difficult to achieve
even by using latest metamaterial techniques [12]. To avoid any singular values of the constitutive
parameters, it was also demonstrated that an elliptical cloaking region can be crushed to a line segment
using the coordinate transformation in the classical elliptical-cylindrical coordinate system [28], instead
of being shrunk to a point. In this context, the relationship between classical elliptically-cylindrical
coordinates (ξ, η, z) and Cartesian coordinates (x, y, z) is necessary. It is expressed as

x = p cosh ξ cos η, y = p sinh ξ sin η, z = z, (13)

in which p is the half focus of the ellipse. In the elliptical cylindrical coordinate system, if we assume
p to be constant, then isolines for ξ will be a series of elliptical cylindrical shells with the same focus
value.

Similar to the circular cloak design, a spatial transformation from the elliptical region ξ ∈ [0, ξ2] to
the annular region ξ′ ∈ [ξ1, ξ2] can be described mathematically as

ξ′ =
ξ2 − ξ1

ξ2
ξ + ξ1, η′ = η, z′ = z, (14)

where ξ1 and ξ2 are coordinate parameters of the inner and outer boundaries of the elliptical cloak.
We denote the lengths of major axes for inner and outer shells of the cloak as a1 and a2. The
nonlinear relationship between coordinate parameters and the lengths of major axes can be written
as ξi = ln(ai/p +

√
(ai/p)2 − 1), i = 1, 2. We remark that the inner and outer ellipses have the same

focus value 2p. Hence the inner boundary is crushed to the line segment 2p using the above defined
coordinate transformation.

Following the procedure stated in Section 2, one can derive the parameter tensors of the elliptical
cloak. The relative electric permittivity and magnetic permeability are expressed as

ε′ξ′ = μ′
ξ′ = k, (15)

ε′η′ = μ′
η′ =

1
k
, (16)

ε′z′ = μ′
z′ =

1
k

cosh2 α − cos2 η′

cosh2 ξ′ − cos2 η′
, (17)

in which α = k(ξ′ − ξ1), k = (ξ2 − ξ1)/ξ2, ξ1 ≤ ξ′ ≤ ξ2 and 0 ≤ η′ ≤ 2π.
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Equations (15)–(17) present full design parameters for the elliptical cloak in the classical elliptically-
cylindrical coordinates. Clearly, the cloak is composed of inhomogeneous and anisotropic metamaterials
with finite components for material parameter tensors. For circularly cylindrical cloaks with full
parameters, singular material parameters are distributed on the whole inner boundary [14, 15], which
are difficult to achieve in real applications [12]. The material parameters for the elliptical-cylindrical
cloak here which crushes the cloaked object to the line segment 2p, however, have no singularity. This
fact makes it possible to realize the perfectly full-parameter cloak using man-made metamaterials.

When the focus of the ellipse becomes very small, the elliptical cloak approaches a circular cloak.
In such a case, εξ becomes εr and εη becomes εφ, indicating the radian and angular components of the
permittivity, respectively. In consideration of the realization of cloak, we choose the shape of cloak as
an exact circle while the material parameters are given by those of nearly circular cloak:

ε′r = μ′
r = k, (18)

ε′φ = μ′
φ =

1
k
, (19)

ε′z = μ′
z =

cosh2 β

k cosh2 ξ
, (20)

in which β = (ξ − ξ1)/k, ξ = ln(r/p +
√

(r/p)2 − 1), and ξi = ln(Ri/p +
√

(Ri/p)2 − 1), i = 1 or 2. The
advantages of such invisibility cloak are that none of the parameters is singular and the changing range
of all parameters is relatively small. εφ and εr are constants, and μz changes in a small range, all of
which can be achieved using artificial metamaterials.

The static fields play a significant role in several applications, e.g., they are involved in photocopy
machines, electrostatic spraying systems, and the electric impedance tomography. They can also
be used to detect land-mines and torpedoes. As has been proved, the Laplace Equation maintains
the form invariance under the coordinate transformation, and hence the TO theory applies well to
static fields [2, 29]. TO employed in electrostatics is also termed as “transformation electrostatics”.
Recently, an ultrathin and nearly perfect dc electric cloak was proposed based on transformation
in electrostatics [30], which is made of homogeneous and anisotropic conducting material. The dc
invisibility cloak was composed of an ultrathin resistor-network layer with the thickness of one unit cell,
which is the smallest size of artificial metamaterials. Although it is ultrathin, the dc electric cloak has
nearly perfect cloaking behavior.

The coordinate transformation for design of an elliptical dc electric cloak is exactly the same as
Equation (14). The conductivity tensor of the planar elliptical dc electric cloak was derived from the
transformation electrostatics,

σξ′ =
ξ2 − ξ1

ξ2
σ0; ση′ =

ξ2

ξ2 − ξ1
σ0; (21)

in which σ0 is the conductivity of the homogeneous background material. The above equation clearly
implies that both ξ and η components of the conductivity tensor are constant.

If the focal length 2p is chosen to be a very small value, the elliptical dc cloak is nearly a circular
dc cloak with the outer radius R2 and inner radius R1. In such a case, σξ becomes σr and ση becomes
σϕ, indicating the radian and angular components of the conductivity, respectively. The conductivity
tensor of the nearly circular dc electric cloak is given by

σr′ = kσ0; σϕ′ = σ0/k; (22)

in which k = ξ2−ξ1
ξ2

= ln(R2/R1)/ ln(2R2/p). Interestingly, this is found to be a nearly perfect dc cloak
since it crushes the cloaked object to nearly a point (i.e., a very short line segment with length 2p). From
Equation (21), the material parameters of such a dc electric cloak, saying σr′ and σϕ′ , are constants,
which are only related to the inner and outer radii of the cloak, and hence the material is anisotropic
but homogeneous, which is difficult to be realized in nature, but can be easily emulated using the
circuit theory. Using the analogy between electrically conducting materials and resistor networks, the
anisotropic conductivity tensor can be implemented easily using different resistors in different directions.
Particularly, when the focal length 2p is close to 0, k is nearly zero. Then, the radial conductivity tends
to be 0, which means insulation in the radial direction; while the azimuth conductivity tends to be very
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Figure 2. The photograph of fabricated single-layer dc cloak based on transformation electrostatics
and resistor networks [30].

(a) (b)

Figure 3. The simulated and measured potential distributions of the designed single-layer dc cloak.
(a) Simulation result; (b) measurement result [30].

large, which means good conducting in the azimuth direction. Hence, the nearly perfect dc cloak is a
combination of such two conditions and is therefore anisotropic.

In numerical simulations and experiments, an insulating shell is chosen as the inner boundary of dc
electric cloak owing to the nearly zero radial conductivity. The homogeneous feature of the proposed
design makes it possible to realize ultrathin dc electric cloak. The fabricated dc single-layer cloak is
shown in Figure 2. In the design, the geometrical parameters are chosen as R1 = 5 cm and R2 = 6cm.
The background material together with the dc ultrathin cloak was divided into 15 × 36 cells using the
polar grids. The resistor network contains 10 concentric layers in the radial direction, and 36 nodes
in the tangential direction, which was built on a printed circuit board (PCB) with thickness of 2 mm.
The cloaked region occupies an area of 5 layers, the cloaking region employs another 1 layers, and the
remaining 9 layers are background material. Figure 3 demonstrates the simulated and tested electrical-
potential distributions of single-layer electric dc cloak excited by a point source, showing excellent
cloaking performance. It is obvious that the potential distributions outside the cloak in both simulation
and experiment are almost the same as that of the point source in homogeneous conducting material.
Hence, the cloaking behavior is nearly perfect even though the thickness of dc cloak is only one layer,
which is the thinnest case in discrete artificial materials.

4. EM CONCENTRATOR AND ITS EXPERIMENT IN DC

EM concentrator is a transformation device that can concentrate EM waves into a small enclosed
region, which was first proposed by Rahm et al. [19]. The reduced-parameter concentrator was studied
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in [31] for future practical implementation. Such a transformation device may find its applications
in the energy concentration. EM concentrators with arbitrary shapes were later presented using the
coordinate transformation by using non-uniform rational Bezier curves (NURBS, [32]) in representation
of the geometrical boundary [20]. With the help of the NURBS curves, both the inner and outer
boundaries of the concentrator can be chosen as any shapes [20]. The performance of arbitrarily-shaped
concentrator verified that the fraction of plane waves could be completely focused into the inner region
within the concentrator material and there are no reflected waves outside the concentrator due to the
inherent impedance matching in the method of TO. Hence, the energy intensities are strongly enhanced
in the inner region of the concentrator.

In order to present the transformation design, we take a circularly cylindrical EM concentrator as
the example. Due to its cylindrical symmetry, it is convenient to define the transformation functions in
the cylindrical coordinates (R, φ, z). A linear transformation for the optical design of the cylindrical
concentrator is written as

R =

{
k1R

′, 0 ≤ R′ ≤ R2

k2R
′ − k3R3, R2 ≤ R′ ≤ R3, φ = φ′, z = z′,

r, R3 ≤ R′
(23)

where the primed variables belong to the virtual space, the unprimed ones belong to the physical space,
and the coefficients are k1 = R1/R2, k2 = (R3 − R1)/(R3 − R2), k3 = (R2 − R1)/(R3 − R2). The
definitions of R1, R2, R3 are shown in Figure 4. The above transformation implies that the cylindrical
region with radius R2 is compressed into a smaller region with radius R1, while the space between R2

and R3 is expanded to the space between R1 and R3. Clearly, the transformation is continuous to free
space at R3. According to Equation (7), the relative material parameters in the cylindrical coordinates
can be calculated [19]. A rigorous analysis on circularly cylindrical concentrator has been discussed
in [33]. However, the free-space EM concentrators have never been demonstrated experimentally since
they demand highly anisotropic material parameters.

(a) (b)

Figure 4. The principle of a circularly-cylindrical concentrator. The cylindrical region with radius R2

is concentrated into a smaller region with radius R1, while space between R2 and R3 is diluted into the
space between R1 and R3. (a) Virtual space; (b) physical space.

A dc electric concentrator was investigated for steady current fields recently [34]. Based on the
TO in electrostatics, the dc concentrator could focus electric currents into the central concentrated
region and enhance the electric field and current density. Outside the concentrator, the current lines
are distributed as the same as those in a homogeneous conducting material. Hence, such a dc electric
concentrator has no impact on other external devices.

For the dc concentrator design, the transformation between the physical space and the virtual
spaces is exactly the same as Equation (23). The electric concentrator contains two regions. In the
central circular core with radius 0 ≤ R ≤ R1, the current density would be enhanced by R2/R1 times
for planar source excitation by concentrating the current in region (0 ≤ R′ ≤ R2) into the central core;
in the outer layer (R1 ≤ R ≤ R3), the current density is weakened by (R3 − R1)/(R3 − R2) times for
planar source excitation by diluting the current in region (R2 ≤ R′ ≤ R3) into region (R1 ≤ R ≤ R3).
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Then the transformed conductivity for the electric concentrator is then derived using the transformation
electrostatics as

σ =
{

diag
(
1, 1, 1/k2

1

)
σ0, 0 ≤ R ≤ R1

diag
(
σR, 1/σR, k2

2σR

)
σ0, R1 < R ≤ R3

(24)

in which σR = k3R3/R + 1. It is interesting to notice that, implied in Equation (24), the central
“concentrated” region is isotropic and the conductivity is the same as that of the background material for
2D case. In the “diluted” region, the conductivity is anisotropic, whose R component is a monotonously
decreasing function on radius, while the ϕ component is an inverse of R component.

Equation (24) shows that the realization of dc concentrator requires anisotropic and inhomogeneous
conductivities, and the anisotropic conductivity tensor can be implemented using different resistors
in different directions. In the experiments, two samples were fabricated. For the first sample, the
background material has the conductivity of 1 S/m, which is cut into a circular region with radius of
25 cm. In the design, the inner radius was chosen as R1 = 5 cm and the outer radius R3 = 15 cm. The
background material together with the dc concentrator is divided into 25×36 cells using the polar grids.
The resistor network, which is built on PCB with thickness of 2mm, contains 25 concentric layers in the
radial direction, and 36 nodes in the tangential direction. The concentrated region of the dc concentrator
occupies an area of 5 layers, the diluted region employs another 10 layers, and the remaining 10 layers
are background material. For the second sample, the central concentrated region has one-layer resistors
with radius R1 = 1cm and the diluted region has 10 layers of resistors, respectively. The remaining
9 layers are background material. A voltage source with 5 V magnitude was connected to the circuit
network at the 24th layer for first sample and at the 19th layer for the second sample, respectively.

Figures 5(a) and 5(b) demonstrate the simulation and measurement results of a dc concentrator

(a) (b)

(c) (d)

Figure 5. The equi-potential line distributions of two current concentrators. (a) The simulated result
of dc concentrator with R1 = 5 cm, (b) the measured result of dc concentrator with R1 = 5cm; (c) the
simulated result of dc concentrator with R1 = 1cm; (d) the measured result of dc concentrator with
R1 = 1cm [34].
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with R1 = 5 cm, R2 = 10 cm and R3 = 15 cm based on the resistor network. The simulated potential
distributions of the dc concentrator are shown in Figure 5(a). It is clearly observed that the potential
distributions outside the concentrator keep the original equipotential lines as those in the homogeneous
material, which indicates that the concentrator has no effect on any external devices. The measurement
results of the dc concentrator are presented in Figure 5(b), demonstrating excellent concentrating
performance. To verify such a design for a dc concentrator with a large “concentrating” factor, we
fabricated the second device. Figures 5(c) and 5(d) illustrate simulation and measurement results of a
dc concentrator with R1 = 1 cm, R2 = 10 cm and R3 = 11 cm.

By comparing Figures 5(a) and 5(b), excellent agreements have been certified between the
experiments and simulations, both inside and outside the concentrator. In the circuit simulations
and experiments, the current density in the concentrated region has been enhanced by 1.7 times for the
case of R1 = 5cm, R2 = 10 cm and R3 = 15 cm, and by 5.6 times for the case of R1 = 1 cm, R2 = 10 cm
and R3 = 11 cm respectively, compared to that in the same region in the homogeneous material due to
potential distribution in the logarithmic law. We remark that the enhancement factors are smaller than
the theoretical predictions due to the differences of excited sources. Therefore, in the dc concentrator,
the electric potential is concentrated, while the electric field and current density are enhanced. With
the help of modern integrated circuit technologies, it is possible to extend such a device to the nano
scale, which is expected to have potential applications in the electric impedance tomography technology,
graphene, and other integrated circuits.

5. HIGH-PERFORMANCE ANTENNAS

The basic idea of wave-shape transformation comes from the fact that waves propagate perpendicular
to the phase fronts in free space. Therefore, the wave shape of a non-plane wave will be changed
momentarily. If a device can limit the propagation of a wave in a certain region and convert the wave
shape to another style when the wave leaves, it is called wave shape transformer [42]. In topological
interpretation, such a device causes the spatial deformation by mapping the points traced by the wave
propagating in free space to the points within the TO device. Hence, the material parameter tensors
for the device can be established by using TO theory. One can also design a transformation device
that keeps wave shape. Such a transformation device keeps the phase front without changing the shape
when a wave propagates through it [35].

The principle of many high-performance antennas is based on the conversion from cylindrical waves
to plane waves [36]. The first work on conversion from cylindrical waves to plane waves in a short range
was proposed by using the finite embedded optical transformation [37]. The principle of the conversion
is shown in Figure 6(a). The radii of inner and outer circles are a and b, respectively, and the sidelength
of the outer square is 2c. The square domain is divided into four triangles and in the triangle OAB,
the following transformation is constructed,

r′ =

⎧⎨
⎩

br/a, 0 ≤ r ≤ a;
cr − bx

(b − a)x
(r − a) + b, a ≤ r ≤ b,

(25)

where (x, y) is the coordinate variables in the original space and (x′, y′) the corresponding variables in
the transformed space, and r =

√
x2 + y2, r′ =

√
x′2 + y′2. Obviously, 0 ≤ r′ ≤ b if 0 ≤ r ≤ a, and

b ≤ r′, x′ ≤ c if a ≤ r ≤ b. There are two transformations in Equation (25). The first extends the space
in sector ̂OCD to a bigger space in sector ̂OA′B′, and the second transforms the arc CA′B′D to the
trapezia-like region A′ABB′. Hence, if cylindrical waves are excited at the origin and propagate through
the domain A′ABB′, the phase front will change from circular to plane. The relative permittivity and
permeability tensors of the materials for the single triangular domain OAB in the transformed space
would be calculated by TO. By using rotation operation, the corresponding material parameter tensors
for other domains can be obtained.

In the view of the realization difficulty of the above conversion method, a high-directivity lens
antenna was proposed based on layered TO, which makes all layers of the lens homogeneous and
uniaxially anisotropic [38]. We present the layered TO in a simple lens antenna. Such an TO device
can amplify the local properties of fields in a small region to a large region. Consider a 2D structure
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(a) (b) (c)

Figure 6. (a) The principle of cylindrical-to-plane wave-shape transformer; (b) the principle of high-
directivity lens based on layered-approximate TO; (c) the simulated field distribution of layered TO
lens.

in the Cartesian coordinate system, as shown in Figure 6(b), in which the virtual space is a rectangle
ABCD and the physical space is a trapezia ABC ′D′. We divide the physical and virtual spaces into
n layers in the same way. For the kth (1 ≤ k ≤ n) layer, we define an elongating mapping using the
following equations

x′ = x +
(k − 0.5)(b − a)x

na
, y′ = y, z′ = z (1 ≤ k ≤ n), (26)

where (x, y) is an arbitrary point in the virtual space and (x′, y′) the transformed point in the physical
space. We have assumed the lengths of AB and C ′D′ to be a and b, respectively, and the height of
the trapezia ABC ′D′ to be L. We remark that the discrete transformation implied in Equation (26)
maps rectangles to wider rectangles. Therefore the actual “physical space” is actually the staircase
approximation of the trapezium obtained by stacking rectangles on top of each other. At this point,
the larger is the layer number n chosen, the more accurate the transformation becomes.

Hence the relative permittivity and permeability tensors of the transformation medium in the kth
layer (1 ≤ k ≤ n) are expressed as

εk
xx = μk

xx = αk, εk
yy = μk

yy = 1/αk, εk
zz = μk

zz = 1/αk, (27)

in which
αk = 1 + (k − 0.5)(b − a)/(na). (28)

For the TE wave incidence, the electric fields are polarized along the z axis, and only εk
zz, μk

xx and μk
yy

are required in Equation (24). The dispersion relations of the transformed media remain unchanged as
long as the products of μk

xxε
k
zz and μk

yyε
k
zz are kept the same in above equations. Hence one advantageous

choice is to select
μk

xx = 1, εk
zz = 1, μk

yy = 1/α2
k, 1 ≤ k ≤ n, (29)

due to the practical reason. In this set of parameters, only μk
yy is different in each layer of the lens

structure, which makes the whole structure very easy to realize. We remark that the reduced media
parameters provide the same wave trajectory inside each layer of the lens antenna, and there will be
no reflection for the normal incidence because of the wave-impedance matching at the upper and lower
boundaries. However, for other angles of incidence there will be tiny reflections.

Similarly, the transformation design method was employed to realize substrates that can modify
the emission of an embedded source [39]. With proper transformation functions, the energy radiated by
a source embedded in these space variant media will be concentrated in a narrow beam [40]. Hence, the
technique of optical transformations is a powerful approach for high-performance antenna designs [41]. A
more general situation that converts a wave front from an arbitrary shape to another arbitrary style has
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been considered in [42]. The authors proposed a general method of designing wave shape transformers.
By adopting this method, a wave shape transformer that converts wave fronts with arbitrary shape and
size to another arbitrary style can be constructed.

A broadband transformation optics lens has been designed and fabricated [43]. Such a lens can
convert the radiation from an embedded isotropic source into any desired number of highly directive
beams pointing at arbitrary directions. The impedance bandwidth of the embedded antenna was greatly
enhanced by exploiting the dispersive properties of the metamaterial unit cells. The monopole with the
transformation-optics lens has much better performance than the monopole without the lens in term of
the gain.

6. GROUND-PLANE CLOAK

A free-space cloak based on TO always requires highly-anisotropic complex materials. For a 2D
cylindrical cloak in free space, the full parameters can be greatly simplified [12]. Since the reduced
parameters provide the same dispersion relationship as the full parameters for the 2D cloak, the EM
waves have the same trajectory inside the cloak with a penalty of nonzero reflections. Using the reduced
parameters, the first practical free-space cloak has been realized in the microwave frequency [12]. Due
to the requirement of very small values of refraction index, resonant structured metamaterials have been
applied, which makes the invisible cloak operate in a narrow frequency band with a relatively large loss.

The narrow bandwidth and large loss become big restriction to real applications of free-space cloaks.
By using a carpet cloak based on QCTO, however, one can cause any object swept under a conducting
plane to seem to disappear [26]. The great advantage of the carpet cloak is that it relaxes singular
value requirement for the material parameters. The experimental validations of the carpet cloak has
been achieved with low-loss and broadband metamaterials at microwave frequencies [27] and at optical
frequencies recently [44, 45].

The first carpet cloak was realized with the use of non-resonant metamaterial elements, which can
work in a broad bandwidth from 13 to 16 GHz while exhibiting extremely low loss. A photograph of
the fabricated sample is presented in the left part of Figure 7. The entire cloak was embedded in a
background material with refractive index nb = 1.331. Under this condition, refractive index values for
the carpet cloak ranges from n = 1.08 to 1.67. Because the cloak was designed to be embedded in a
higher dielectric region, impedance matching layer (IML) was added to surround the entire structure,
for which the index changes gradually and linearly from that of the air to that of the background index.

The elements chosen to achieve the design are all variations of the structure shown in the right
part of Figure 7. By changing the dimension a, the required index range of n = 1.08 to 1.67 was
obtained. The carpet cloak was fabricated on copper-clad PCB with FR4 substrate. The completed
sample is 500 by 106 mm2 with a height of 10 mm. The center region, 250 by 96 mm2, corresponds to
the transformed cloaking region, whereas the rest of the sample is used for dielectric embedding and
impedance matching. The cloak transformation is specifically designed to compensate a perturbation
introduced on the conducting surface that follows the curve y = 12 cos2[(x − 125)π/125] mm.

Figure 7. The photograph of the microwave carpet cloak and the metamaterial structure [27].
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To verify the carpet cloak design, a near-field scanning system was used to map the electric field
distribution. The planar waveguide restricts the wave polarization to transverse electric (TE). A large
area field map of the scattering region, including the collimated incidence and scattered beams, is shown
in Figure 8. The waves are launched into the chamber from a standard X-band coax-to-waveguide
coupler and pass through a dielectric lens that produces a nearly collimated microwave beam. The
beam is arbitrarily chosen to be incident on the ground plane at an angle of 40◦ with respect to the
normal. A flat ground plane produces a nearly perfect reflection of the incident beam in Figure 8(a),
whereas the presence of the perturbation produces considerable scattering, as shown in Figure 8(b). By
covering the space surrounding the perturbation with the metamaterial cloaking structure, however, the
reflected beam is restored, as if the ground plane were flat, shown in Figure 8(c). The gradient-index
IML introduced into the design minimizes reflections at the boundaries of the cloaking region. As the
carpet cloak makes use of non-resonant elements, it exhibited a large frequency range of operation. The
cloaking behavior was confirmed in the range from 13 to 16 GHz.

(a) (b) (c)

Figure 8. The measured electric fields when a collimated beam is incident on (a) a flat ground plane,
(b) a perturbation, and (c) a perturbation covered by carpet cloak, respectively [27].
vskip0.1in

The non-resonant metamaterials have very low loss and operate in a broad frequency band,
hence the carpet cloaks have good invisibility performance. Soon, a compact-sized carpet cloak was
demonstrated experimentally in the free-space background [46]. The area ratio of the cloak to the
cloaked region is as small as 7.33, which is only 11.2% of the above full carpet cloak. The simplified
carpet cloak was designed in 2D with the electric fields z-polarized. The compact-sized carpet cloak
covers the triangular region and makes the whole system appear as the original flat conducting plane.
The shape of cloak is a rectangle with the width of 125 mm and hight of 50 mm except that the bottom
boundary is partially triangularly-shaped to place the cloaked object.

The process of a compact-sized carpet cloak design contains two stages. First, following a quasi-
conformal coordinate mapping, the refractive-index distribution of the cloak is computed numerically
with the maximum anisotropic factor of 1.07. Secondly, the grid optimization is used by recursive
division of Cartesian cells to sample the original refractive-index distribution. In such a course, the
small regions near the base corners of the triangular object, where the refractive-index is smaller than
1, are treated as free space. The refractive index distribution of the final carpet cloak ranges from 1 to
1.69.

The compact-sized carpet cloak is divided to 3 by 3 mm2 squares with non-resonant elements and
fabricated on copper clad PCB with F4B substrate. Because the cell-to-cell change in dimension is
minor, the impedance is matched gradually in the whole cloak over the entire measurement frequency
range. The carpet has a size of 125 × 50 mm2 with a height of 12 mm. The cloaking transformation is
specifically designed to compensate the triangular concealed region with the height of 13 mm and the
bottom of 125 mm.

The invisible effect of the simplified carpet cloak was also validated in a near-field scanning system.
The tested results demonstrated that the cloak has successfully transformed the curved surface into a
flat one. The broadband properties of the compact-sized carpet cloak was verified over a wide range
of frequency. The cloaking behavior was confirmed in the measurements from 10 GHz to 13 GHz. The
compact-sized carpet cloak was designed based on the isotropic and non-resonant unit elements, hence
the presented cloaks are broadband and low loss. The agreement between the measured field patterns
and the theory provides convincing evidence that metamaterials can indeed be widely applied in practice.
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The experimental demonstration of compact-sized invisibility cloaks represents a major step towards
real applications of invisibility devices.

In 2010, a three-dimensional (3D) broadband carpet cloak was fabricated in the microwave
frequency, which can conceal a real object located under a curved conducting sheet from all viewing
angles by imitating the reflection of a flat conducting plane [47]. Following a theoretical procedure
similar to that of 2D cloak, the constitutive parameter distributions was obtained for the 3D cloak.
The 3D cloak was designed using inhomogeneous isotropic dielectric materials, which are realized by
drilling inhomogeneous holes in layered dielectric plates. A high-gain lens antenna using non-resonant
metamaterials was used as the transmitter to measure the cloaking properties of the 3D cloak.

In the description of 2D carpet cloaks, the incident waves were restricted to a single plane to which
the electric field is perpendicular. Hence, only the cloak parameters in this plane were required, yielding
a 2D configuration. From the optical transformation theory, the 2D carpet cloaks have good cloaking
performance to all incident angles. By rotating the 2D cloak around the z axis, a 3D cylindrical carpet
cloak was generated. Hence, the 3D cloak parameters can be easily obtained by rotating the available
2D cloak parameters.

The designed 3D cloak is resided in the free space, which is suitable for real cases for potential
applications in the microwave frequency. The 3D carpet cloak was fabricated by drilling inhomogeneous
holes in multi-layered dielectric plates, with the relative permittivity of 2.65, the standard height of F4B
dielectric plate is 1 mm. Photographs of the fabricated 3D cloak sample are illustrated in Figure 9. The
outline shape of the cloak is a 3D cylinder whose height and bottom radius are 51 mm and 62.5 mm,
respectively. On the bottom of the cloak, the cloaked region is a cone-shaped metallic bump whose
bottom radius and height are 62.5 mm and 13 mm, respectively.

(a) (b)

Figure 9. Photograph of the fabricated 3D carpet cloak. (a) Top view; (b) bottom view [47].

To realize the drilled-hole metamaterials, two different-size unit cells are used to design the 3D
cloak: 3× 3× 3 mm3 and 3× 3× 1 mm3, respectively. The part of the 3D cloak whose refractive indices
are larger than 1.15 is fabricated using the 3×3×3mm3 unit cells with different-diameter holes, and the
other part whose refractive indices are smaller than 1.15 is fabricated using the 3× 3× 1 mm3 unit cells
with different-diameter holes. The fabricated 3D cloak contains 17 layers of drilled-hole F4B plates and
totally 1,310 inhomogeneous holes are drilled on a 3 mm-thick F4B dielectric plates. The drilled-hole
metamaterials used in the experimental 3D cloak do have the bulk material behaviors that are expected
by an ideal 3D cloak.

To verify the cloaking performance of the designed 3D carpet cloak, the scattering behaviors of
objects were measured in a fully anechoic chamber. In experiments, the metamaterial transmitter has
an important role. As the measured objects have relatively small sizes, the reflecting and scattering
properties cannot be well captured under the illumination of conventional horn antenna in the far-field
region. A gradient index metamaterial lens antenna was used as the transmitter, fro which the lens
aperture is 98 mm [48]. As the metamaterial antenna can produce a narrow-beam plane wave in the
near-field region, it is an excellent candidate to measure the reflecting property of the ground plane with
finite size and the scattering property of the bump. The metamaterial lens was made of inhomogeneous
closed-square rings (CSR), which are non-resonant metamaterial unit cells. Owing to the non-resonant
nature, the lens antenna has a broadband, operating from 8 GHz to 12 GHz, covering the whole X-band.
The lens antenna radiates perfect plane waves and has high gains in both E-plane and H-plane.
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To observe the cloaking effect clearly, three kinds of measurements are taken in the experiments:
the flat ground plane, the ground plane with cone-shaped perturbation and the ground plane with both
perturbation and 3D cloak, respectively. Two polarizations of incident waves have been considered
in the measurement: the incident electric field is parallel to the x-z plane (parallel polarization) and
perpendicular to the x-z plane (perpendicular polarization). Such polarizations can be achieved by
adjusting the feeding rectangular waveguide of the metamaterial lens. We have measured the scattered
electric fields of the flat ground plane, the ground plane with perturbation and the plane with both
perturbation and cloak at 9 GHz, 10 GHz and 12 GHz, respectively.

For the parallel-polarization incidence, the measured results are shown in the upper row of Figure 10.
From Figure 10(a), the flat ground plane produces a single-peak reflection at the mirror-reflecting
direction of the incident wave. However, the presence of the cone-shaped metallic perturbation generates
considerable scattering with multi-peak reflections, as shown in Figure 10(b). When the perturbation
is covered by the designed 3D cloak, however, the single-peak reflection is restored as if the ground
plane were flat, as shown in Figure 10(c). Figures 10(d)–(f) illustrate the measured results for the
three situations as the incident electric field is perpendicular-polarized, and similarly good cloaking
performance are observed. As the 3D cloak is made of layered F4B dielectric plates, the broadband
property was confirmed by the measurements in the large frequency range as expected.

(a) (b) (c)

(d) (e) (f)

Figure 10. The measured far-field pattern of (a), (d) a flat ground plane, (b), (e) the cone-shape
perturbation, (c), (f) the cone-shape perturbation with the 3D carpet cloak. The upper row is for
parallel polarization and the lower row is for perpendicular polarization [47].

7. FLATTENED LUNEBURG LENS

For centuries, the conventional approach to lens design has been to grind the surfaces of a uniform
material in such a manner as to sculpt the paths that rays of light follow as they transit through
the interfaces. Conceptually, a more natural approach to lens design would be to vary the refractive
index throughout an entire volume of space. Transformation optics can also be used to harness the
flexibility of gradient index materials for imaging applications. For example, a flattened Luneburg lens,
which was recently designed and experimentally demonstrated, has a field-of-view approaching 180◦,
and zero f -number [5]. Measurements on a metamaterial prototype of the lens illustrate the practicality
of transformation optics to achieve a new class of optical devices.

It has long been known that Luneburg lens is a spherical lens with no aberrations for which the
locus of focal points resides on a sphere. The fundamental problem with Luneburg lens and similar
lenses, that the spherical focal locus is inherently unsuitable for standard charge-coupled devices or
antenna arrays can be addressed by flattening the focal plane through the application of transformation
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optics. Applying QCTO, solutions can be found that do not require the use of resonant metamaterials,
implying that the resulting optic can have a large bandwidth.

The flattened Luneburg lens was designed based on QCTO, which can result in a device with
identical functionality to a standard TO design, but can be implemented using isotropic materials
relying only on gradients in the refractive index of the medium. The QCTO design method makes use
of a set of boundary conditions that define the effect of the device, while restricting the transform inside
the material. In particular, angles between the coordinate lines are approximately preserved and there
is limited anisotropy of the coordinate ‘squares’.

The quasi-conformal map for the flattening of a portion of a spherical lens is shown in Figure 11,
which is slightly different in concept from the one carried out for the carpet cloak. The circular protrusion
that follows the yellow line is mapped to a straight line that will make up the focal plane of the lens.
Slipping boundary conditions are used along the yellow line in the quasi-conformal relaxation procedure.
The transformation is ended with a Dirichlet boundary condition at the red line.

(a)

(b)

Figure 11. The principle of the flattened Luneburg lens. (a) The virtual space; (b) the physical
space [5].

The lens fabricated to demonstrate the flattened Luneburg design was built to work in a parallel-
plate waveguide. The index profile for the design had to be adjusted to remove regions of n < 1. The
index was set to 1 in any region where it had previously been less than 1. An index range of 1.08
to 4.1 was used in the implementation of this design. The index profile was achieved by patterning
copper strips on an FR4 substrate. The copper strips act as polarizable inclusions in the medium,
increasing the overall polarizability of the material. These strips are not resonant in the frequency
range of operation for the lens, and simulations indicate that the dissipative loss of these metamaterial
cells is essentially equal to that of the substrate material. To achieve the requisite index range, the
lens was divided into two regions. The first region contained materials with an index between 1 and 2.
The second one had an index range from 2 to 4.1 and was composed of 0.22-mm-thick FR4 and copper
strips laid directly on top of one another. This compact design allowed the index to be brought to over
4 without using resonant particles or introducing excessive spatial dispersion, both of which would have
imposed bandwidth limitations. In the band from 7 to 15 GHz the index changes by less than 10% in
the region with the largest dispersion, and less than 3% in most of the device.

The lens was tested using a dielectric waveguide to apply a source to different positions along the
back surface of the lens. This set-up allowed the effects of the impedance mismatching on the back
of the lens to be minimized. The lens produces approximately plane waves propagating in different
directions as the position of the source is varied, extending to extreme angles approaching the horizon.
The resulting field profiles are shown in Figure 12. Note that the material response is broadband.
The effect of the lens does not qualitatively change between 7 and 15 GHz, the frequency range of the
measurement capabilities.

The designed lens has a flat focal locus, making it usable with standard imaging arrays.
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(a) (b)

(c) (d)

Figure 12. The measured results of the flattened Luneburg lens. (a) Beam is directed to 0◦; (b) beam
is directed to 35◦; (c) beam is directed to 50◦; (d) beam is directed to 70◦ [5].

Furthermore, no resonant particles were required in the fabrication of the lens, resulting in a device that
is broadband and shows limited loss. The above demonstration was only limited to a 2D form with the
TE mode. About one year later, a three-dimensional (3D) version of the flattened Luneburg lens in the
microwave frequency band was reported [6]. The 3D lens was fabricated with multilayered dielectric
plates by drilling inhomogeneous holes and had excellent performance for different polarizations over a
broad frequency band from 12.4 to 18 GHz.

To generate the refractive index distribution of the 3D Luneburg-based lens, the authors rotated
the 2D profile along the z axis. The 3D lens has a height of h = 104 mm and a maximum aperture of
d = 108 mm. This is an approximate transformation-optics lens. When a source is placed at different
positions on the flattened focal surface, the lens will radiate perfectly planar wavefronts at different
angles on the planes containing the optical axis. On the planes not containing the optical axis, the
planar wavefronts will have some distortions.

The 3D lens is composed of non-resonant metamaterials, which are fabricated with multilayered
dielectric plates, and each layer is drilled by different inhomogeneous holes to realize the 3D distribution
of refractive indices. Figure 13 illustrates the photograph of the final sample of the 3D lens. Two kinds
of dielectric plates are involved in the lens’ realization: the FR4 dielectric, which has a large relative
permittivity of 4.4, and the F4B dielectric, which has a small relative permittivity of 2.65. The 3D TO
lens was designed to work in the Ku-band, and three kinds of unit cells were chosen as building blocks
of metamaterials to achieve the required distribution of refractive index. The three kinds of unit cells
are 2×2×1 mm3 and 2×2×2 mm3 F4B dielectric blocks, and 2×2×2 mm3 FR4 dielectric blocks. The
continuous variation of the refractive index can be obtained by changing the diameter of the drilling
hole in the unit cell.

To verify the actual performance of the 3D flattened Luneburg lens, both near and far electric fields
produced by the lens was measured when a feeding source is placed at different positions on the flattened
focal surface. In the near-field measurement setup, a coaxial probe was placed in front of the lens to
detect the electric fields in the near-field region. The test region is a 198× 198 mm2 square area outside
the 3D lens, which is shifted when the feeding source is placed at different locations. A Ku-band coax-
to-waveguide device with an aperture size of 16 × 8 mm2 was used to feed the antenna. The detection
probe was fixed, and the 3D lens was controlled by an electronic motor under an aluminium plate that
moves automatically to measure the near fields continuously. It is noted that the detection probe should
be parallel to the polarization direction of electric fields to get the best measurement results. Different
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Figure 13. Photograph of the fabricated 3D flattened Luneburg lens [6].

(a) (b)

(d) (e) (f)

(c)

Figure 14. The measured near-field distributions and far-field patterns of the 3D flattened Luneburg
lens. (a), (d) The feed is located at the lens center; (b), (e) the lens is 10 mm off the lens center; (c),
(f) the lens is 30 mm off the lens center. The upper row shows the near field distribution, and the lower
row shows the far-field patterns [6].

polarizations in the measurement can be considered by adjusting the feeding coax-to-waveguide device.
The measurement results of the near electric fields under vertical polarization are illustrated in

Figure 14, in which three typical source positions are chosen on the focal plane: the feed is located at the
lens center, 10 mm off the lens center and 30 mm off the lens center. When the feed is located at the center
of the focal plane, the 3D lens generates very good planar wavefronts in the z direction (Figure 14(a));
when the source is 10 mm off the center, the 3D lens radiates good plane waves propagating in the
angle of 20◦ off the z direction (Figure 14(b)); as the source is 30 mm off the center, the plane waves
propagate in the direction of 50◦ off the z axis (Figure 14(c)). As the 3D lens was fabricated using
multilayer isotropic dielectric plates by drilling inhomogeneous holes, the lens works in a broad frequency
band from 12.4 to 18 GHz. From the above measurement results, we clearly observe that the radiation
direction can be controlled in a large angle range by moving the feeding source on the flattened focal
surface in the whole Ku-band.

The 3D lens was also measured in the anechoic chamber to observe the far-field radiations for
both horizontal and vertical polarizations. The measured far-field radiation patterns are illustrated in
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Figures 14(d)–(f), with different feeding positions on the flattened focal surface at different frequencies.
The broadband property of the 3D lens is well kept in the far-field radiations, which is valid for both
horizontal and vertical polarizations. Apparently, it has very good overall performance. As a planar
array of feeding sources is placed on the flattened focal surface, the radiation beam of the 3D lens will
be scanned in a range of 50◦ with respect to the normal direction (z axis).

The proposed 3D lens is more advantageous with zero focal distance, flattened focal surface and
ability to generate radiation beams at extremely large angles when compared to the conventional 3D
Luneburg lens. When the feeding source is located near the center of the focal plane, very good planar
wavefronts are also observed on all planes not containing the optical axis. When the feeding source is
far away from the center and becomes close to the edge of the focal plane, the planar wavefronts are well
kept on planes not containing but close to the optical axis. Only on planes far away from the optical
axis do the wavefronts have severe distortions. Such a lens can be used for beam scanning in a range of
50◦, realizing a high-performance beam-scanning antenna. More generally, it is expected to be useful
in telecommunications or radar applications where a wide field of view and high gain are needed.

8. HIGH-RESOLUTION IMAGING

The resolution of a conventional optical microscope is constrained to about one half wavelength due to
the loss of high spatial frequency information carried in the evanescent waves [49]. Based on TO and the
development of metamaterials, there has been an intensive effort to break the Abbe diffraction limit the
past decade [50, 52, 53]. Perfect lens, engineered from a slab of ideal negative-refraction medium, has
promised to achieve perfect image by magnifying the evanescent waves [50, 51]. For practical realization,
a simplified perfect lens, i.e., the superlens, was experimentally demonstrated using a thin slab of
silver [54] or SiC [55].

However, relying on the coupling between evanescent waves and surface plasmons, it is very
challenging to realize low-loss superlens or hyperlens operating in broadband due to the involvement
of negative-index metamaterials or metals. Moreover, the “nearsighted” superlenses cannot be directly
used to replace the traditional optical microscope [56]. To project a near-field image into the far-
field region, a far-field superlens (FSL), made of slab superlens with periodic corrugations, was
presented later to convert evanescent waves partly into propagating waves [57]. To achieve the high
resolution imaging in the far-field region more efficiently, hyperlenses which allow magnification of
deep subwavelength scale objects were proposed by using hyperbolic metamaterials [58–60]. Soon after,
cylindrical hyperlenses [61] and spherical hyperlens [62] were experimentally demonstrated with a curved
periodic stack of metal-dielectric materials. In fact, based on TO, both superlens and hyperlens can be
precisely designed [52, 53]. To avoid the absorption and narrowband properties, a broadband magnifying
lens was introduced and analyzed theoretically in visible light [63] and verified experimentally in broad
microwave band [64].

An impedance-matched magnifying lens, which is made of inhomogeneous isotropic dielectrics
based on an simplification from TO, was fabricated to provide far-field subwavelength imaging. This
magnifying lens may also be perceived as a modified solid immersion lens (MSIL) operating in
microwaves. The lens is fabricated with multilayered dielectric plates with drilled air holes. The far-field
high resolution imaging of such lens has been experimentally demonstrated in a broadband of gigahertz
frequencies. Benefitting from the low-loss and broadband properties of the all-dielectric metamaterial,
the experimental results show excellent super-resolution performance from 7 to 10 GHz. The MSIL is
capable of magnifying the sub-wavelength space between two objects, and producing a magnified image
at the far field, where the two objects could be distinguished by conventional imaging system.

The principle of TO-based MSIL is shown in Figures 15(a) and 15(b), in which a two-fold
transformation needs to be carried out for the design. The physical and virtual spaces are denoted
with (R, ϕ, z) and (R′, ϕ′, z′), respectively. First, a circular region (R′ ≤ b − δ) in the virtual space is
compressed into region I (R ≤ a) in physical space. Second, an annular region (b − δ ≤ R′ ≤ b) in the
virtual space is stretched into region II (a < R ≤ b) in the physical space. Using TO procedure, the
closed-form expressions of material parameters was obtained for the MSIL. In the case of two dimensions
under the TE polarization and letting δ → 0, the derived refractive index of the MSIL is anisotropic,
which is very difficult for realization. By comparing the far-field patterns for the anisotropic materials
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(a) (b)

(c)

Figure 15. The principle of the magnifying lens. (a) The virtual space; (b) the physical space; (c)
illustration of the fabricated magnifying lens [64].

and the simplified isotropic materials, finally an isotropic MSIL was obtained

n(r) =
{

b/a R ≤ a
b/R a < R ≤ b.

(30)

Obviously, the material profile in Equation (30) can be generated by full dielectrics with the broadband
performance. The MSIL is schematically illustrated in Figure 15(c), which includes two parts: region I
is the core region, while region II is physically the impedance-matching layer. The role of the core region
is to generate subwavelength propagation mode and the matching layer effectively transmits the sub-
resolution information into the free-space propagating waves. Equation (30) implies that the refractive
index of the matching layer changes gradually from that of the core to that of free space. Compared
to the well-studied SILs [65], the MSIL here will transmit the signature of the sources more efficiently
to the far field due to the impedance-matching layer. The sources to be imaged are embedded in the
MSIL by engraving a small air opening in the core center.

The material parameters of the MSIL are nonmagnetic, isotropic and inhomogeneous, which can
be realized by non-resonant metamaterials and was fabricated by drilling spatially inhomogeneous air
holes. The MSIL works in a broadband from 7 to 10 GHz, and five kinds of unit cells are chosen as
the building blocks of the metamaterials to realize the required distribution of refractive index. In real
fabrications, the MSIL is composed of four layers of the same structures, in which each layer is composed
of the core region and the matching region. In experiments, a near-field scanning system is employed
to measure the electric-field distributions. The distance of two small-distance sources is 7.5 mm, and
the distance of two large-distance sources is 22.5 mm. The small-distance source was embedded into a
slot in the center of MSIL. With this slot, the source will be immersed in the magnifying lens. Due to
the symmetry of the MSIL and the feeding source, only half region is mapped.

To validate the designed impedance-matching magnifying lens experimentally, the fabricated sample
with the radius of core region a = 18 mm, the outer radius b = 54 mm, and the small distance of the
sources d = 7.5 mm, was measured in broadband from 7 to 10 GHz. Note that, at 10 GHz, the small
distance (d) of two sources is 0.25 wavelength and the large distance (3d) is 0.75 wavelength; while at
7GHz, the small distance is 0.175 wavelength and the large distance is 0.525 wavelength. Figure 16
illustrates the measured results of two small-distance and two large-distance sources, respectively.
Figure 16(a) shows the near-field distributions of two small-distance sources without MSIL at 8 GHz.
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(a)

(b)

(c)

(e)

(f)

(d)

Figure 16. The measured near-fields of (a) two small-distance sources in free space; (b) two small-
distance sources in MSIL; (c) two large-distance sources in free space; the inversion positions of (d)
two small-distance sources in free space; (e) two small-distance sources in MSIL; (f) two large-distance
sources in free space [64].

In this case, the distance of two sources is much smaller than the diffraction limit, and hence the
near field is very similar to that of a single source. That is to say, the sources are very difficult to
be distinguished. When the two small-distance sources are embedded in the MSIL, however, the field
distributions are changed to nearly the same as those of two sources at large distance in free space, as
demonstrated in Figures 16(b) and 16(c), hence, the two sources can be evidently distinguished. For
practical applications, it is important to be able to deduce the configuration of the sources embedded
in the MSIL based on the recorded far-field radiation patterns. Therefor, an inversion scheme has
been developed to determine the positions of sources from far fields. The results are demonstrated in
Figures 16(d)–(f). For the two 7.5 mm-distance sources in free space, the retrieved locations of two
sources are difficult to be distinguished, as shown in Figure 16(d). However, when such two sources
are placed in the graded magnifying lens, their physical positions can be clearly identified, as displayed
in Figure 16(e). For the two sources with 22.5 mm separation in free space, the retrieved positions are
distinctly perceived (see Figure 16(f)) since they are beyond the diffraction limit.

Such a MSIL was fabricated in microwave frequencies using the full-dielectric metamaterials. The
experimental results have verified the super-resolution performance of the dielectric MSIL in broadband
from 7 to 10 GHz. Owing to the low loss and broadband properties, this MSIL can be used to far-field
imaging with high resolution that could be captured directly by a conventional microwave imaging
device. This mechanism may also find unique potentials in far-field high resolution optical imaging.
The proposed operation with high resolution may open new avenues towards real-time imaging systems
across a wide spectrum of light.

9. SUMMARY

We have reviewed the theory of transformation optics which is based on Maxwell’s equations and
discussed several categories of TO devices that came forth in the past years. TO enables the redirect
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manipulation of EM waves, and therefore offers a powerful tool for design of novel and complicated
devices. For example, invisibility, previously thought purely in the realms of science fiction, now can
be realized by metamaterials with the help of the theory discussed here. We believe that TO design
will prove to be a more powerful methodology. Together with advancing metamaterial technology, it
should lead to the realization of devices that would be very difficult to fabricate in any other way.
Transformation optics is expected to have further impact on the development of electromagnetics and
microwave engineerings.
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