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A New Hybrid MoM-GEC Asymptotic Method for Electromagnetic
Scattering Computation in Waveguides
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Abstract—This paper presents a new hybridization between MoM-GEC and some asymptotic methods.
In fact, a new hybrid current function based on Physical Optic (PO) and a modal method is developed.
The approach consists in approximating the total current on an invariant metallic pattern on two parts;
the inside of metal is governed by PO method; however, the edges are modeled by infinite cylinders
and described by Hankel functions (modal method). The considered single test function is required
then by MoM method to replace a lot of sinusoidal or triangular test functions, in order to get a rapid
convergence and less computational time. For validation purposes, the new developed hybrid approach
is applied to compute scattering in different structures. The obtained input impedances, currents
and fields distributions are in agreement with those obtained by MoM method. Considerable gain in
computational time and memory resources is achieved.

1. INTRODUCTION

Microwave devices applications cover a wide band of the electromagnetic domain and have numerous
functions and dimensions according to their frequency range of use. To model such devices and their
interactions, there is a set of methods that solves a number of problems, in some scope. Maxwell’s
equations cannot be analytically solved in most cases. Hence, many modeling methods and various
techniques have been developed to solve electromagnetic problems in time or frequency domain. They
can be classified as different categories according to their formulation and their analysis domain. Some
are called full wave methods such as MoM, FEM [1, 2], FDTD [3–5], TLM [6, 7]. They provide an
approximate solution by numerically solving Maxwell’s equations, in differential or integral form. Others
are called asymptotic methods. They are based on fields such as GO, GTD [8–10], UTD [11, 12] or
on currents such as PO [13, 14], PTD [15, 16]. They provide an approximate solution of Maxwell’s
equations, which tends to the exact solution at very high frequency. These last methods are used to
model electrically large objects (objects of very large dimensions compared to the wavelength) without
containing fine details. Other so-called hybrid methods are based on one or more coupling between two
families of the previously mentioned methods. This allows extending the range of analysis and field of
applications of numerical methods.

Full wave methods require a complete spatial meshing of the computational space (surface or
volume), joined by a temporal meshing in the case of temporal methods. Then, the analysis space of
modeled device will be greatly limited. Full wave methods are also used to model electrically small
objects whose dimensions do not exceed a few tens of wavelength. Consequently, we can understand
the difficulty in modeling large areas of analysis. Among full wave methods, integral ones are the most
suitable to achieve an electromagnetic study of planar microwave structures. Indeed, integral methods
can reduce the size of the problem since they write the initial boundary conditions in the form of an
integral equation defined on the obstacle’s surface. However, when the structure’s complexity increases,
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the resolution becomes complicated. The equivalent circuits have been introduced in the development
of integral methods formulation with equivalent circuit problems (V, I) instead of field problems (E,H).
This constitutes the concept of MoM-GEC that consists of MoM method combined to the Generalized
Equivalent Circuit (GEC). Its key idea is the transposition of field problems in GEC which are simpler
to treat [17–19, 21, 24–26].

A major feature of this method is reducing the spatial degree size of problems. The study of a
volume structure is solved by a surface approach which makes this method particularly suitable for finite
areas in infinite medium. Determining the electromagnetic field radiated by an object in a certain volume
of calculation is reduced to determine the current on its surface, and this problem requires a surface
meshing and not a volume one, so that we can find the electromagnetic field radiated by the structure
in the entire space [20]. MoM-GEC is a general method that transforms a functional (differential or
integral equation) into a linear equations system that can be solved by matrix techniques [27]. The
unknown function f is expressed as a linear combination of known test functions fn, weighted by
unknown coefficients αn

f =
∑

αnfn (1)

The procedure of the MoM-GEC method is based on minimizing the residual error on basis and test
functions in order to get the convergence of the solution. Indeed, a judicious choice of test functions can
quickly provide the solution while a wrong choice can greatly complicate the problem or not solve it.
Generally, sinusoidal, triangular or polynomial test functions are often used to accurately find out the
solution. In these cases, it is necessary to use a roughly high number of test functions. As the number
of test functions is high, we need a very high number of basis functions to get convergence [21, 25].
This leads to manipulating matrices with great sizes. Consequently, the needed memory resources and
computational time to solve such problems will be considerably increased. In this context, numerous
researches have been interested in accelerating the resolution of these kinds of problems and alleviating
the electromagnetic study of these structures. They are based generally on different methods such
as the multi-scale approaches [28–32] and the conjugate gradient [24]. Some others are based on the
hybridization between MoM and asymptotic methods, especially PO method (MoM-PO), to achieve
various electromagnetic studies such as the study of radiation problems of antenna mounted on a large
platform [33] and the analysis of slot arrays enclosed in an electrically large Radome [34]. The MoM-
PO has been also used to solve large electromagnetic scattering problems utilizing Characteristic Basic
Functions (CBFs), special functions, to reduce the number of unknowns and the size of matrices [35].

The work presented in this paper is directly related to reducing the number of required test functions
by using physical approximations based on an hybridization between MoM-GEC method and some
asymptotic methods. Thus, we try to develop a single test function to solve a scattering problem. The
proposed approach is based on approximating the current test function to obey physical laws satisfying
boundary conditions inside metal and on its edges. In fact, we propose to compose the test function
on two parts. The first one is the current on metal edges, modeled by infinite cylinders that provide
a diffracted field approximated by Hankel functions [36–38]. The second is the current inside metal
based on asymptotic approximation by the Physical Optic (PO) method. The developed asymptotic
test function will be required in MoM-GEC to replace a lot of triangular or sinusoidal ones. This
original idea constitutes an hybridization of MoM-GEC method, PO method and a modal method that
approximates the diffracted field on metal edges by Hankel functions.

The paper is presented as follows. In Section 2, we present the problem formulation and the principle
of the proposed hybridization. In fact, the concept of MoM-GEC is presented and the new approximated
test function developed. In Section 3, numerical results, compared with MoM method, are given and
discussed. Finally, benefits guaranteed by the new hybrid approach, to reduce the computational time
and the numbers of test and basis functions needed for obtaining the convergence are appreciated.

2. PROBLEM FORMULATION

2.1. Structures of Study

In the beginning, we present the structures on which we apply the new hybrid approach. They are
depicted in Figure 1. The first one consists of one microstrip in a cross section of a rectangular
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Figure 1. Studied structures (a) Structure 1: one micro-strip in a rectangular electric magnetic electric
magnetic (EMEM) waveguide. (b) Structure 2: two micro-strips in a rectangular (EMEM) waveguide.
a = 20 mm, B = 9 mm, w = 1 mm and d = 5 mm.

waveguide. The second one consists of two microstrips in a rectangular waveguide. The considered
waveguides are infinite, lossless and symmetric through the discontinuity planes. They are associated
to EMEM boundaries: Two perfect magnetic plates (M) on the lateral sides and two perfect electric
ones (E) on the bottom and the top. The dimensions of the structures are: a = 20 mm, B = 9 mm,
w = 1mm and d = 5 mm.

Each EMEM waveguide is associated to a modal basis fm [22–24]. The studied structures are
invariant in y direction, and the waveguides excitations are assured by their fundamental TEM modes.
There is no y dependency, so only TEM and Transverse Electric (TE) modes exist. Consequently, the
considered modal basis is as the following:⎧⎪⎪⎨

⎪⎪⎩
f0 =

1√
a

fm =

√
2
a

cos
(mπx

a

) (2)

2.2. Principle of MoM-GEC Approach Application

2.2.1. Basic Concept of MoM-GEC

Integral methods are the most appropriate for electromagnetic study of planar microwave structures.
Since they write initial boundary conditions in form of integral equations defined on the obstacle surface,
these methods permit the reduction of the problem’s dimension. But, the resolution will become
more complicated as the structure’s complexity increases. In this context, the equivalent circuits are
introduced for the development of integral method formulation based on the transposition of field
problems in generalized equivalent circuit that are simpler to treat.

In fact, for alleviating the resolution of Maxwell’s equations, the method of Generalized Equivalent
Circuit (MGEC) was proposed [17–19, 21, 24–26] in order to represent integral equations by equivalent
circuits that express the unknown electromagnetic boundary conditions. The equivalent circuit presents
a true electric image of the studied structures for describing the discontinuity and its environment.
In the discontinuity plane, the electromagnetic state is described by generalized test functions that
are modeled by virtual sources not storing energy. The discontinuity environment is expressed by
an impedance operator or admittance operator that represents boundary conditions on each side of
discontinuity surface. However, the wave exciting the discontinuity surface is represented by a real field
source or a real current source because it delivers energy.
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Generally, the electromagnetic modeling with GEC extends the Kirchhoff’s laws used in (V, I)
concept to the Maxwell’s formalism (E,H). In order to apply Kirchhoff’s laws accurately, we should
substitute the magnetic field by the current density J defined as �J = �H ∧ �n where �n is the normal
vector to the discontinuity surface. It is noted that these generalized equivalent circuits are associated
to perfect interfaces, which are characterized by the fact that electric field and current density are
defined on complementary domains.

The modeling of the considered structures 1 and 2 is assured by the generalized equivalent circuit
illustrated in Figure 2. Let’s (fm)m∈(1,2,...,M) be the modal basis corresponding to this waveguide
described in (2).

Figure 2. Generalized equivalent circuit for the proposed structures.

The impedance operator Ẑ is defined in function of higher order modes as Ẑ =
∑

m |Fm > zm < Fm|.
Je is the virtual source defined on the metallic domain of the discontinuity surface, and it is the problem’s
unknown expressed as a series of known functions gp weighted by unknown coefficients (xp)p∈(1,2,...,Ne).

Je =
∑

xpgp (3)

Then, the application of the generalized Ohm and Kirchhoff laws to the GEC in Figure 2 leads to
obtaining the equation system (4): {

J = −Je

Ee = E0 + ẐJe

(4)

The current J is expressed in modal basis functions (fm)m∈(1,2,...,M) weighted by unknown coefficients
(Im)m∈(1,2,...,M).

J =
∑

Imfm (5)

Therefore, the application of the Galerkin’s method and Kirchhoff’s theorem leads to obtaining the
simplified matrix representation as follows:(

I
0

)
=
(

0 −AT

A B

)(
V0

X

)
(6)

where: A(p, 1) = 〈f0, gp〉 and B(p, q) =
∑

m〈gp, fm〉zm〈fm, gq〉. zm and ω correspond respectively to
the mode impedance (TE mode) and the wave pulsation.

Thus, from Equation (6), we obtain the equations system:{
I = −AT X

0 = AV0 + BX
(7)

The resolution of the equations system (7) leads to calculating the structure’s input impedance as:

Zin =
1

AT B−1A
(8)

It also permits to determine weighting coefficients (xp), current distribution J and diffracted field Ee

in the discontinuity surface.
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2.2.2. Virtual Sources

Let’s consider D a discontinuity plane formed by metallic and dielectric patterns (D = DM + DD).
Based on current and field properties on D, DM is the metallic sub-domain on which the field is
null, and its dual current is not null. However, DD is the dielectric domain on which the current is
null, and its dual field is not null. The concept of virtual source is to assemble all field and current
representations in an only one which will be valid in all points of the domain D. In this problem, Je

is a current virtual source defined on metallic domain of structures discontinuities. It is the problem’s
unknown expressed as a series of known test functions weighted by unknown coefficients as mentioned
in Equation (1). According to the MoM-GEC method, the choice of test functions is of great interest to
obtain the convergence of the solution, whereas an inadequate test function choice can complicate the
problem or not solve it. Generally, a roughly high number of sinusoidal and triangular test functions
is used in MoM-GEC method to get the solution’s convergence. In this work, we propose a new test
function which is only used to replace a lot of sinusoidal or triangular test functions, in order to attain
the same results in less time. The proposed test function is based on physically approximating the
current on metal domain in two parts. The first part consists of current in the inside of metal. It is
governed by PO method. And the second one consists of current on the metal edges. It is modeled by
infinite cylinders that provide a diffracted field described by Hankel functions [36–38]. This approach,
based on asymptotic methods (PO and modal method) and MoM method, constitutes a challenge for
hybridization of methods to optimize the convergence and the computational time in electromagnetic
problems.

2.3. Approximation of the Current Test Function

2.3.1. Approximation of the Current inside Microstrips: Physical Optic Current (JPO)

Physical approaches are based on surface current created in structure’s surface illuminated by an
electromagnetic wave. The PO method consists in approximating the electric current density �JPO

on the surface of an object induced by an incident magnetic field �Hin [13, 14]. The PO method relates
approximatively the surface’s current of a conductor to the incident magnetic field as:

�JPO = 2 �Hin ∧ �z (9)

In our problem, �Hin is the incident magnetic field on the waveguides, and �z corresponds to the unit
vector normal to the discontinuity that coincides with the propagation direction of the waveguides. �Hin

is related to the incident electric field as follows:
�rot �E = −jωμ0

�Hin (10)

Consequently,

�JPO =
2β
ωμ0

√
1
a
�y (11)

where β is the waveguide constant of propagation, ω the wave pulsation, and μ0 the air permeability.

2.3.2. Approximation of the Current on Microstrip Edges: Modal Current (JM )

To determine the current �JM created by microstrip’s edges, we propose to study the diffraction of a
plane wave by the edge. It is modeled by an infinite cylindric metallic plate in y direction. Let’s consider
an incident field normal to the considered cylinders as shown in Figure 3. It is polarized in y direction.
The induced current is in the same direction as follows:

�A = Ay(ρ, ϕ, y)�y (12)

This approach approximates that the excited modes by the cylinders are expressed as follows:
�A = (C1H

1
m(βρ) + D1H

2
m(βρ))(C2 cos(mφ) + D2 sin(mφ))(Az exp(−jβz) + Bz exp(jβz))�y (13)

where H1
m and H2

m are respectively the Hankel functions of first and second kind of order m, and C1

and D1 are unknown scattering coefficients.
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Figure 3. Cylinders modeling metallic edges and coordinate of an observation point. (R0 � λ).

In our problem, radius of each cylinder modeling an edge is neglected compared to the wavelength
(R0 � λ). This implies that the diffraction phenomenon is governed only by the Hankel function of the
second kind of order zero [36–38].

Due to the structure’s invariance in y direction, βy = 0 thus β = βz.
Consequently:

�A = A0H
2
0 (βρ)�y (14)

As shown in Figure 4, R = |�ρ − �ρ′| =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ − φ′).
Where �ρ = �OP and �ρ′ = �OM relate the origin O respectively to the observation point P and the

source point M .
For the first cylinder, we have �ρ = �x1, �ρ′ = �x′ and R = |�ρ − �ρ′| =

√
x2

1 + x′2 − 2x1x′.
The cylinder is assumed as infinite and the observation point P assumed on the cylinder surface

while the source point M is assumed on its axis. Taking into consideration the boundary condition by
setting x′ = x1 + R0.

Ei + Ed = 0 (15)
Ei + (−jωA1

0H
2
0 (β(|x1 − x′|))) = 0 (16)

Ei = jωA1
0H

2
0 (β(|x1 − x′|)) (17)

where �Ei is the waveguide’s TEM mode (�Ei = Ei�y =
√

1
a�y).

Thus, the constants A1
0 and A2

0 are expressed by:

A1
0 = A2

0 =
−
√

1
a

jωH2
0 (βR0)

(18)

Then, the diffracted electric field is expressed as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�Ed
1 =

−
√

1
a

H2
0 (βR0)

H2
0 (β(|x − x′|))�y;x′ = x1 + R0

�Ed
2 =

−
√

1
a

H2
0 (βR0)

H2
0 (β(|x − x′′|))�y;x′′ = x2 + R0

(19)

Consequently, the magnetic field can be deduced as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�Hd
1 =

β

μ0

−
√

1
a

jωH2
0 (βR0)

H2
1 (β(|x − x′|))�x;x′ = x1 + R0

�Hd
2 =

β

μ0

−
√

1
a

jωH2
0 (βR0)

H2
1 (β(|x − x′′|))�x;x′′ = x2 + R0

(20)
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The modal current is finally concluded by the following expression:

�JM = −(A1
0

β

μ0
H2

1 (β|x − x′|) + A2
0

β

μ0
H2

1 (β|x − x′′|))�y (21)

Finally, the current �Je is composed of two parts �JPO and �JM ( �Je = �JPO + �JM ), and it will be used as
a single test function in MoM-GEC method.

�Je = −
((

A1
0

β

μ0
H2

1 (β|x − x′|) + A2
0

β

μ0
H2

1 (β|x − x′′|) +
2β
ωμ0

√
1
a

)
�y (22)

To avoid the singularity effect of the electric field caused by the nature of Hankel functions, the
observation point is assumed very close to the edge (cylinder axis) but remains spaced from it about
R0. Hence, this constitutes the key idea of using the cylinder radius lower than λ to model the edges
(R0 � λ). This permits to approximate the integrals by a series as shown in the following.

According to the Galerkin’s method, to compute a structure’s input impedance and distributions of
field and current, a number of projections between test and basis functions 〈gp, fm〉 must be achieved as
in the matrix B (Equation (6)). However, considering our approach, the single test function is divided
into two parts (Je = JPO + JM ). Hence, its projection on the waveguide’s basis functions leads to
obtaining the two integrals in the following:

〈Je, fm〉 = 〈JM , fm〉 + 〈JPO, fm〉 =
∫ x2

x1

fmJMdx +
∫ x2

x1

fmJPOdx (23)

The projection of JPO on sinusoidal basis functions provides a simple integral that can be
analytically calculated. However, the edges of metal are governed by modal current JM described
by Hankel functions. Their projection on sinusoidal waveguide’s modes leads to obtain an integral that
can not be analytically solved. Consequently, this integral calculation is solved numerically using the
rectangle method (midpoint method) as expressed in the follows:∫ b

a
f(x)dx =

b − a

N

N∑
i=1

f(xi) (24)

In this problem f(x) is given by:

f(x) =

√
2
a
cos(

mπx

w
)(−(A1

0

β

μ0
H2

1 (β|x − x′|) + A2
0

β

μ0
H2

1 (β|x − x′′|))) (25)
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Figure 4. Study of input impedances convergence. Input impedances versus frequency for various used
modal basis functions number. (a) Structure 1 (only one microstrip). (b) Structure 2 (two microstrips).
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3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. Convergence Study

In this problem, there is only one test function, so the convergence study is done as a function of
number of used modal basis functions. Figure 4 shows the input impedance (Zin) of the two considered
structures against number of modes of waveguides in the frequency range [0,1–15 GHz]. It is obvious
that for all structures, the Zin’s convergence is obtained for 100 modes of waveguides. We note that
the convergence is rapidly attained compared to cases using sinusoidal or triangular test functions.

This conforms with the law ( P
N < Metal Surface

Total Surface ) [21, 25] in a domain of discontinuity, where P is test
functions number and N is basis functions number.

3.2. Comparison between the Hybrid Approach and the MoM Method

In order to evaluate our approach, we compare, for both structures 1 and 2, input impedances, currents,
and electric fields distributions to these obtained by MoM method using sinusoidal test functions. As
a start, the input impedances of the two structures are computed for the frequency range [0.1–15 GHz]
and drawn in Figure 5.

For both structures, the obtained results by the two methods are in agreement for all frequencies.
We note that the numbers of sinusoidal test and basis functions used for MoM method are respectively
30 and 2000 for both the structures, whereas our approach consists in using only one hybrid test function
with 100 basis functions.

The convergence is quick since the number of test and basis functions are immensely reduced.
The current distributions for the two studied structures are drawn in Figure 6 and compared to

those obtained with MoM method.
A good agreement between the two methods is assured. It is also obvious that the current on edges,

approximated by Hankel functions, well satisfies boundary conditions: it is maximum on the microstrips
edges. This proves the development of the proposed test function.
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Figure 5. Input impedances of both structures (1) and (2) against frequency, obtained by hybrid
approach and compared to MoM method.

Similarly, Figure 7 shows the electric fields distributions in the two structures, 1 and 2. Like input
impedances and currents, there is a perfect accordance between the two methods with verification of
boundary conditions. In addition, the number of basis functions is reduced too, and a good accuracy
of the new hybrid approach is observed.

Let’s remind that this hybrid method which this work is based on, requires less numerical complexity
and needs less storage than the MoM, which makes it more convenient. In fact, using a single test
function, the size of manipulated matrices becomes 1 × 1 instead of 30 × 30 in case of sinusoidal test
functions. Hence, there is no need to inverse nor to stock matrices. Then, the convergence is quickly
reached.
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Figure 6. Current distributions of both structures (1) and (2) obtained by Hybrid Approach and
compared to MoM method.
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Figure 7. Field distributions of both structures (1) and (2) obtained by hybrid approach and compared
to MoM method.

3.3. Validity of the New Approach As a Function of Cylinder Radius R0

The study of the MoM-GEC-Asymptotic method as a function of the cylinders radius R0 seems very
interesting to show the different domains of validity of the considered hybrid test function. Figure 8

shows the error η (η = 100 × ||ZinMoM| − |ZinHybrid||
|ZinMoM| ) of the input impedance of the structure 1 given

by the hybrid approach compared to that obtained by the MoM method in a frequency f = 5 GHz

versus
R0

λ
.

It is noted that the obtained curve is divided into three parts. There is only one domain when the
considered approach is able to be applied. In this domain, when 0.5 ∗ 10−3λ < R0 < 2.5 ∗ 10−3, the
relative error η < 1%, whereas in both of the other domains, when R0 is close to 0 and R0 > 2.5∗10−3λ,
the hybrid approach cannot be applied since it gives considerable error.

In order to confirm these results, the model’s validity is also studied in terms of field and current
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Figure 8. Variation of the relative error between the new hybrid approach and the MoM method with

the ratio
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λ
. Domain of validity of the proposed model against R0.

distributions. Figure 9 shows the current and field distributions in various domains of
R0

λ
.

The obtained results conform with those obtained for the input impedance in a function of
R0

λ
. The

field and current distributions behave similarly to the input impedance in the three different domains

of
R0

λ
.

In fact, when R0 is very close to 0 or R0 > 2.5 ∗ 10−3λ, the field and current distributions obtained
by the new hybrid approach are different from those obtained by MoM method. Thus, the new hybrid
test function is not adequate in these domains.

Elsewhere, when 0.5 ∗ 10−3λ < R0 < 2.5 ∗ 10−3, the obtained results show accuracy with MoM
method. Only in this domain, we can apply the proposed model.

Consequently, the application of this model is limited by the ratio
R0

λ
. This result satisfies the

proposed approach because we considered
R0

λ
� 0. However, we should avoid the values of cylinders

radius very close to 0.

4. GAIN IN CONVERGENCE AND COMPUTATIONAL TIME ACHIEVED BY THE
NEW APPROACH

Finally, to show the new approach’s advantages, we present the gain in convergence and computation
time compared to MoM method based on sinusoidal test functions. Because it is a single test function,
the calculation is much less expensive, and the convergence becomes faster than the MOM method.
Consequently, the size of manipulated matrices is enormously reduced. This leads to reducing the
numerical complexity and memory resources required by the considered problems.

The mentioned advantages of our approach are proved by Tables 1 and 2. Table 1 represents the
number of test and modal basis functions needed to obtain convergence of the input impedances in
the range of [0.1–15 GHz] (drawn in Figure 6). The required time is given by the same table. Then,
a comparison with MoM method is achieved. In fact, to calculate the considered input impedances,
using the new approach, structures 1 and 2 need respectively 17.784 s and 120.078 s instead of 215.32 s
and 1241.765 s when using MoM method with sinusoidal test functions. In addition, using the hybrid
approach for the two considered structures, only 100 waveguide’s modes are required to obtain the
convergence. However, the MoM method needs 30 test functions and 3000 waveguides modes for both
structures to obtain the convergence.

Similarly, Table 2 gives the computational time and the number of test and basis functions needed
to get the convergence for both of the structures when computing the currents and the electric fields on
discontinuities. Then, a comparison between the new approach and the MoM method is achieved.
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validity of the proposed model against R0.

Table 1. Computational time consumed by the new Hybrid Approach to compute the input impedances
in the range [0.1–15 GHz] compared to each consumed by the MoM method. (P : Number of test
functions and N : Number of basis functions).

Method
Time consumed

(Str. 1)
Time consumed

(Str. 2)
Convergence

(Str. 1)
Convergence

(Str. 2)
MoM 215.32 1241.765 P = 30 N = 3000 P = 30 N = 3000

Hybrid
Approach

17.784 120.087 P = 1 N = 100 P = 1 N = 100

Table 2. Computational time consumed by the new hybrid approach to compute field and current
distributions compared to each consumed by the MoM method. (P : Number of test functions and N :
Number of basis functions).

Method
Time consumed

(Str. 1)
Time consumed

(Str. 2)
Convergence

(Str. 1)
Convergence

(Str. 2)
MoM 24.38 132.693 P = 70 N = 10000 P = 70 N = 10000

Hybrid
Approach

3.538 25.33 P = 1 N = 100 P = 1 N = 100

Consequently, the proposed hybrid approach provides a considerable reduction and enhancement
of the processing time. Besides, the number of modes to obtain convergence is greatly reduced. These
two advantages are guaranteed by the use of a single test function. Indeed, when the number of test
functions decreases, sizes of manipulated matrices decrease too. Thus, their filling and inversion require
less time. Therefore, the computational time will be reduced exponentially.
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5. CONCLUSION

In this work, we propose an approach to approximate a single test function, which alone is able to
describe discontinuity. Under this approach, the current on a metallic strip is separated on two parts.
The first runs on the edges given by Hankel functions, and the second is the current on the inside
of metal approximated by the PO method. Then, for validation purposes, the proposed test function
is subsequently used to solve a problem of diffraction using the method of moments combined with
generalized equivalent circuits.

Obtained results, compared to MoM with sinusoidal test functions, prove very satisfactory. The
input impedance of the studied structures, currents and fields found by the two methods are in agreement
over a wide frequency range.

The new approach is of great interest and has several advantages:

� A rapid convergence, since it requires only one test function and a limited number of basis functions
compared to MoM when using sinusoidal or triangular test functions.

� A very substantial gain in computational time indicated by Tables 1 and 2.
� A significant reduction in required memory resources since the manipulated matrices are greatly

reduced in size.

A precision in computation of scattering compared to MoM:

� Accuracy in the calculation of the input impedance over a wide frequency band.
� Accuracy in the calculation of the current distribution and verification of boundary conditions.
� Accuracy in the calculation of the electric field presented on both of the proposed structures.
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