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Automatic Target Recognition Using Jet Engine Modulation
and Time-Frequency Transform

Sang-Hong Park*

Abstract—We propose a method to recognize targets by using the signature of jet engine modulation
(JEM) generated by the rotating blades in jet engines. The method combines time-frequency transform,
2-dimensional (2D) principal component analysis, and a nearest-neighbor classifier. In simulations using
five propellers composed of isotropic point scatterers, the proposed method was insensitive to signal-to-
noise SNR variation; this insensitivity was a result of the effective 2D time-frequency feature and the
noise suppression by the matched filter. In simulations using a reduced training database, the result
was most sensitive to variation in the rotation velocity of the blades.

1. INTRODUCTION

Automatic target recognition (ATR) is a technique to detect and recognize a target by using data
collected from a variety of radar sensors that use wide-band electromagnetic signals. ATR has been
widely applied to classification of enemy jets in warfare. Mainly, two features have been used for ATR:
high resolution range profile (HRRP) and inverse synthetic aperture radar image (ISAR). However,
recent research results indicate that another signature called the micro-Doppler (m-D) phenomenon [1]
has high potential for use in ATR [2].

The basic principle for m-D is that rapid mechanical rotation and vibration components of a rigid
body impose additional Doppler frequency modulation on the returned radar signal. The amount of
frequency modulation is fD = 2v/λ where v is the relative velocity of the blade to the radar line of sight
and λ the wavelength of the radar signal. For the ISAR image, this frequency modulation seriously
blurs the image in cross-range direction (Figure 1), and therefore should be removed to enable ATR
of the ISAR image. However, these noise-like components can also be exploited for ATR as a useful
signature because they represent the time-varying frequency of the target.

m-D has been applied to target recognition. High-resolution time-frequency techniques can be used
to extract the time-varying m-D signature [3]. The adaptive chirplet presentation can extract the m-D
signature from an ISAR image of an aircraft [4] and image-processing algorithms such as the Radon
transform [5] and the Hough transform (HT) [6] have been introduced to separate m-D features m-D
analysis has been used to classify the type of helicopter blade [5] or automobile wheel [7], to analyze
human gaits and wind farms [8, 9]. Recently, MD has been intensively applied to the recognition of the
ballistic missile [10, 11].

The rotation of blades in a jet produces engine modulation (JEM) [2]. Each fighter jet is equipped
with a unique engine that provides a distinct JEM signature that can used for ATR. In this paper, by
using the mathematical modeling and the obtained characteristics of JEM, we identify a target based
on time-frequency transform (TFT) and two-dimensional (2D) principle component analysis (PCA).
A training database was constructed for each of the numerous regular increments of the aspect angle
and the rotational velocity (RV). The test data were obtained at a random angle and a random RV.
Then classification was conducted using a nearest neighbor classifier and a time-frequency signature
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Figure 1. ISAR image of a Boeing747 contaminated by micro-Doppler frequency modulation.

compressed by 2D PCA. In simulations using five different propellers composed of isotropic point
scatterers, the proposed method yielded high classification results even at low SNRs due to the effective
2D time-frequency feature.

2. MATHEMATICAL MODELING AND PROPOSED METHOD

2.1. Mathematical Modeling of JEM

Consider that a propeller composed of point scatters is placed on the y-axis and rotating around it at
RV ωR. The position of scatterer s on blade b in the propeller at slow-time tp is given by[
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where [x0bs y0bs z0bs]T is the initial position of the scatterer, [0 ycen 0]T the position of the propeller
center, and φ0 the initial angle of the blade. Slow time is expressed in terms of the radar pulse repetition
interval (PRI) and is different from the fast time t for the radar signal. If the scatter is seen at an aspect
angle θ to its local (x, y) coordinate, (1) becomes[
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where [x(tp)θbs y(tp)θbs z(tp)θbs]T is the position of the scatterer at the an angle θ.
Assuming the plane wave approximation and the radar line of sight (RLOS) vector [0 1 0], the

distance to s on b at tp and θ is given by

r (tp)θbs = y (tp)θbs = x0bs cos (ωRtp + φ0) sin θ − z0bs sin (ωRtp + φ0) sin θ + ycen + y0bs cos θ

+x0bs sin (ωRtp + φ0) + z0bs cos (ωRtp + φ0) , (3)

which is a simple inner product of the RLOS vector and position vector. Then, the echo signal sR(t) of
the transmitted radar signal with frequency f becomes

sR (tp) = exp
[
j2πf

(
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c

)]
= exp

[
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]
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λ
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After baseband conversion, the frequency at t caused by the rotating scatter becomes

f(tp)θbs =
dΦ(tp)θbs

dtp
=−4π

λ
(ωR cos(ωRtp+φ0)(x0bs−z0bs sin θ)−ωR sin(ωRtp+φ0)(x0bs sin θ+z0bs)) , (5)
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which is the sum of the sine and cosine functions of ωR. Thus, a time-frequency method is more efficient
to describe the time-varying nature of JEM than is a simple FT method.

2.2. Rada Signal Modeling

For the radar signal, we assume a monostatic chirp waveform [12]

r(t) = A0e
j2π

(
f0t+ Bwt2

2τ

)
× rect

(
t

τ

)
, (6)

where r(t) is a transmitted signal at t, A0 its amplitude, f0 the start frequency, Bw the bandwidth, τ
the pulse duration, and rect = 1 if t − τ/2 ≤ t ≤ t + τ/2 and 0 otherwise. At each pulse emission time
tp, the received signal reflected from a propeller composed of B blades, each of which has S isotropic
point scatterers, becomes
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)
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where Abs is the amplitude of s in b, r(tp)bs the time delay between the radar and the scatterer at tp,
and r(tp)bs is calculated using a plane wave approximation, in which the distance to a scattering center
is that projected onto the RLOS vector. The discrete expression for (7) is
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where Ts is the sampling period for the radar, T the pulse repetition interval (PRI), m is a fast-time
index, and n a slow-time index. The time-varying frequency of the JEM is sampled at the pulse repetition
frequency (PRF) equal to 1/PRI, so high PRFs are required when sampling high JEM frequencies.

2.3. TFT and 2D PCA

TFT is used to represent the power distribution of the frequency of JEM over time. In this paper, we
use the short-time Fourier transform (STFT) which is easily implemented by the simple fast FT. The
input signal s(t) at time τ is transformed by STFT to [13]:

STFT (t, f) =
∫ ∞

−∞
s (τ) γ∗ (τ − t) e−j2πfτdτ, (9)

where f is the frequency and γ the window function. Because the sidelobe caused by the rectangular
window may distort the MD image, we used the window function at the cost of increased resolution.
In this paper, Hamming window was used. Other types of windows such as Hanning, Blackman, and
spline windows can be used depending on the TFT method. In discrete form, (9) is expressed as

STFT [p, q] =
L−1∑
k=0

s[k]γ [k − p]e−
2πqk

L , (10)

where k is the time index, L the window length, p sampled time index, and q the sampled frequency
index.

Because the TFT image contains much redundant information, we apply 2D PCA to compress the
image and to extract useful features that distinguish targets effectively. The main point of 2D PCA is
to use a simple matrix multiplication

Y = AX, (11)
to project the TFT image A onto the projection axes X, where X is a set of d eigenvectors of the image
covariance matrix given by

Gt =
1

Mtr

Mtr∑
j=1

(
Aj − Ā

)T (
Aj − Ā

)
, (12)

where Mtr is the number of the training images, and Ā is the average of the training images. Then, a
P × Q image is compressed into the P × d image (detailed procedure is in [14]).
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Figure 2. Proposed classification procedure. Figure 3. Test image clipping.

2.4. Proposed Recognition Method

The proposed method is composed a training phase and a test phase (Figure 2). In each phase, the
collected radar signal in (8) is matched-filtered for each m to yield HRRP (Figure 2). To automatically
select the range bin of JEM, we used the variation of the absolute value in the HRRP and selected
the one that yielded the highest variation. Because the initial phases of the sinusoidal curve can differ
between the training data and the test data, the test data require longer observation time to find the
maximum match than do the training data.

In the second step, STFT is conducted using the signal in the selected range bin to construct the
training and test TFT images. Due to the longer observation time for the data, the test TFT image has
a longer time axis than the training TFT image when the frequency axes are equal. In classification,
the training and test images are compressed by 2D PCA, and the test image is classified by a simple
nearest neighbor whose classification rule is as follows:

î = min
i

‖Yu − Yi‖ , (13)

where Yu is the compressed 2D PCA image of an unknown target, and Yi is that of the training image
of the ith target, and ‖ · ‖ is the Frobenius norm [15]. The Frobenius norm of a ma × na matrix A is
given by

‖A‖ =

√√√√ ma∑
i=1

na∑
j=1

|aij |2. (14)

Because of the size difference between the training and test images, the test TFT image is clipped
using a window with the training image size, shifting from the 1st column of the test image to the last
(Figure 3). For each shift a, the clipped image is divided by ‖A‖ (14) to remove the amplitude variation,
then 2D PCA is applied to derive Yua and ‖Yua − Yi‖. Finally, the minimum value of ‖Yua − Yi‖ is
used as ‖Yu − Yi‖ for the ith target.

3. SIMULATION RESULT

In simulations we used five propellers consisting of isotropic point scatterers (Figure 4). To examine
a difficult condition, targets 1 and 2 were set to have the same number of propellers with different
numbers of scatterers (Figures 4(a), (b)), as were targets 3 and 4 (Figures 4(c), (d)). For the radar
system, we used a monostatic chirp radar with pulse repetition frequency = 2kHz, center frequency =
9.15 GHz, Bw = 200 MHz, sampling frequency = 512 MHz and τp = 30 µs.
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(a) (b)

(c) (d)

(e)

Figure 4. Propeller targets used for simulation. (a) Target 1. (b) Target 2. (c) Target 3. (d) Target 4.
(e) Target 5.

The radar was placed at the origin, and each target was placed at [0 10 0] km, facing the radar, and
was observed for 10 s during the training phase and for 20 s during the test phase. The training database
was constructed by uniformly sampling the aspect angle in increments of Δθ in an angular range of
0∼70◦, over which JEM of the target is known to be seen by the radar [16]. The RV was measured in
revolutions per minute (RPM) with 1RPM = 2π rads/(60 s) = 0.0525 rad/s (see (2) for θ and ωR). For
each sampled aspect angle, the RVs were sampled in increments of ΔRPM in a range of 3∼7 RPMs.
To study the effect of the training database reduction, Δθ and ΔRPM were varied. Then 50 test data
per target were collected at a random angle and a random RPM in the ranges, yielding a total of 250
test images. To simulate the effect of noise, additive white Gaussian noise was added to the test data
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to achieve the desired signal-to-noise ratio (SNR). d for 2D PCA in (11) was set to 2 because this value
gives good classification results [17]. Classification accuracy was expressed as the correct classification
percentage

Pc = Mc/Mtr × 100%, (15)

where Mc is the number of correct classifications, and Mtr is the same as in (12).
In constructing TFT images from the sampled JEM data in a range bin with the maximum signal

variation, the 50-point Hamming window was used with an overlap of 40 points between each pair of
neighboring time samples. Each 50-point set of windowed data was zero-padded to 2048 points, and
fast FT was conducted to construct the TFI for each time shift.

The TFT images of targets at θ = 30◦ and rotating at RPM = 7 consisted of sinusoidal waves

(c)

(a) (b)

(d)

(e)

Figure 5. TFT image of JEM signal in each target (θ = 30, RPM = 7). (a) Target 1. (b) Target 2.
(c) Target 3. (d) Target 4. (e) Target 5.
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caused by the rotation of each scatterer (Figure 5). Each wave had an amplitude that corresponded to
the distance of the scatterer from the center, and phases of the waves were offset by an amount that
corresponded to the angle between pairs of blades; i.e., a constant line (amplitude 0) for the central
scatterer, and two or four additional waves offset by 180◦ (Target 1, Figure 5(a); Target 2, Figure 5(b)),
120◦ (Target 3, Figure 5(c); Target 4, Figure 5(d)), or 90◦ (Target 5, Figure 5(e)).

The simulation result for various SNRs (0∼30 dB with 10 dB increment) with Δθ = 1◦ and
ΔRPM = 1 was very stable and degraded as SNR decreased (Figure 6). However, the degree of
degradation was very small (Pc remained > 95%) because of noise suppression by the matched-filter.
The effective 2D features of the TFI image also contributed to the high Pc at low SNR. This result
proves that JEM can be very effective for ATR.

In simulations using 1 ≤ Δθ ≤ 10 in increments of 1 with SNR = 30 dB and ΔRPM = 1, the result
was more sensitive to variation of Δθ than to variation of SNR (Figure 7). Due to the reduced size of
the training database, Pc decreased as Δθ increased. Pc was 89.2% for Δθ ≥ 5◦, so Δθ should be < 5◦
to achieve Pc > 90%.

Pc was most sensitive to ΔRPM variation as it was varied from 1 to 5 with an increment 1 with
Δθ = 1◦ and SNR = 30 dB. The sharp degradation in Pc (Figure 8) was due to the scaling of the
sinusoidal curves in the TFT image. Because the sinusoidal curves in the TFT image can be scaled
or expanded depending on the RPM, the result was most affected by RPM. The simulations suggest
that ΔRPM should be < 3 (50% of the total RPM range) to achieve Pc > 90%. However this value of
ΔRPM is not absolute because at very high RPMs, this small ΔRPM would not considerably affect the

Figure 6. Percent correct identification vs.
SNRs.

Figure 7. Percent correct identification vs. Δθ.

Figure 8. Percent correct identification vs. ΔRPM .
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shape of a TFI image; further investigations using several RPM ranges should be conducted to define
this range more definitively.

4. CONCLUSION

We proposed an efficient method composed of range compression, TFT, 2D PCA and the nearest
neighbor classifier to recognize targets using their JEM signatures. The time-varying frequency of JEM
signal due to the rotation of the propeller was proved by the signal model, and high classification
accuracy was obtained in simulations using five propeller models that consisted of isotropic scatterers.
The simulation result was insensitive to SNR variation and was sensitive to Δθ and ΔRPM ; the result
was more dependent on ΔRPM than on Δθ due to the variation of sinusoidal curves in the TFT image.
For ΔRPM , further investigations are required using several RPM ranges.

This paper provides strong evidence that the JEM signature can be applied to ATR to identify jets.
However, it should not be used alone, but used with other features such as 2D ISAR image. When the
aircraft closes directly toward the radar, ISAR image cannot provide useful features for ATR because
of the high elevation angle [18]. In this case, the JEM signal collected from the observed propeller will
significantly improve the classification result. Our next research will focus on fusion of the two features
when a jet moves directly toward the radar.
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