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Optimization of the Method of Auxiliary Sources for 3D Scattering
Problems by Using Generalized Impedance Boundary

Conditions and Level Set Technique

Afif Bouzidi* and Taoufik Aguili

Abstract—The method of auxiliary sources (MAS) presents a promising alternative to methods based
on discretization, currently used for solving scattering problems. The optimal choice of the auxiliary
surface and the proper allocation of radiation centers play a crucial role in ensuring accuracy and
stability of the MAS. This approach is considered an open issue and can be investigated numerically.
In this paper, we propose a systematic and fully automated technique leading to determine the optimal
parameters of the MAS for arbitrary shaped obstacles (partially or fully penetrable) for scattering
problems.

1. INTRODUCTION

Solving scattering problems with an optimal compromise between accuracy and computational resources
has been a requirement of many engineering fields such as inverse problems, microwave imaging,
Radar cross section computing and EMC. Numerical techniques based on rigorous formulation like
the method of moments (MOM), TLM or FDTD provide accurate results, however in many cases, the
computational cost is assessed as prohibitive. The mesh-free methods like the method of auxiliary
sources state an auspicious alternative to these techniques. The MAS is a numerical method which was
originally developed by a Georgian research group for solving scattering and radiation electromagnetic
problems [1–3]. The fundamental idea of the MAS is the interchange of boundary conditions and
differential equation, which excludes the singularities of the integral equation by shifting the auxiliary
sources contour relative to integration one [4]. The scattered field is expanded in terms of the
fundamental solutions of Helmholtz-equation [5]. The boundary value problem is solved by imposing
the boundary condition at the scattering surface in the same manner as the standard surface integral
methods. Previous researches [6–8] have shown that the appropriate choice of the auxiliary surface and
the location of radiation centers is decisive to achieve efficiency of the MAS. The optimal choice of the
MAS parameters (auxiliary surface, radiation centers) remains an open issue probed by several scientific
manuscripts [9–11, 20, 25]. The distribution of the auxiliary sources strongly affects the accuracy and
the convergence of the numerical solution, it is shown that to ensure the MAS efficiency, the auxiliary
surface should enclose the scattered field singularities as tightly as possible [12, 13, 26]. The standard
placement of the auxiliary sources is based on empirical conventions and on the caustic hypothesis. As a
result, the optimal distribution of the auxiliary sources, for a predefined accuracy is achieved by try-and-
error processes or by determining the corresponding caustic surfaces [8, 21–24]. These approaches are
analytically feasible only when treating problems with canonical geometries (sphere, ellipsoid or infinite
plan . . . ). The localization of scattered field singularities for arbitrary-shaped objects is the prevailing
breakdown point of the MAS. The salient feature of the proposed technique is the replacement of
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laborious trial and error stage of the standard MAS by a systematic optimization procedure. The
outline of the paper is as follows. First we go over scattering problems with impedance boundary
conditions and we present the formulation of the MAS also we discuss the impact of the singularities
localization on the efficiency of the MAS. Secondly we review the level set method and we adapt it to
our problem. After that we set up a framework to find optimum MAS parameters by combining surface
impedance boundary conditions and level set technique. Finally, we report some numerical experiments
to clearly demonstrate the accuracy and the robustness of the optimized MAS compared to the standard
one.

2. AUXILIARY SOURCES METHOD FORMULATION

Let consider Ω an open subset of R
3, occupied by a medium with the permittivity ε, permeability μ and

conductivity σ. Ω represents the obstacle, and a Generalized Impedance Boundary Condition is held on
its surface Γ. Ω is illuminated by a linearly polarized electromagnetic plane wave �Ei = �E0e

−j�k·�r. The
propagation constant, permittivity, permeability and intrinsic impedance of the surrounding medium
are k, ε0, μ0 and Z0 respectively. A time factor e−jωt has been assumed and suppressed.

�E denotes the total field, sum of incident and scattered field. The governing equations for �E are⎧⎪⎨
⎪⎩

� × �E + jωμ0
�H = 0 r ∈ R

3 \ Ω
� × �H − jωε0 �E = 0 r ∈ R

3 \ Ω(
�n× �E

)
× �n = Zδ,m

(
�n× �H

)
r ∈ Γ

(1)

where �n denotes the unit normal to Γ oriented to the exterior of Ω.
Zδ,m is the local impedance operator of order m that relates the tangential traces of the electric

and magnetic fields. The order m increases with the desired order of accuracy. The surface impedance
was presented to model objects with strong skin depth. The main idea behind this concept is replacing
the obstacles volume by an effective boundary condition applied to the interface obstacle/dielectric.
Therefore, the interior field distribution can be omitted. We will focus only on exterior field. Rytov has
developed a general method to construct low and high order surface impedance boundary conditions
(SIBC) [14]. By using perturbation techniques, He revealed that the SIBC is an asymptotic expansion
in terms of the skin depth δ. Recently, Antoine-Barucq-Vernhet [15] proposed a new derivation of SIBC
based on the pseudo-differential operators leading to the Generalized Impedance Boundary Conditions
(GIBCs) that can be used to model partially or totally penetrable obstacles.

The zero order expansion represents perfect electric conductors, where no electromagnetic field
could penetrate

Zδ,0 = 0 (2)

The first expansion order represents Leontovich impedance, where the electromagnetic field variation
parallel to the surface is assumed to be small compared to the variation perpendicular to the surface [15]

Zδ,1 =

(√
2

2
− j

√
2

2

)
δ (3)

The second expansion order is Mitzner impedance, take into consideration the radii of curvature [15]

Zδ,2 = Zδ,1 + jδ2(C −H) (4)

where C is the curvature tensor andH = hIΓ. h is the mean curvature of Γ, IΓ is the projection operator
on the tangent plane to Γ. The third expansion order is Rytov impedance, take into consideration the
variations of electromagnetic fields on the surface [15]

Zδ,3 = Zδ,2 −
(√

2
4

+ j

√
2

4

)
δ3
[
C2 −H2 + (εμ)ω2 + ∇Γ divΓ +

−−→
curlΓ curlΓ

]
(5)

We denote respectively by ∇Γ and divΓ the surface gradient and the surface divergence on Γ. We then
define the surface curl of a tangential vector �V and the surface vector curl of a scalar function u defined
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on Γ by
−−→
curlΓ u = (∇Γ u) × �n (6)

curlΓ �V = divΓ

(
�V × �n

)
(7)

Given the linearity of Zδ,m, the last equation in (1) can be written in the following form

L
(
�Es
)

= �f(r), ∀ r ∈ Γ (8)

where
L
(
�Es
)

= �n×
(
�n× �Es

)
+

j

ωμ0
Zδ,m

(
�n×

(
∇× �Es

))
(9)

and
�f(r) = −�n×

(
�n× �Ei

)
− j

ωμ0
Zδ,m

(
�n×

(
∇× �Ei

))
(10)

According to the auxiliary sources method, let S designate the auxiliary surface, M1≤i≤n the radiation
centers located at points r1≤i≤n as shown in Figure 1 and �U(|�ri − �r|)1≤i≤n the Helmholtz equation
solution associated with elementary sources.

�U (|�ri − �r|) =
e−jk|�ri−�r|

4π |�ri − �r| (�ri − �r) (11)

Kupradze [5] proved that the set of functions �U(|�ri − �r|)1≤i≤∞ is complete and linearly independent
on the surface Γ. So, there are Coefficients a1≤i≤n such that, using the n first functions of the
aforementioned system, the scattered electric field can be approximated as follows.

�Es ≈
n∑

i=1

ai
�U (|�ri − �r|) (12)

which will approach exact solution as n→ ∞.
The scattered field satisfies the Sommerfeld radiation condition

lim
r→∞

(√
μ0

ε0
�Hs × �r

r
− �Es

)
= 0 (13)

It has been proved that any scattered field that transfers energy to infinity must have areas of irregular
sources within finite volume, otherwise the scattered field is null everywhere [16]. So, it is obvious that
�Es certainly has irregular domains that could be in form of isolated points, lines or surfaces. S should
enclose the singularities as tightly as possible. Ignoring this point leads to a weakening of convergence
and even diverging of the Equation (12) when n increases. The expansion Coefficients a1≤i≤n are
calculated by imposing the boundary condition at Γ. Let �G(|�ri − �r|) defined by

�G (|�ri − �r|) = L
(
�U (|�ri − �r|)

)
(14)

Figure 1. MAS geometry.
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The boundary conditions (8) can be written as:
n∑

i=1

ai
�G (|�ri − �r|) = �f(r), ∀ r ∈ Γ (15)

By matching the boundary condition at m collocation points r1≤p≤m the problem can be formulated as
follows: Find a1≤i≤n such that

n∑
i=1

ai
�G (|�ri − �rp|) = �f(rp), 1 ≤ p ≤ m (16)

The stability and size of the obtained algebraic system depend on the proper choice of auxiliary
parameters that are the shape of the auxiliary surface S and the distribution of the radiation centers
r1≤i≤n. The necessary number of terms of the series (12) strongly depends on the relative distance
between the real surface and the auxiliary surface S on which the auxiliary sources are placed. When
the auxiliary surface moves away from the real one the number of terms in (12) decreases strongly
and consequently, the computational cost decreases but it should be noted that if the scattered field
singularities appear outside the auxiliary surface, the computing process might diverge. Therefore a
good description of singularities is an essential part of the method to carry out the optimal solution.

3. THE LEVEL SET METHOD

3.1. An Overview of Level Set Method

The level set method was introduced by Osher and Sethian [16] in the field of fluid dynamics, to trace
interfaces between different phases of fluid flows. Later, it has been used for many different kinds of
physical problems, see [17–19]. The main idea behind this method is to represent the interface at each
time t as the zero level set of a function ϕ. Thus, given a surface S in R

3 bounding an open region
D ⊂ Ω, we wish to study its motion under a velocity field v. The level set idea consists in defining
a smooth function ϕ(r, t) : R

3 × R
+ → R to implicitly represent the interface S as the set of points

r ∈ R
3 where ϕ(r, t) vanishes. That is S = {r ∈ R

3/ϕ(r, t) = 0}. The function ϕ is called the level set
function, and it has the following properties

ϕ < 0 for x ∈ D

ϕ > 0 for x /∈ D

ϕ = 0 for x ∈ S

(17)

This concept illustrated by Figure 2.
The evolution of the implicit function ϕ can be described by the following partial differential

equation, known as Hamilton-Jacobi equation [17]

∂ϕ

∂t
+ ‖∇ϕ‖ v = 0, ϕ(r, 0) = ϕ0 (18)

where, ∂
∂t denotes a partial derivative to the temporal variable t, and ∇ denotes the gradient operator.

The function ϕ0 embeds the initial position of the moving surface S.

3.2. The Level Set Dictionary

Once the level set function ϕ is defined, most of the geometrical quantities of the surface S can be
represented in terms of the function ϕ [17]

The normal vector is given by:

�n =
∇ϕ
‖∇ϕ‖ (19)

The mean curvature:
κ = ∇ · �n = ∇ · ∇ϕ

‖∇ϕ‖ (20)
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The area of S
L(ϕ) =

∫
Ω
δ(ϕ) ‖∇ϕ‖ dS (21)

where δ(ϕ) denotes the Dirac function

δ(ϕ) =
{

1 if ϕ = 0
0 if ϕ �= 0 (22)

Moreover the surface integral of a function f along S can be written in function of ϕ∫
S
f(r)dS =

∫
Ω
f(r)δ(ϕ) ‖∇ϕ‖ dr (23)

Figure 2. Level set function. Figure 3. Level-set representation of the
auxiliary surface.

4. OPTIMIZATION METHOD

The algebraic system (16) can be written in the following form∫
S
A(r′)�G

(∣∣r′ − xp

∣∣) dS = �f(xp) 1 ≤ p ≤ m (24)

where

A(r′) =
n∑

i=1

aiδ
(
ri − r′

)
(25)

δ
(
ri − r′

)
=
{

1 if r′ = ri
0 if r′ �= ri

(26)

Let consider D an open subset of Ω enclosed by the auxiliary surface S as shown in Figure 3.
We define ϕ as a level set function of S by

ϕ(r, t) =
{ −distance (r, S) if r ∈ D

distance (r, S) if r /∈ D
(27)

S divides the domain D into two parts, and then the level set function ϕ is negative inside and positive
outside.

S =
{
r ∈ R

3, ϕ(r, t) = 0
}

(28)

By using the property (23) of the level set method, the Equation (24) can be written as∫
Ω
A(r′)�G

(∣∣r′ − xp

∣∣) δ(ϕ) ‖∇ϕ‖ dr′ = �f(xp) 1 ≤ p ≤ m (29)
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The problem can be formulated as an optimization one(
a∗1≤k≤n, ϕ

∗) = arg min
ak ,ϕ

J(A,ϕ) (30)

Find amplitudes a∗1≤k≤n and level set function ϕ∗ that minimize the cost functional J .

J(A,ϕ) =
1
m

m∑
p=1

∥∥∥∥
∫

Ω
A(r′)�G

(∣∣r′ − xp

∣∣) δ(ϕ) ‖∇ϕ‖ dr′ − �f(xp)
∥∥∥∥

2

(31)

The optimal distribution of the radiation centers r1≤k≤n strongly depends on the area of the
auxiliary surface. By shifting the sources into the conducting body the scattered field function becomes
more smooth on the surface of the body and the fulfillment of the boundary conditions in the region
between collocation points is improved. However, the shift of the auxiliary surface is restricted by the
location of the scattered field singularities. So, the area of the auxiliary surface should be added to the
cost functional J as regularisation term. Therefore, we force the algorithm to search the best-suited
auxiliary surface that encloses the singularities.

J(A,ϕ) =
1
m

m∑
p=1

∥∥∥∥
∫

Ω
A(r′)�G

(∣∣r′ − xp

∣∣) δ(ϕ) ‖∇ϕ‖ dr′ − �f(xp)
∥∥∥∥

2

+ βL(ϕ) (32)

where β is a real-valued regularization coefficient.

4.1. Calculation of the Auxiliary Surface

The evolution of ϕ is described by the following Hamilton-Jacobi equation.

∂ϕ

∂t
+ ‖∇ϕ‖ v = 0, ϕ(r, 0) = ϕ0 (33)

in this differential form t does not represent the actual time, but rather some optimization steps. We
want to choose an evolution law v such ∂J

∂t < 0, J will decrease with the artificial time evolution during
a sufficient small time interval [0, τ ]. ∂J

∂t is given by: (refer to Appendix A for the proof)

∂J

∂t
=
∫

S
v

[
ακ+

∂α

∂�n

]
dS (34)

where �n denotes the unit normal to the auxiliary surface S and

α =

⎡
⎣β +

1
m

m∑
p=1

real
(〈

2
(∫

S
A(r′)�G

(∣∣r′ − rp
∣∣) dS − �f(rp)

)
, A(r)�G(|r − rp|)

〉
C3

)⎤⎦ (35)

An obvious selection for v is

v = −
(
ακ+

∂α

∂�n

)
(36)

After substituting v into (33), differential equation can be solved numerically using the upwind scheme.

4.2. Calculation of the Radiation Center Positions

Suppose ϕ is perturbed by a small variation δϕ as shown in Figure 4. Let δr be the resulting variation
of the point r.

By taking the variations of Equation (33) between t = 0 and t = τ , we get

δϕ + vτ ‖∇ϕ‖ = 0 (37)

We have
vτ = δr (38)
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We find the relation between δr and δϕ.

δr = − δϕ

‖∇ϕ‖ (39)

So, the radiations center positions r1≤i≤n are updated as follows.

ri(t+ τ) = ri(t) − δϕ

‖∇ϕ‖ (40)

4.3. Calculation of the Auxiliary Sources’ Amplitudes

To find the optimal auxiliary sources’ amplitudes, we should update a1≤i≤n by following the descent
direction of the cost function J . The descent direction is given by the negative derivative of J with
respect to a1≤i≤n. So, we just need to compute ∂J

∂ai
for 1 ≤ i ≤ n and updating ai as follows. Choose

the step size α > 0

ai(t+ τ) = ai(t) − α
∂J

∂ai
(41)

∂J
∂ai

is given by: (refer to Appendix B for the proof)

∂J

∂ai
=

1
m

m∑
p=1

real

(〈
2

(
n∑

k=1

ak
�G (|rk − rp|) − �f(rp)

)
, �G (|ri − rp|)

〉
C3

)
(42)

4.4. Numerical Scheme

To summarize we can list the optimization steps as below
1- Choose the initial level set function ϕ0 that represents the initial auxiliary surface S0.
2- Choose the initial positions and amplitudes of the radiation centers (r01≤i≤n, a

0
1≤i≤n).

3- For j ≥ 1

- Choose the regularization coefficient β and calculate v

v = −
(
ακ+

∂α

∂�n

)
(43)

Figure 4. Deformation of shapes by the level set
formulation.

Figure 5. Singularities location of an elliptical
cylinder.
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- Determine the level set function ϕj by resolving the Hmilton-Jaccobi equation in the time interval
[0, τ ] with the initial condition ϕ = ϕj−1

∂ϕ

∂t
+ ‖∇ϕ‖ v = 0 (44)

- update rj
i

rj
i = rj−1

i − δϕ

‖∇ϕ‖ (45)

- Choose the step size αj and update aj
i

aj
i = aj−1

i − αj ∂J

∂ai
(46)

- Go to the next iteration if not converged.

The error of the boundary condition is used for convergence criterion

ep, 1≤p≤m =

∥∥∥∫S A(r′)�G (|r′ − xp|) dS − �f(xp)
∥∥∥∥∥∥�f(xp)

∥∥∥ (47)

Iterations continue until the stop criterion will be satisfied, typically when the errors ep, 1≤p≤m exhibit,
between two iterations, become smaller than a predefined threshold. The proposed optimization
procedure provides three degrees of freedom (auxiliary surface, positions and amplitudes of the radiation
centers) to achieve any boundary condition error, which is a great advantage over classical MAS
implementations. Indeed, in the classical MAS implementations, the auxiliary surface and the radiation
center positions are fixed beforehand. So, the accuracy is not automatically adjustable, the only degree
of freedom is the auxiliary sources’ amplitudes. Generally, The standard MAS is based on empirical
rules and on the caustic concept leading to the following recommendation [8]: The distance d between
the physical surface Γ and the auxillary surface S should satisfy the condition d < Rmin, where Rmin is
the minimal radius of positive curvature of the surface Γ. Several numerical methods have been proposed
to overcome these constraints for the case of two-dimensional scattering problems, such as [9, 10]. By
using Level set technique, the proposed method shows a great potential to determine the optimal MAS
parameters that satisfy any accuracy.

5. NUMERICAL EXPERIMENTS

To complete this study we present two numerical examples. The aim of the first one is to show the ability
of the proposed scheme to locate scattered field singularities. The second example is about radar cross
section computing, we compare the accuracy and the computational cost obtained by the optimized
MAS and those obtained by the standard MAS implementation. We consider perfectly conducting
obstacles coated by a thin dielectric (ε = 2) layer of thickness h = 0.1.

5.1. Singularities Localization of an Elliptical Cylinder

We consider an elliptical cylinder illuminated by an incident plane wave at 100 MHz. The scattered
field has phase centers located in the ellipsoid foci’s region [8]. The Figure 5 shows the auxiliary surface
evolution at 0, 23, 50 and 70 iterations. The angle α (Figures 5 and 6) is used to indicate the positions
of the elementary sources on the auxiliary surface.

At the iteration 70, where the boundary condition error does not exceed 1%, the distribution of
the sources’ amplitudes for different angle θ is shown in Figure 6. It is seen that for particular angles
α ∈ {0, π, 2π} the sharpest amplitude is observed. These angles correspond to the positions of foci F1

and F2. The obtained surface passes through the foci’s region, which is consistent with the analytic
result.
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Figure 6. The distribution of the auxiliary sources amplitudes.

Figure 7. Comparison between the bistatic RCS values obtained from the optimized MAS and those
obtained by the standard MAS implementation.

5.2. Accuracy and Computational Cost Evaluation

We present numerical experiments for some canonical geometries: coated dumbbell, coated ellipsoid and
coated smoothed cuboid. All these obstacles are illuminated by an incident plane wave at f = 100 MHz.
Figure 7 shows a comparison between the bistatic RCS values obtained from the optimized MAS and
those obtained by the standard implementation, the result from FEKO electromagnetic simulation
software is taken as reference. Tables 1 and 2 show comparison between the optimized and the standard
MAS method, the following criteria are taken into account: achieved accuracy (error on the boundary
condition), number of auxiliary sources and number of collocation points.

As a conclusion of these numerical experiments, it appears clearly that the optimized method is
able to achieve high accuracy with less implementation cost than the standard MAS implementation.
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Table 1. Results obtained by the standard MAS implementation.

Standard MAS
Accuracy Auxiliary sources Collocation points

Coated smoothed cuboid 5% 300 300
Coated dumbbell 7% 400 400
Coated ellipsoid 5% 300 300

Table 2. Results obtained by the optimized MAS.

Optimized MAS
Accuracy Auxiliary sources Collocation points

Coated smoothed cuboid 0.1% 50 300
Coated dumbbell 0.2% 90 400
Coated ellipsoid 0.1% 60 300

6. CONCLUSION

We have reported a numerical framework for determining the optimal MAS parameters for three-
dimensional scattering problems by combining the level set technique and the Generalized Impedance
Boundary Conditions. The comparison between the radar cross section values obtained from the
proposed framework and those obtained from the standard MAS implementation shows that the
proposed method can achieve high accuracy with less implementation cost.

APPENDIX A.

Let V the real Hilbert space of measurable functions over Ω. the inner product 〈., .〉 is defined by

∀(φ,ψ) ∈ V 2 〈φ,ψ〉v =
∫

Ω
φψdΩ (A1)

We define the functions f , g and F as follows
f : V �→ R

X →
∥∥∥∥
∫

Ω
�u(r′)X(r′)dΩ − �a

∥∥∥∥
2

C3

+ β

∫
Ω
X(r′)dΩ

(A2)

g : V �→ V

ϕ→ ‖∇ϕ‖
C3 δ(ϕ)

(A3)

F is the composition of functions f and g
F : V �→ R

ϕ→ f ◦ g(ϕ)
(A4)

where �u(r′) is a vector field of C
3, �a a constant vector, β a positive coefficient, and ‖·‖

C3 the usual norm
of C

3. By applying the chain’s rule, we get
∂F

∂ϕ
=

∂f

∂X
(g) ◦ ∂g

∂ϕ
(A5)

By applying the definition of the Gateaux differential we get
∂f

∂X
: V �→ R

h→ real
(〈

2
(∫

Ω
�u(r′)X(r′)dΩ − �a

)
,

∫
Ω
�u(r′′)hdΩ

〉
C3

)
+ β

∫
Ω
hdΩ

(A6)
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and
∂g

∂ϕ
: V �→ V

h→ ‖∇ϕ‖ δ′(ϕ) + δ(ϕ)
〈 �ϕ
‖∇ϕ‖ ,∇h

〉 (A7)

∂f
∂X can be written in the following form

∂f

∂X
: V �→ R

h→
∫

Ω
α(X)hdΩ

(A8)

where

α(X) =
[
β + real

(〈
2
(∫

Ω
�u(r′)X(r′)dΩ − �a

)
, �u(r′′)

〉
C3

)]
(A9)

So,
∂F

∂ϕ
: V �→ R

h→
∫

Ω
α(X)

[
‖∇ϕ‖ δ′(ϕ) + δ(ϕ)

〈 ∇ϕ
‖∇ϕ‖ ,∇h

〉]
dΩ

(A10)

We deduce
∂F

∂t
=
∂F

∂ϕ
◦ ∂ϕ
∂t

=
∫

Ω
α

[
‖∇ϕ‖ δ′(ϕ)

∂ϕ

∂t
+ δ(ϕ)

〈 ∇ϕ
‖∇ϕ‖ , ∇

(
∂ϕ

∂t

)〉]
dΩ (A11)

where

α =
[
β + real

(〈
2
(∫

S
�u(r′)dS − �a

)
, �u(r′′)

〉
C3

)]
(A12)

By using (35)
∂F

∂t
= −

∫
Ω
α

[
‖∇ϕ‖ ‖∇ϕ‖ vδ′(ϕ) + δ(ϕ)

〈 ∇ϕ
‖∇ϕ‖ , ∇(v ‖∇ϕ‖)

〉]
dΩ (A13)

We have 〈 ∇ϕ
‖∇ϕ‖ , ∇(v ‖∇ϕ‖)

〉
=
〈 ∇ϕ
‖∇ϕ‖ , ‖∇ϕ‖∇v + v∇(‖∇ϕ‖)

〉
(A14)

The evolution of ϕ verify the constant normal extension〈 ∇ϕ
‖∇ϕ‖ , ∇v

〉
= 〈�n, ∇v〉 = 0 (A15)

Also we have δ′(ϕ)∇ϕ = ∇(δ(ϕ)). So,
∂F

∂t
= −

∫
Ω
α

[
〈∇(δ(ϕ)), v∇ϕ〉 + δ(ϕ)

〈 ∇ϕ
‖∇ϕ‖ , v∇(‖∇ϕ‖)

〉]
dΩ (A16)

By using Gauss-Theorem
∂F

∂t
=
∫

Ω
δ(ϕ)

[
div
(
αv ‖∇ϕ‖ ∇ϕ

‖∇ϕ‖
)
− αv

〈 ∇ϕ
‖∇ϕ‖ , ∇ (‖∇ϕ‖)

〉]
dΩ (A17)

So,
∂F

∂t
=
∫

Ω
δ(ϕ) ‖∇ϕ‖ v

[
αdiv

( ∇ϕ
‖∇ϕ‖

)
+
〈 ∇ϕ
‖∇ϕ‖ , ∇α

〉]
dΩ (A18)

Finally, we get
∂F

∂t
=
∫

S
v

[
ακ+

∂α

∂�n

]
dS (A19)
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APPENDIX B.

Let V the real Hilbert space of measurable functions over Ω. the inner product 〈., .〉 is defined by

∀ (φ,ψ) ∈ V 2 〈φ,ψ〉v =
∫

Ω
φψdΩ (B1)

We define the functions f , g and F as follows

f : V �→ R

X →
∥∥∥∥
∫

Ω
�u(r′)X(r′)dΩ − �a

∥∥∥∥
2

C3

(B2)

g : V �→ V

ϕ→ θδ(r − r0)
(B3)

F is the composition of functions f and g

F : V �→ R

ϕ→ f ◦ g(ϕ)
(B4)

where �u(r′) a vector field of C
3, �a a constant vector, (θ, r0) ∈ R

2 and ‖·‖
C3 the usual norm of C

3. By
applying the chain’s rule, we get ∂F

∂θ = ∂f
∂X (g)◦ ∂g

∂θ . By applying the definition of the Gateaux differential
we get

∂f

∂X
: V �→ R

h→ real
(〈

2
(∫

Ω
�u(r′)X(r′)dΩ − �a

)
,

∫
Ω
�u(r′′)hdΩ

〉
C3

) (B5)

∂g

∂θ
: V �→ V

h→ δ(r − r0)
(B6)

So,
∂F

∂θ
: V �→ R

h→ real (〈2 (θ�u(r0) − �a) , �u(r0)〉C3)
(B7)
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