
Progress In Electromagnetics Research B, Vol. 61, 211–224, 2014

Amplitude-Aided CPHD Filter for Multitarget Tracking
in Infrared Images

Changzhen Qiu*, Zhiyong Zhang, Huanzhang Lu, and Yabei Wu

Abstract—The cardinalized probability hypothesis density (CPHD) filter is a powerful tool for
multitarget tracking (MTT). However, conventional CPHD filter discriminates targets from clutter
only via the motion information, which is not reasonable in the situation of dense clutter. In the
tracking, the amplitude of target returns is usually stronger than those coming from clutter, so the
amplitude information can be used to enhance the discrimination between targets and clutter. Based
on this idea, this paper proposes an amplitude-aided CPHD filter for the MTT in distant infrared
(IR) surveillance. First, we model the amplitude of targets and clutter in IR scenarios respectively.
For distant IR scenarios, the point spread function (PSF) is used to model the imaging of the point
target. The center intensity of the PSF is unknown in practice, and the maximum likelihood estimation
(MLE) method is adopted to estimate the target center intensity via the intensities of the latest target
detections. Then a likelihood function for MTT is established, and using this likelihood function, a new
CPHD recursion is derived, which can distinguish different targets and clutter by the correspondence
weight. In the implementation, we adopt the Gaussian mixture (GM) approach to implement the
amplitude-aided CPHD filter to achieve efficient performance. In numerical experiments, the results
show that the proposed method attains a significant improvement in performance over that only using
location measurements.

1. INTRODUCTION

Infrared (IR) sensor has several outstanding advantages, high sensitivity, day and night working, and
far working range. So it plays an important role in distant-target surveillance applications, especially
in military community. For instances, the IR search and track (IRST) systems [1] are mounted on the
military combat equipments and are used to search and lock the aircrafts in the surveillance air and
provide fire control for the weapon systems. In the space-based IR system (SBIRS) [2], the IR sensors
are used to search aircrafts and missiles in the space for early strategic warning. The IR sensor can also
be used for the guidance of ballistic missile [3] by centering the target in the field of view (FOV).

In the information process of IR images, the extraction of high-level information mainly relies on
the analysis of target trajectories, which are generated via multitarget tracking (MTT) techniques.
MTT aims to simultaneously estimate the varying number of targets and their states from a sequence
of observation sets. In the situation of large sensor-target distance, targets appear to be dim points in
IR image, which means that a target occupies only a few pixels and lacks information of texture and
spatial distribution. The signals of point targets will change according to the sensor-target distance,
and they tend to be deteriorated by complex environment and noise. To address the MTT problems
for dim point targets, track-before-detect (TBD) methods have been proposed to improve the tracking
performance, especially under low signal-to-noise ratio (SNR) conditions [4, 5]. The TBD methods use
whole raw image data as input data for tacking. The advantage is that it can make use of all information
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contained in the images, but it is at the cost of drastic complexity increase. The TBD algorithms are
too expensive for IR applications, in which the pixels amount is extraordinary large (e.g., 256 pix ×
256 pix array). In scenarios of strong SNR, detect-before-track (DBT) methods are more tractable and
real-time approaches. In the DBT scheme, a set of detections are firstly produced from the raw sensor
returns, and then the detections are fed into the tracking algorithms. The detection step compresses
the information of the image into a finite set of points, which it is efficient in terms of computational
requirements [4].

Even under the assumption of strong SNR, the detection results in IR image still contain uncertain
clutter and misdetections. The main reason is device system noise and environment surrounding, which
are collectively referred as background noise in this paper. Involving the imperfect detections, a critical
problem arising is that the associations between the detections and tracks are uncertain, i.e., it is not
clear a priori which detection corresponds to the interested target or clutter. Data association is a
burdensome problem especially under uncertain clutter and misdetections, and it is the main reason
that leads to the complexity of MTT.

The common idea of traditional approaches is dividing the MTT problem into two sub-problems,
data association and state estimation, i.e., firstly determines the association between detections and
target tracks, and then estimates the state of each target separately. The data association methods are
the core problems in traditional MTT. The most well-known data association methods include joint
probabilistic data association (JPDA) [6] and multiple hypotheses tracking (MHT) [7]. The methods
that have been developed for MTT in IR images include nearest neighbor (NN) [8], neural-network-based
method [9], probabilistic multiple hypothesis tracking (PMHT) method [10, 11], and Markov random
field (MRF) method [12]. However, computational complexity and associating performance are two
conflicted aspects, so we do not expect to find data association algorithms that are efficient and exact.

Recently, finite sets statistics (FISST) is proposed by Mahler as a new tool for MTT [13].
FISST describes multitarget state by random finite set (RFS), and MTT can be unified to Bayesian
framework and avoids the cumbersome data association. In the realization of Bayesian multitarget
recursion, the sub-optimal solutions with first-order moment and second-order moment approximate
is derived, resulting in probability hypothesis density (PHD) filtering [13] and cardinalized PHD
(CPHD) filtering [14]. The PHD filtering propagates intensity of multitarget state, while the CPHD
filtering propagates both intensity and cardinality distribution. The CPHD filter obtains more accurate
estimations, and it has advantage in the situations of large target number and high clutter density, but
it is at the cost of complexity increase which is cubic complexity in the number of measurements [15].
In addition to the PHD/CPHD filters, the multitarget multi-Bernoulli (MeMBer) filter proposed
by Mahler [16] is an alternative approximation to the Bayesian multitarget recursion. Unlike
the PHD/CPHD recursions, which propagate moments and cardinality distributions, the MeMBer
recursion propagates the multitarget posterior density approximately. In the original MeMBer filtering,
cardinality bias occurs in the data update step without considering cardinality distribution. Vo et al.
developed a cardinality-balanced MeMBer (CBMeMBer) filter [17], which can reduce the cardinality
bias by propagating a parameterized approximation to the posterior cardinality distribution. But the
approximation of CBMeMBer filter is reasonable when clutter is not too dense, and the probability of
detection is high.

Both traditional and FISST-based algorithms suppress the disturbance of clutter via target motion
model in their original formulations. They are reasonable when the targets and clutter are sparse and
well-separated. But in the situation of large target number and dense clutter, this method deteriorates
and often leads to false tracks. Taking into account that the target returns are usually stronger than
those of clutter, the amplitude information can be used to enhance the discrimination of the targets
and clutter. The idea of using amplitude for target tracking has been proposed in the literature.
For examples, Lerro and Bar-Shalom [18] proposed to use amplitude likelihood for probabilistic data
association (PDA) and assign the measurements more similar to the target amplitude with larger
association probability, so it can track single target more robust in dense clutter. Brekke et al. [19, 20]
proposed a new conservative amplitude likelihood for the PDA filter with improved robustness, which
attempted to detect and track moderately observable targets such as small boats or human divers in
environments. Van Keuk [21] used amplitude information in MHT to improve the performance of MTT.
For MTT approaches in the framework of FISST, Xu et al. [22] proposed a method which involves using
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amplitude information in PHD filter to improve MTT performance, while Clark et al. [23] illustrated
an approach using the target amplitude for both the PHD and CPHD filters.

In this paper, we adopt the CPHD filter for the MTT issue in distant IR surveillance, expecting
accurate performance in the situations of large target number and high clutter density. Based on the
CPHD filtering framework, we propose an amplitude-aided tracking method to improve the tracking
performance. First, we model the amplitude of targets and clutter in IR scenarios respectively. For IR
images target, the point spread function (PSF) is used to model the imaging of point target. In practice,
the value of target center intensity is unknown, and the maximum likelihood estimation (MLE) method
is proposed to estimate the target center intensity via the intensities of the latest target detections, which
have been tracked by the tracker. Then a likelihood function for MTT is established, and using this
likelihood function, a new CPHD recursion is derived, which can distinguish different targets and clutter
by the correspondence weight. In the implementation, we adopt the Gaussian mixture (GM) approach to
implement the amplitude-aided CPHD filter to achieve efficient performance. In numerical experiments,
the results show that the proposed method attains a significant improvement in performance over just
using location measurements.

The rest of this paper is organized as follows. In Section 2, the amplitude models for clutter and
target in IR images are established. The proposed amplitude-aided GM-CPHD filtering is illustrated
in Section 3. Section 4 verifies the proposed GM-CPHD filtering based on numerical simulation, and
conclusions are drawn in Section 5.

2. AMPLITUDE MODELS FOR TARGET AND CLUTTER

In IR image-based tracking, a thresholding method is usually operated to obtain target detections. Due
to background noise, the detections include actual targets and clutter (false alarms). In this section,
we establish imaging models for IR point targets and clutter respectively. The target center intensity
is unknown in practice, so the maximum likelihood estimation (MLE) method is proposed to estimate
the target center intensity via the intensities of the latest detections.

2.1. Imaging Models of IR Sensor

In IR imaging, a so-called uniformity phenomenon exists in raw IR background image [24], and the non-
uniformity correction technique is usually operated to improve the image quality. After non-uniformity
correction, the intensity a of the background noise is Gaussian distributed approximately [25]. Hence,
the probability densities p0(a) for the intensity of background noise can be modeled by

p0(a) =
1√

2πσI

exp
(
−(a − Ī)2

2σ2
I

)
(1)

where Ī and σ2
I are the mean and variance of the collected IR image respectively, and Ī and σ2

I mainly
depend on the system noise level and environment radiation.

In distant surveillance, the range between targets and the sensor is large, so targets are point thermal
sources for the IR imaging plane. The point target imaging suffers diffusion due to the diffraction effect
of optical system. An important concept to describe imaging diffusion is the point spread function
(PSF). If the two dimensions of the imaging plane are denoted as r axis and c axis, then a typical PSF
s(r, c) for IR target is given as [26]

s(r, c) = A exp
{
− [(r − r0)]2

2σ2
r

− [(c − c0)]2

2σ2
c

}
(2)

where (r0, c0) is the target center position, A the center intensity of the target signal, and σr and σc

are the diffusion coefficients along r axis and c axis, respectively.
The target intensities are cumulated to the background noise additively [27]. If a pixel (r, c) is

illuminated by a target center at (r0, c0), then the probability density of intensity a of the pixel (r, c)
is also Gaussian distributed, and can be modeled by

p1(a|s(r, c)) =
1√

2πσI

exp
(
−(a − Ī − s(r, c))2

2σ2
I

)
(3)
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Figure 1. Snapshots of IR image. (a) Original target image. (b) Zoom target image.

Specially, the probability density of the target center intensity is modeled by

p1(a|s(r0, c0)) =
1√

2πσI

exp
(
−(a − Ī − A)2

2σ2
I

)
(4)

A snapshot of the IR target image is shown in Figure 1(a), and Figure 1(b) is the zoom image of
the target. The amplitude is assumed to be identical for each target. If regions of the targets on the
image overlap, then their intensities are cumulated additively.

Another special reason to cause misdetections is the existences of defect-pixels in the IR imaging
plane. In manufacturing, the IR imaging plane array (for example, staring IR focal plane array)
inevitably suffers from defect-pixels due to the limit of technical level. The amplitude of a defect-
pixel is in a high level and changes randomly. In engineering practice, the defect-pixels are tested offline
and are fixed on a small value in order to depress their disturbance for tracking. A defect-pixel appears
to be a black spot just as the pixel labeled by 0 in Figure 1(b).

2.2. Estimation of Target Center Intensity

In practice, the target center intensity A is unknown, and A depends on the target temperature and
working range. Considering that the frame rate of IR sensor is quite high, so during a small time moment,
the target center intensity can be deemed unchanged. In other words, A can be assumed unaltered during
the latest LFr frames data. The intensities of the latest detections imply the information of target
amplitude. Based on this idea, we derive a method to estimate A via the previous target detections.

In the detection step, a thresholding method is used for point target detection commonly, and the
segmentation threshold τD is usually defined as

τD = Ī + ks
√

σI (5)

where Ī and σ2
I are the mean and variance of the IR image respectively, and ks is the segmentation

coefficient.
After the thresholding operation, a connected components labeling algorithm is adopted to extract

pixels belonging to the targets [28]. A connected component illuminated by the target with state x is
denoted by T (x). For each connected component Ti(x), we deem that the strongest intensity ai in Ti(x)
is a measurement of the target center intensity. Although the strongest intensity ai may correspond
to the surrounding pixels due to background noise, and such an approximate processing is reasonable
because the generating error is acceptable. If the number of connected components that have been
tracked by the tracker in the latest LFr frames is n, then we can form the measurements of target
center intensity in the latest LFr frames as a vector AD = [a1, . . . , an]. The value of LFr depends on
the practical frame rate, insuring that the algorithm can utilize detections as much as possible and also
keep the unaltered characteristic of the target amplitude.

Notice that all values in AD = [a1, . . . , an] are above τD, and they do not obey the model in (4).
Let Z be the distribution space of target center intensity and P (·) the event probability, then a value a
in AD is a conditional probability on Z with the condition a > τD. And the probability mass function
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F (a) of a is

F (a) = P
(
Z̄ ≤ a|Z̄ ≥ τD

)
=

P
(
τD ≤ Z̄ ≤ a

)
P
(
Z̄ ≤ τD

) =
φ1(a) − φ1(τD)

φ1(τD)
=

φ1(a)
φ1(τD)

− 1 (6)

where Z̄ denotes a sample in Z, and φ1(·) is probability mass function corresponding to (4).
Differentiating (6) and substituting (4) into the result yields the probability density function f(z)
as

f(a) =
∂F (a)

∂a
=

1
φ1(τD)

1√
2πσI

exp
(
−(a − (Ī + A))2

2σ2
I

)
(7)

where

φ1(τD) =
∫ τD

−∞

1√
2πσI

exp
(
−(a − (Ī + A))2

2σ2
I

)
da (8)

Now the problem is to estimate A in (7) with the sample set AD = [a1, . . . , an]. Let θ = Ī +A, and
we employ the MLE method [29] to estimate θ = Ī + A. With the assumption that the measurements
in AD = [z1, . . . , zn] are independent, the likelihood function is constructed as

L =
1

φn
1 (τD; θ)

1(√
2π

)n
σn

I

exp

⎛
⎜⎜⎜⎜⎝−

n∑
i=1

(ai − θ)2

2σ2
I

⎞
⎟⎟⎟⎟⎠ (9)

Differentiating the log-likelihood function and setting it equal to zero, we have

ā − θ

σ2
I

φ1(τD; θ) − 1√
2πσI

exp
(
−(τD − θ)2

2σ2
I

)
= 0 (10)

where ā = 1
n

n∑
i=1

ai. We approximate (10) by first-order Taylor series at θ = Ī + A, then the solution of

θ̂ is obtained. The final estimation of A is

Â = ā − Ī − σ2
I

ā − τD + exp

(
(τD − ā)2

2σ2
I

)∫ τD

−∞
exp

(
− (a − ā)2

2σ2
I

)
da

(11)

Equation (11) does not contain unknown parameter, so it can be calculated using numerical methods.

3. AMPLITUDE-AIDED GM-CPHD TRACKER

In this section, we incorporate the amplitude information to the prediction and update equations of
original CPHD filter to enhance the discrimination between targets and false alarms. Also, the GM
implementation of the new CPHD tracker is given.

3.1. Conventional CPHD Recursion

Based on the RFS framework, the multitarget tracking can be unified to Bayesian framework rigorously.
Suppose that at moment k, there are N(k) targets with states xk,1, . . . , xk,N(k) and each taking values
in a state space X and that M(k) observations zk,1, . . . , zk,M(k) are received and each taking values in
an observation space Z. Then, the multitarget state Xk and multitarget observation Zk are defined as
Xk = {xk,1, . . . , xk,N(k)} ∈ F(X ), Zk = {zk,1, . . . , zk,M(k)} ∈ F(Z), where F(X ) and F(Z) denote the
respective collections of all finite subsets [30] of X and Z.

Using the FISST, Mahler derived the second-order approximate of the optimal Bayesian filtering,
which results in the CPHD filter [31]. Similar to typical Bayesian filtering, the CPHD filter also involves
two steps, prediction and update. For simplicity, we do not consider target spawning in this paper.
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3.1.1. Prediction

Suppose that at moment k − 1, the posterior intensity vk−1(x) and posterior cardinality distribution
ρk−1 are given, then the predicted cardinality distribution ρk|k−1 and predicted intensity vk|k−1 are
given by

ρk|k−1(n) =
n∑

j=0

ρΓ,k(n − j)Πk|k−1 [vk−1, ρk−1] (j) (12)

vk|k−1(x) = γk(x) +
∫

pS,k

(
x′) fk|k−1(x|x′)vk−1

(
x′) dx′ (13)

where

Πk|k−1 [v, ρ](j) =
∞∑
l=j

C l
j

〈ρS,k, v〉j〈1 − ρS,k, v〉l−j

〈1, v〉l ρ(l) (14)

and ρΓ,k(·) is the cardinality distribution of birth RFS, γk(·) the intensity function of birth RFS, pS,k(x′)
the probability of target survival, and fk|k−1(x|x′) the single target Markov transition density from k−1
to time k.

3.1.2. Update

If at time k, the predicted cardinality distribution ρk|k−1 and predicted intensity vk|k−1 are given, then
for a given measurement set Zk, the updated cardinality distribution ρk and updated intensity vk are
given by

ρk(n)=
Υ0

k

[
vk|k−1, Zk

]
(n)ρk|k−1(n)〈

Υ0
k

[
vk|k−1, Zk

]
, ρk|k−1

〉 (15)

vk(x)=vk|k−1(x)

⎡
⎣〈Υ1

k

[
vk|k−1;Zk

]
, ρk|k−1

〉
〈
Υ0

k

[
vk|k−1;Zk

]
, ρk|k−1

〉 (1−pD,k(x))+
∑
z∈Zk

Ψk,z(x)

〈
Υ1

k

[
vk|k−1;Zk−{z}], ρk|k−1

〉
〈
Υ0

k

[
vk|k−1;Zk

]
, ρk|k−1

〉
⎤
⎦(16)

where

Υu
k [v, Z](n) ≡

min(|Z|,n)∑
j=0

(|Z| − j)! · ρK,k(|Z| − j)Pn
j+u

〈1 − pD,k(x), v〉n−(j+u)

〈1, v〉n · ej (Ξk(v, Z)) (17)

Ξk(v, Z) = {〈v,Ψk,z〉 : z ∈ Z} (18)

Ψk,z(x) =
〈1, κk〉
κk(z)

gk(z|x)pD,k(x) (19)

and pD,k(x) is the detection probability of state at time k, gk(z|x) the single target measurement
likelihood at time k, ρK,k(·) the cardinality distribution of clutter RFS at time k, and κk(·) the intensity
function of clutter RFS at time k.

3.2. Amplitude-Aided Likelihood and Detection Probability Estimation

The amplitude information can incorporate to the likelihood function of the filter to enhance the
performance. We assume that the amplitude of the signal return is independent of target state location,
and thus the amplitude-aid likelihoods for targets g′(z|x) and the likelihood c′(z) for clutter are given
by

g′(z|x) = g(z|x)gτD
a (a|ER) (20)

c′(z) = c(z)cτD
a (a) (21)
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where g(z|x) and c(z) are the original likelihood function of target and clutter respectively [32],
and cτD

a (a) and gτD
z (a|ER) are the amplitude likelihood functions for the false alarm and the target,

respectively, and

cτD
a (a) =

1
pτD

FA

p0(a), a > τD (22)

gτD
z (a|ER) =

1
pτD

D (A)
p1(a|A), a > τD (23)

where pτD
FA and pτD

D are the detection probabilities of clutter and target. Based on (1), with a threshold
τD, pτD

FA can be calculated by

pτD
FA =

∫ ∞

τD

p0(a)da = erf ((τD − Ī)/σ) (24)

where erf (x) = 1√
2π

∫ +∞
x exp(−y2

2 )dy is the probability error function.
The detection probability pτD

D (A) is unknown in practice. In theory, all pixels in the target region
will contribute to the target detection. In dim IR target scenarios, we deem that only the central
5 pixels, which are labeled by numbers 1∼5 in Figure 1(b), may contribute to the target detection. The
reasons are two: i) according to the model in (3), the center pixels concentrate the majority energy of
the target, and other pixels that away from the center receive little target energy spread; ii) only when
all the central 5 pixels are miss-detected, the other pixels may contribute to the target detection, but
the probability that all the 5 central pixels are miss-detected is very small.

With the above discussions, the target detection probability will be calculated by the central 5 pixels
in the following. For each pixel i with position (ri, ci), the detection probability under the threshold
τD is

P̂ di =
∫ ∞

τD

1√
2πσI

exp
(
−(a − Ī − s(ri, ci))2

2σ2
I

)
da (25)

A target cannot be detected when it falls into a defect-pixel. Considering the influence of defect-pixels,
the estimation is modified as

P̂ d′i = P̂ di − NF

NcolNrow
(26)

where NF is the number of defect-pixels and NcolNrow the size of the IR pixel plane. Taking into account
of the contribution of the central 5 pixels, the estimation of target detection probability is

P τD
D = P̂ d′1+

(
1−P̂ d′1

)
P̂ d′2+

(
1−P̂ d′1

)(
1−P̂ d′2

)
P̂ d′3+

(
1−P̂ d′1

)(
1−P̂ d′2

)(
1−P̂ d′3

)
P̂ d′4

+
(
1 − P̂ d′1

)(
1 − P̂ d′2

)(
1 − P̂ d′3

)(
1 − P̂ d′4

)
P̂ d′5 (27)

Assume that clutter distribute in the observation space uniformly, and the clutter intensity function
κk(z) = λcV c(z), where λc is the clutter rate, V the observation volume, and c(z) the clutter probability
density. So substituting (20)–(21) into (19) yields:

Ψk,z̃(x) =
∫

λcV c(z)cτ
a(a)dzda

λcV c(z)cτ
a(a)

∗ g(z|x)gτD
a (a|A)pτD

D (A) (28)

Substituting (24) and (27) into (28) yields:

Ψk,z(x) =
g(z|x)gτD

a (a|ER)pτD
D (A)

cz(z)cτ
a(a)

(29)

Replace (19) of conventional recursion by (29), we obtain the new updated equation incorporated
with amplitude information. Notice that the prediction equation of amplitude-aided CPHD filter is the
same as standard CPHD filter.
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3.3. The GM Implementation of Amplitude-Aided CPHD Recursion

The GM implementation of the amplitude-aided CPHD filter is based on the assumption that each
actual target follows a linear Gaussian dynamical model, i.e.,

f
(1)
k|k−1(x|ζ) = N(x;Fk−1ζ,Qk−1) (30)

gk(z|x) = N(z;Hkζ,Rk) (31)
where Fk−1 is the state transition matrix, Qk−1 the process noise covariance, Hk the observation matrix,
and Rk the observation noise covariance. The survival and detection probabilities for actual targets are
state independent. In addition, the intensity of the actual target birth RFS is a Gaussian mixture of
the form

γ
(1)
k (x) =

Jγ,k∑
i=1

w
(i)
γ,kN

(
x;m(i)

γ,k, P
(i)
γ,k

)
(32)

where Jγ,k, w
(i)
γ,k, m

(i)
γ,kP

(i)
γ,k, i = 1, . . . , Jγ,k are given model parameters. Then, the prediction and update

of GM implementation for amplitude-aided CPHD filtering with unknown clutter rate is as follows.

3.3.1. Prediction

Suppose that at moment k − 1, the posterior intensity vk−1 and posterior cardinality distribution ρk−1

are given, and vk−1(x) is given by

vk−1(x) =
Jk−1∑
i=1

w
(i)
k−1N

(
x;m(i)

k−1, P
(i)
k−1

)
(33)

Then the filtering prediction equation is

vk|k−1(x) = pS,k ×
Jk−1∑
j=1

w
(j)
k−1N

(
x;m(j)

S,k|k−1
, P

(j)
S,k|k−1

)
+ γk(x) (34)

ρk|k−1(n) =
n∑

j=0

ρΓ,k(n − j)
∞∑
l=j

C l
jρk−1(l)(1 − pS,k)l−jpj

S,k (35)

where the predict intensity vk|k−1 is also Gaussian mixture, C l
j = l!/(j!(l − j)!) the binomial coefficient,

and Pn
j = n!/(n − j)! the permutation coefficient, and

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1 (36)

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1 (37)

3.3.2. Update

Suppose that at moment k, the predicted intensity vk|k−1 and predicted cardinality distribution ρk|k−1
are given, and vk|k−1 is a Gaussian mixture given by

vk|k−1(x) =
Jk|k−1∑

i=1

w
(i)
k|k−1 ×N

(
x;m(i)

k|k−1, P
(i)
k|k−1

)
(38)

Then the updates for a given observation set Zk are given by

vk(x) = (1 − pD,x)

〈
Ψ1

k[wk|k−1, Zk], ρk|k−1

〉
〈
Ψ0

k

[
wk|k−1, Zk

]
, ρk|k−1

〉vk|k−1(x) +
∑
z∈Zk

Jk|k−1∑
j=1

w
(j)
D,k(z)N

(
x;m(j)

k , P
(j)
k

)
(39)

ρk(n) =
Ψ0

k [wk|k−1, Zk]ρk|k−1(n)〈
Ψ0

k [wk|k−1, Zk], ρk|k−1

〉 (40)
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where the update posterior intensity vk is also Gaussian mixture, 〈·, ·〉 is the inner product defined
between two real valued functions α and β by 〈α, β〉 =

∑∞
l=0 α(l)β(l), and

Ψu
k [w,Z](n) =

min(|Z|,n)∑
j=0

(|Z| − j)pK,k(|Z| − j)Pn
j+u × (1 − pD,k)n−(j+u)

〈1, w〉j+u
ej (Λk(w,Z)) (41)

Λk(w,Z) =
{

gτ
a(a|ER)pτ

D(A)wT qk(z)
c(z)cτD

a (a)
: z ∈ Z

}
(42)

wk|k−1 =
[
w

(1)
k|k−1, . . . , w

(Jk|k−1)

k|k−1

]T
(43)

qk(z) =
[
q
(1)
k (z), . . . , q

(Jk|k−1)

k (z)
]T

(44)

q
(j)
k (z) = N

(
z;Hkm

(j)
k|k−1

,HkP
(j)
k|k−1

HT
k + Rk

)
(45)

w
(j)
k (z) =

gτ
a(a|ER)pτ

D(A)w(j)
k|k−1q

(j)
k (z)

c(z)cτD
a (a)

×
〈
Ψ1

k

[
wk|k−1, Zk\{z}

]
, pk|k−1

〉
〈
Ψ0

k

[
wk|k−1, Zk

]
, pk|k−1

〉 (46)

m
(j)
k (z) = m

(j)
k|k−1 + K

(j)
k

(
z − Hkm

(j)
k|k−1

)
(47)

P
(j)
k =

[
1 − K

(j)
k Hk

]
P

(j)
k|k−1 (48)

K
(j)
k = P

(j)
k|k−1H

T
k

[
HkP

(j)
k|k−1H

T
k + Rk

]−1
(49)

In each prediction and update recursions, the mean target number is estimated as N̂
(1)
k =

∑Jk
j=1 w

(i)
k .

In addition, pruning and merging of Gaussian elements should also be considered, see [33] for more
details.

4. SIMULATIONS

This section presents numerical studies for the proposed method. A linear Gaussian example is used to
examine the performance of the proposed GM-CPHD-based tracker using amplitude features.

4.1. Scenario

In the numerical simulation, the observation image is a Ncol ×Nrow = 256×256 array, and 1 ≤ r ≤ 256,
1 ≤ c ≤ 256. The observation model is based on (1)–(4). In (4), the target center intensity is time-
varying with A = 18 + 0.001t2, and σr = σc = 1.5. The mean and standard deviation of the image
are Ī = 4000 and σI = 2.72, respectively. Defect-pixels are also added to the observation image. We
assume that the number of defect-pixels is NF = 1000. All defect-pixels are set to 1, and they spread
uniformly in the pixel plane.

Targets appear at the center of the field of view (FOV) and move constantly. The target velocity
is measured in image pixel, and the single-target state space is modeled by the linear Gaussian in (30)
and (31) with parameters

Fk =
[
I2 ΔI2

02 I2

]
; Qk = σ2

v

⎡
⎢⎣

Δ4

4
I2

Δ3

2
I2

Δ3

2
I2 Δ2I2

⎤
⎥⎦ ; Hk = [I2 02] ; Rk = σ2

εI2 (50)

where Δ = 1 s is the sampling period, In the unit matrix of n × n, 0n the zero matrix of n × n,
σv = 0.01 pixel/s2 the standard deviation of state noise, and σε = 0.01 pixel/s2 the standard deviation
of observation noise.
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The maximum target number is 5, and the total time is 100 seconds in our simulation. The
5 targets’ durations are t1 = 1∼72 s, t2,3 = 20∼84 s, t4,5 = 40∼100 s respectively, where the subscript
denotes different targets. Newborn target RFS is Poisson distribution, with intensity of

γ
(1)
k (x) =

∑5

i=1
wγN

(
x;m(i)

γ , Pγ

)
(51)

where wγ = 0.03, and m
(1)
γ = [0, 1.8, 0, 1.8]T ; m

(2)
γ = [0,−0.5, 0,−2]T ; m

(3)
γ = [0, 0.5, 0, 2]T ; m

(4)
γ =

[0, 1.25, 0,−1.75]T ; m
(5)
γ = [0,−1.25, 0, 1.75]T . The demonstrations of IR image observations are shown

in Figure 2.
The latest LFr = 10 frames are used to estimate the target center intensity, and in the first

10 frames, the filter is operated with p
(1)
D,0 = 0.8. For the filter, the survival probability of targets is

p
(1)
S,k = 0.99. The segment coefficient is set as ks = 4, so the clutter rate is 10 for average. In Gaussian

component pruning and merging, the weight threshold is T ′ = 10−5, the combined threshold U ′ = 4 m,
and the maximum number of Gaussian components Jmax = 100.

4.2. Results

To verify the performance of the proposed CPHD filter, 100 Monte Carlo runs are performed for the
same scenario. The true and estimated target amplitudes are plotted in Figure 3(a), and Figure 3(b)
is the standard deviation of amplitude estimation. The results show that the estimations of target
amplitude are reasonable with an acceptable error. During the time k < 20, since only one target exists
in the FOV. The target detections generated by the latest LFr frames are limited, so Â are estimated
via small samples set, which leads to that the results suffer notable bias. When k >= 20, more targets
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Figure 2. Target observations. (a) True target trajectories in the xy plane, where start/stop positions
for each track are shown with O/Δ. (b) Snapshot of observations with 5 targets at time 65, the boxes
indicate the target positions.
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Figure 3. 100 Monte Carlo run average results. (a) True and estimated target amplitude. (b) The
standard deviation of amplitude estimation.
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exist in the FOV, and the number of target detections increases, then both the average estimation and
the deviation decrease to more reasonable values. But estimations by the proposed method still exhibit
uncertain bias. One main reason is that the samples set for target center intensity estimation may
include some false tracks. However, the bias is slight, and we deem that it is in a reasonable scope. In
practice, the sampling period of IR sensor is much less than Δ = 1 s, and a higher data rate enables us
to set LFr on a larger value, which enables us to expect more exact estimation.

Under the target amplitude as A = 18 + 0.001t2, the detection probability keeps altering all the
time. The true detection probability PD(k) at each time k is infeasible to obtain. We adopt an offline
Monte Carlo estimation to approximate the true detection probability. After the 100 Monte Carlo runs,
based on the prior scenarios parameters, we attain the number of real target states Mx(k) and the
number of target detections MD(k), then the Monte Carlo approximation of detection probability is

PMC(k) = MD(k)/Mx(k) (52)

The results of PMC(k) are shown in Figure 4(a). On the other hand, the detection probability estimation
P̂D(k) output by the tracker for 100 Monte Carlo run results is also computed. The average results and
standard deviations are shown in Figures 4(a) and (b), respectively. We discard the first LFr = 10 frames
where the detection probability is fixed to p

(1)
D,0 = 0.8.

It can be seen that the estimations P̂D(k) of the tracker and the statistic PMC(k) by Monte Carlo
ascend similarly, especially in the latter part of the simulation when the target amplitude getting
stronger. The estimation deviation of P̂D(k) is similar to that of Â, and the reason is identical.

The outputs of CPHD filters with and without amplitude information for a single run are shown in
Figure 5 and Figure 6, respectively. The plots give the x and y coordinates of the true and estimated
positions, along with the x and y coordinates of the received measurements versus time. The figures
show that the amplitude-aid CPHD filter can initiate and terminate each of the tracks better than that
of conventional CPHD filter. Occasional incidences of false and dropped tracks are observed apparently
in Figure 5 due to dense clutter, while in Figure 6, the proposed filter eliminates the influence of
clutter based on the amplitude information, and the estimates of the target positions are markedly
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Figure 4. The 100 Monte Carlo run average results. (a) The average estimation of the Monte Carlo
method and the proposed tracker. (b) The estimation standard deviation of the proposed tracker.
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Figure 5. Estimates of the conventional CPHD filter and true tracks in x and y coordinates versus
time.
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Figure 6. Estimates of the amplitude-aid CPHD filter and true tracks in x and y coordinates versus
time.
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Figure 7. OSPA miss distance versus time for the conventional and amplitude-aid CPHD filters,
(a) p = 2, c = 5, and (b) p = 2, c = 50.

more reasonable. However, a few of the false tracks still exist in the results. This is because our method
is reasonable only under the condition that the amplitudes of the targets are stronger than that from
clutters. But the clutters have comparable amplitudes to the targets under a certain probability. In this
situation, our method fails to improve the tracking performance. This is a limitation of the proposed
method, even though the probability that the clutters have comparable amplitudes to the targets is low.

For statistical comparison, 100 MC runs are performed on exactly the same data using the CPHD
filters with and without amplitude information. In order to evaluate the performance of the algorithms
quantitatively, the optimal subpattern assignment (OSPA) metric is adopted [34]. When computing
OSPA, we set the parameters, p = 2, c = 5 and p = 2, c = 50, and the average OSPA distances
are shown in Figure 7. The results of Figure 7 show that by introducing the amplitude features, the
amplitude-aid CPHD filter outperforms the conventional CPHD filter, attaining effective results with
smaller miss distance.

5. CONCLUSION

Conventional CPHD filter discriminates targets from clutter only via the motion information, which is
not reasonable in the situation of dense clutter. This paper first proposes an amplitude-aid CPHD filter
for tracking multiple IR point targets. We use the prior knowledge of IR scene to build the imaging
model of target and clutter, so our method can improve the tracking performance effectively. For further
research, we can extend the amplitude-aid CPHD filter to multiple IR sensors tracking, especially in
application of multi-band infrared sensor focal plane. Multi-band focal plane generates IR image that
can be used in tracking without registration, which is very advantageous.

The amplitude-aid CPHD filter can also be extended to the situation of clustered target. A special
example is group target tracking, which is also known as extended target tracking. Practically important
examples are aircraft formations or ground moving convoys. FISST-based filters are important for
extended/group target tracking. In the application of IR images, the amplitudes of the target are
important pieces of information that can be incorporated into the FISST-based filters. But no such
works have been carried out in the literature, so more researches need to be undertaken in future works.
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