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Casimir Force in Anisotropic Materials with AC Kerr Effect

Junlong Zhang1, Zhixiang Huang1, *, and Xianliang Wu1, 2

Abstract—The Casimir force between an ellipsoid and a plate can be tuned by using the combination
of anisotropic materials and nonlinear materials exhibiting the AC Kerr effect. The force was obtained
numerically by using the FDTD method, based on the Maxwell’s stress tensor. The results indicate
that the force can be significantly varied by changing the intensity and location of the laser, as well
as the properties of material. The sensitive changing between ellipsoid and plate structure with
different materials’ properties provides new possibilities of integrating optical devices into nano-electro-
mechanical systems (NEMS).

1. INTRODUCTION

In 1948 Casimir [1] found that a pair of neutral, perfectly conducting parallel plates located in vacuum
attracted each other. Then, the existence of the Casimir force had been considered the focus of attention
over decades, and various numerical calculations have been developed [2]. Two main calculation methods
are the surface mode summation method [3], and the stress tensor method [4]. Then, efforts have been
made to study the Casimir force for various geometries and materials [5–7]. However, in most cases the
force was found to be attractive [8].

With the advances of fabrication techniques in the micro-electro-mechanical systems (MEMS) and
nano-electro-mechanical systems (NEMS), the device size had become smaller and smaller. Scaling issues
become the hot topic in recent year, especially in the nano-optoelectronic system. The diminishing
scaling will inevitably bring upon the issue of Casimir attractive interaction between dielectric and
metallic surfaces in close spacing. For example, the attractive force can cause the stiction problem [9–
11]. The problem may be resolved if the Casimir force is repulsive [8, 12]. Therefore, repulsive Casimir
force received unprecedented attention in practical systems [13, 14].

Anisotropy is a material’s directional dependence of a physical property, as opposed to isotropy. In
electromagnetism it can be defined as a difference, when measured along different axes, in a material’s
electromagnetic properties like electric permittivity ε, magnetic permeability μ. Here we consider the
electric permittivity tensor form of second order with

ε =

(
a u v
u b w
v w c

)
(1)

Set u = v = w = 0 to simplify the tensor. When a = b = c �= 0, the material is isotropy; when
a = b �= c �= 0, the material is uniaxial anisotropy; when a �= b �= c �= 0, the material is biaxial
anisotropy.

AC Kerr effect is an optical phenomenon that a laser beam in a medium can itself provide the
modulating electric field, without the need for an external field to be applied [15]. It is a nonlinear
optical effect due to the third order polarization of the laser field. It is possible to use the effect
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Figure 1. Geometry for achieving Casimir force: A metal ellipsoid above a thin metal plate with a
hole. d is the center-center separation, w the plate hole width, t the thickness of the plate, rr the minor
diameter of the ellipsoid, and rz the major diameter of the ellipsoid. The shaded part indicates different
material.

to control the Casimir force [16] between the ellipsoid and the plate with a hole, as shown in Fig. 1,
corresponding to a constitutive relation: D = (ε0+χ(3) ·|E|2)E, χ(3) is a susceptibility that characterized
the Kerr nonlinearities. However, the number usually reported for the strength of the Kerr nonlinearity
is the Kerr coefficient n2, defined by the effective change in refractive index Δn for a plane wave with
time-average intensity I traveling through a homogeneous Kerr material: Δn = n2I. The relationship
between n2 and χ(3) is n2 = 3χ(3)

4n2 , unit µm2/w, where n is the linear refractive index n =
√

ε. Therefore,
we can use the Kerr material instead of laser field.

2. NUMERICAL IMPLEMENTATION

The key point of the approach is to compute the force via a series of independent FDTD [17] calculations
in which sources are separately placed at each point on S, calculate the entire frequency spectrum in
a single simulation for each source, and then integrate the electromagnetic response in time domain
against a predetermined function g(−t) [18, 19].

2.1. Maxwell’s Stress Tensor Formulation

Classically, the force on an object due to the electromagnetic field can be obtained by integrating the
Maxwell’s stress tensor over frequency and around a surface enclosing the object, which is

F=
i

∫ ∞

0
dω

∫∫
©
S

∑
j

〈Mij (r, ω)〉 dSj (2)

where r denotes spatial position and ω frequency. When integrated over imaginary frequencies ω = iξ,
the expression becomes

Fi = Im
∫ ∞

0

dω

dξ
dξ

∫∫
©
S

∑
j

〈Mij (r, ω)〉 dSj (3)

where the stress tensor is expressed in terms of correlation functions of the field operators
〈Ei (r, ω)Ej (r′, ω)〉 and 〈Hi (r, ω)Hj (r′, ω)〉 as

〈Mij (r, ω)〉 = μ (r, ω)

[
〈Hi (r, ω)Hj (r, ω)〉 − 1

2
δij

∑
k

〈
H2

k (r, ω)
〉]

+ε (r, ω)

[
Ei (r, ω)Ej (r, ω) − 1

2
δij

∑
k

〈
E2

k (r, ω)
〉]

(4)
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The average of fluctuating electric and magnetic fields in the ground state is given via the
fluctuation-dissipation theorem in terms of the photon Green’s function [20]:〈

Ei (r, ω) Ej

(
r′, ω

)〉
=

�

π
ω2ImGE

ij

(
ω; r, r′

)
(5)

〈
Hi (r, ω)Hj

(
r′, ω

)〉
= −�

π
(∇×)il

(∇′×)
jm

ImGE
lm

(
ω; r, r′

)
(6)

where the photon Green’s function GE
ij satisfies the equation[

∇×∇× −w2

μ (r, w)
ε (r, ω)

]
GE

j

(
ω; r, r′

)
= δ

(
r − r′

)
êj (7)

2.2. Harmonic Expansion in Cylindrical Coordinates
The most practical harmonic expansion basis which consists of functions of form is fn(x)eimφ. When in
a cylindrical symmetry, as shown in our geometry, we can employ the cylindrical surface S and complex
exponential basis eimφ in the φ direction in a cylindrical coordinates. Thus, the resulting fields are
separable with φ, and the equations only contain the (r, z) coordinates. Then the calculation reduces
to a 2D problem for each m. Once the fields are determined in (r, z) coordinates, the force contribution
for each m is [19]

Fi;m =
∫ 2π

0
dφ

∫
S

dsj (x) r (x) e−imφ

∫ 2π

0
dφ′ ×

∫
S

ds
(
x′)r (x′) eimφ′

δS

(
x− x′)Γij;m

(
t;x,x′) (8)

where x ranges over the full three dimensional coordinates. For simplicity, assume that S consists
entirely of z = const and r = const surfaces. In these cases, the surface δ function δS is given by [19]

δS (x − x′) =
1

2πr (x)
δ
(
φ − φ′) δ

(
r − r′

)
, z = const

δS (x − x′) =
1

2πr (x)
δ
(
φ − φ′) δ

(
z − z′

)
, r = const

(9)

Γij;m are functions of the electromagnetic fields on the surface S. r(x) is the Jacobian factor and ds
the Cartesian line element. Where dsj (x) = ds (x) nj (x), n(x) is the unit normal vector to S at x.

Accordingly, the current source of three-dimensional coordinates is fn (x) eimφ = δ (x− x′) eimφ, so
the field must have a φ dependence of the form eimφ as Γij;nm (r, z, φ, t) = Γij;nm (r, z, t) eimφ.

2.3. Geometry-Independent Function g(−t)
In [19], the authors introduced a geometry-independent function g(−t), which resulted from the Fourier
transform of a certain function of frequency, termed g(ξ) and is given by

g (ξ) = −iξ

(
1 +

iσ

ξ

)
1 + iσ/2ξ√

1 + iσ/ξ
Θ (ξ) (10)

here, the Θ(ξ) is the unit-step function for later convenience.
Once g(−t) is known, it can be integrated against the fields in time to obtain the correct Casimir

force. As discussed in [18], in the time domain of the cylindrical system the Fourier transform can be
performed analytically, and the result is

Img (−t) =
1
2π

(
2
t3

+
3σ
2t2

+
σ2

2t

)
(11)

2.4. Kerr Coefficient
To allow the optical control of the Casimir force, a laser beam is introduced to induce the AC Kerr
effect, and the electric permittivity ε is

ε = ε0 + χ
(3)
ij |E|2 (12)
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where ij is the index of the change in ε tensor, and χ
(3)
ij = χ(3) · δij . Thus, we use the Kerr material

instead of laser field to simulate the Casimir force in above geometry. Below, we introduce a coefficient
K that K = χ(3).

Finally, the expression for the Casimir force becomes

Fi =
∫ ∞

0
dtIm [g (−t)] ×

∑
n

∫
S

dsj (r, z) fn (r, z) Γij;n (r, z, t) (13)

with
Γij;n (r, z, t) = 2

∑
m>0

Re [Γij;n,m (r, z, t)] (14)

3. RESULTS AND ANALYSES

3.1. Ideal Metal Material

Before we consider the anisotropic materials, the ideal metal material was used in the simulations. An
ideal metal ellipsoid was set above an ideal metal plate with a circular hole in vacuum. Here, the size
of ellipsoid as sketched in Fig. 1 with rr = 50 nm, rz = 250 nm, thickness of plate t = 100 nm, diameter
of circular hole on the plate w = 2µm, and electric permittivity ε0 = 1. Repulsion was undoubtedly
occurred as the green line shown in Fig. 2. Then we introduce the Kerr effect (K = 0.01) by placing
a laser on the ellipsoid or the plate or the medium surrounded them. When a laser beam was placed
on the ellipsoid, as the black line shown in Fig. 2, the repulsion is weak and approximate to 0; the red
dashed line shows that a laser beam was placed on the plate; the blue dotted line shows that when a
laser beam was placed in vacuum, the curve became fluctuated, and compared with the green line, it
clearly shows the nonlinear effect.

Figure 2. Casimir interaction and Kerr effect with a laser beam at different location: the green line
shows results without laser beam; the black line indicates a laser beam was placed on the ellipsoid; the
red line indicates a laser beam was placed on the plate; the blue line indicates a laser beam was placed
in vacuum.

We fixed the ellipsoid and placed a laser on it. In Fig. 3, we plot the dependence of the Casimir
force on laser intensity for different separation d between metallic ellipsoid and plate.

3.2. Anisotropic Material in Vacuum

Now we begin to consider the anisotropic material and set the ellipsoid ε1 = diag(1 1 12) from Eq. (1).
With an anisotropic ellipsoid and an ideal metal plate as shown in Fig. 4, it is noted that the amplitude
of the force is extremely different between the black linear line and the red nonlinear line. The curve in
black is flat ranging from 0 to 1.5 µm where the curve in red is fluctuated. The peak value of the red
line arrives at 0.6µN and the bottom value at −1.5µN; with an anisotropic ellipsoid and an anisotropic
plate as shown in Fig. 5, the amplitude of the red nonlinear line is less than the black linear line. The
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Figure 3. Casimir force between ideal metal ellipsoid and ideal metal plate with different d, as a
function of intensity of incident laser K. The red and black lines show that when d = 0.6µm and
d = 0.4µm, the force is increased with the rise of K; the blue line shows that when d = 0.8µm, the
force is decreased with the rise of K; the cyan line shows that when d = 1.2µm, the force is almost not
changed.

Figure 4. Casimir force between an anisotropic
ellipsoid and ideal metal plate in vacuum. The
black line shows the ellipsoid without a laser, in
contrast, the red line shows a laser was placed on
the ellipsoid K = 0.01.

Figure 5. Casimir force between an anisotropic
ellipsoid and anisotropic plate. Both the electric
permittivity ε0 = ε1. The red line shows that a
laser was placed on the ellipsoid, in contrast, the
black line shows without. K = 0.01.

Kerr effect enhances the force when the plate is ideal metal (Fig. 4), but reduces the force when the
plate is anisotropic material (Fig. 5). However, the Casimir force between anisotropic materials is much
weaker than metallic materials.

In order to view the dependence of the Casimir force on laser intensity for different separation
d and minor diameter of the ellipsoid rr clearly, we re-plot the results with 3D graphs (See Fig. 6).
Fig. 6(a) shows no laser on the anisotropic ellipsoid, as a basic contrast to (b) and (c). The maximum
value of the force indicates the attractive force Fa ≈ 3µN, and the minimum value of the force indicates
the repulsive force Fr ≈ 1.5µN. Fig. 6(b) shows when a laser based on the anisotropic ellipsoid with
intensity K = 0.01, the force becomes stronger but not flat because of the nonlinear effect. The
attractive force Fa ≈ 5µN, and the repulsive force Fr ≈ 3µN. Fig. 6(c) shows that when the intensity
of laser K = 1, the force becomes even stronger and more fluctuated. The attractive force Fa ≈ 10µN,
and the repulsive force Fr ≈ 10µN. Therefore, the Kerr effect can tune and enhance the Casimir force
between an anisotropic ellipsoid and an ideal metal plate in vacuum.

When both the ellipsoid’s and plate’s permittivities are ε1 = diag(1 1 12), and both are placed a
laser on them. From Fig. 7, we can see that the Casimir force is even weaker than the results in Fig. 6.
Clearly, the anisotropic material with Kerr effect can reduce the Casimir force.
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(c)  K=1(a) K=0 (b) K=0.01

Figure 6. 3D plot of the Casimir force between an anisotropic ellipsoid and an ideal metal plate in
vacuum, as a function of separation d and minor diameter of the ellipsoid rr. The electric permittivity
of ellipsoid is ε1 = diag(1 1 12). (a) K = 0 indicates no laser on the ellipsoid; (b) a laser was placed on
the ellipsoid and K = 0.01; (c) K = 1.

Figure 7. 3D plot of the Casimir force between an anisotropic ellipsoid and an anisotropic plate in
vacuum, both the permittivity are ε1 = diag(1 1 12), as a function of separation d and intensity of laser
K.

3.3. Anisotropic Material Embedded in Anisotropic Medium

As discussed above, we have placed the geometry model in vacuum, and how about embedded in other
environments? Then we begin to consider replacing the vacuum by the other anisotropic material, and
the electric permittivity is ε2 = diag(12 12 1). As shown in Fig. 8. The amplitude of the force in cyan
is the strongest. The peak value arrives at 40µN, the bottom value at 100µN, and the amplitude of the
force in black is the weakest. We can see its maximum value from the left inset, in which F = 0.002µN
approximate to 0 (See the inset figures), and the bottom value in blue is a bit stronger than the value
in red, approximate to 2.5 times. When d > 0.2µm, all the repulsive forces are turned into attractive
force, and when d > 0.8µm, all the forces diminish to 0. Thus, the Kerr effect can reduce the Casimir
force between anisotropic ellipsoid and anisotropic plate in anisotropic medium. However, the Casimir
force between ideal metal ellipsoid and plate in anisotropic medium is enhanced by the Kerr effect.

Considering the case with the structure immersed in anisotropic medium, we found an interesting
phenomenon. The results are shown in Fig. 9. When we placed only one laser on the ideal metal
ellipsoid, as shown in (a) K ∈ (0, 0.2) and (b) K ∈ (0, 2), the force was almost repulsive, and the
maximum of repulsive force Fr ≈ 1.4 × 10−9N . When two lasers of the same intensity were placed
on the ellipsoid and plate separately, as shown in (c) K ∈ (0, 0.2) and (d) K ∈ (0, 2), the force was
attractive, and the maximum attractive force Fa ≈ 1.6 × 10−9N . As we have proved above, the force
between anisotropic materials is much smaller, and we can make use of them in control more feasible
force in NEMS.
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Figure 8. Casimir force between different materials’ ellipsoid and plate: the black line shows that the
two same intensity of lasers were placed on the ideal metal ellipsoid and plate separately, the medium
vacuum was replaced by anisotropic material ε2; the red line shows that a laser was placed on the ideal
metal plate, the electric permittivity of ellipsoid is ε1, the electric permittivity of medium is ε2; the
blue line shows that both the electric permittivity of ellipsoid and plate are ε1, the electric permittivity
of medium is ε2; the cyan line shows that only a laser was placed on the ideal metal plate, the electric
permittivity of medium is ε2. The insets are the corresponding zoom in results with K = 0.01.

(c) 

(d) 

(a) 

(b) 

Figure 9. 3D plot of the Casimir force between an ideal metal ellipsoid and an ideal metal plate in
anisotropic material ε2, as a function of separation d and the intensity of laser K. (a) K ∈ (0, 0.2) and
(b) K ∈ (0, 2): a laser was placed on the ellipsoid; (c) K ∈ (0, 0.2) and (d) K ∈ (0, 2).
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4. CONCLUSIONS

Based on the Maxwell’s stress tensor, we analyze the Casimir force using combinations of anisotropic
materials and nonlinear material exhibiting AC Kerr effect. We show that the force can be significantly
varied by changing the intensity and location of the laser, as well as the properties of the anisotropic
materials. The sensitive changing provides new convenience to solve some practical problems in NEMS,
such as manipulate nano-resonators and integrate optical devices into NEMS.
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