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Finite-Difference Frequency-Domain Algorithm for Modeling
Electromagnetic Scattering from General Anisotropic Objects

Raymond C. Rumpf*, Cesar R. Garcia, Eric A. Berry, and Jay H. Barton

Abstract—The finite-difference frequency-domain (FDFD) method is a very simple and powerful
approach for rigorous analysis of electromagnetic structures. It may be the simplest of all methods
to implement and is excellent for field visualization and for developing new ways to model devices. This
paper describes a simple method for incorporating anisotropic materials with arbitrary tensors for both
permittivity and permeability into the FDFD method. The algorithm is bench marked by comparing
transmission and reflection results for an anisotropic guided-mode resonant filter simulated in HFSS and
FDFD. The anisotropic FDFD method is then applied to a lens and cloak designed by transformation
optics.

1. INTRODUCTION

The finite-difference frequency-domain (FDFD) method is a simple and powerful numerical method for
solving Maxwell’s equations [1–4]. It is rigorous, excellent for visualizing the fields, and able to model
structures with complex geometries. It is accurate, stable, and the sources of error are well understood.
Lastly, it lends itself very well to parallel processing on graphical processing units (GPUs) [5, 6]. The
method uses central finite-difference approximations to transform Maxwell’s equations into a large set
of linear algebraic equations that can be written in matrix form as Ax = b. The field stored in the
column vector x is calculated by solving x = A−1b. A complete discussion of the basic FDFD algorithm
for ordinary materials can be found in Ref. [7].

This paper outlines how to implement an anisotropic FDFD (AFDFD) method that can handle
fully anisotropic materials. An anisotropic medium is one where the permeability and/or permittivity
depend on the direction of the electromagnetic fields. Anisotropy provides additional design freedom
that can be used to produce a wide array of useful phenomena including surface waves [8], slow waves [9],
invisibility and cloaking [10], double refraction, polarization control [11], and more. Further, very often
devices composed of metamaterials can be modeled more efficiently using effective medium theory.
“Homogeneous” materials with the effective properties of the metamaterials can be meshed more
coarsely compared to the volumetrically complex structures of the metamaterial. In this regard, a
method capable of modeling devices with arbitrary dielectric and magnetic anisotropy is very useful.

This paper discusses in detail how the three-dimensional (3D) FDFD method described in Ref. [7]
can be modified to incorporate anisotropic materials with arbitrary nine-element tensors for both
permittivity and permeability. It also discusses some of the subtleties encountered when dealing
with tensor quantities like converting them between coordinate systems, rotating them to an arbitrary
orientation, combining them with absorbing boundary conditions, and assigning them to points on a
grid. Unfortunately, in general anisotropic media Maxwell’s equations do not simply for two-dimensional
or even one-dimensional analysis due to the complete coupling of the fields. For this reason, it is most
straight forward to develop just a 3D FDFD code and use that to model lower dimensional problems.
This can be done with virtually no decrease in efficiency if the appropriate precautions are taken. Using
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the 3D algorithm this way allows the grid to lie in any plane that is desired. This is advantageous when
the algorithm is being used in conjunction with other numerical methods and one is trying to maintain
consistent coordinates.

While some papers can be found on FDFD analysis of anisotropic structures [12–18], none of these
outline a general purpose method for 3D scattering analysis of devices containing arbitrary permittivity
[ε] and permeability [µ] tensors. The majority of these papers [12, 14, 15, 18–21] describe waveguide
analysis and not scattering. The papers covering scattering [13, 16, 17, 22] are all restricted to two-
dimensions and all but Ref. [22] place restrictions on the tensor quantities. This paper describes a general
purpose FDFD technique that is rigorous, fully 3D, and incorporates arbitrary material tensors for both
permittivity and permeability. The paper is organized as follows. First, the standard formulation of
the anisotropic 3D-FDFD method is presented in order to calculate the wave matrix A. Second, it is
shown how to apply the powerful total-field/scattered-field (TF/SF) technique [22–24] to incorporate
sources. Finally, several practical examples are given before the paper is concluded.

2. FORMULATION OF THE METHOD

The formulation and implementation of the basic FDFD method is described in detail in Ref. [7],
but only diagonal material tensors [µ] and [ε] were considered. The following text outlines how the
formulation is generalized to incorporate arbitrary material tensors. After normalizing the magnetic
field according to ~̃H = −jη0

~H, Maxwell’s curl equations with a uniaxial PML (UPML) [25–27] can be
written as

∇× ~E = k0 [µr] [s]
~̃H (1)

∇× ~̃H = k0 [εr] [s] ~E (2)

For a UPML, the tensor [s] is expressed as

[s] =




sysz

sx
0 0

0 sxsz
sy

0
0 0 sxsy

sz


 (3)

Without any approximation to the material tensors, Eqs. (1) and (2) can be expanded into the
following set of six coupled partial differential equations. The µ′ij and ε′ij terms are relative coefficients
because the free space constants µ0 and ε0 have been factored out and absorbed into the normalized
grid coordinates [7]. In addition, the PML parameters sx, sy, and sz are multiplied into the constitutive
parameters such that [µ′r] = [µr] [s] and [ε′r] = [εr] [s].

∂Ez

∂ỹ
− ∂Ey

∂z̃
= µ′xxH̃x + µ′xyH̃y + µ′xzH̃z (4)

∂Ex

∂z̃
− ∂Ez

∂x̃
= µ′yxH̃x + µ′yyH̃y + µ′yxH̃z (5)

∂Ey

∂x̃
− ∂Ex

∂ỹ
= µ′zxH̃x + µ′zyH̃y + µ′zzH̃z (6)

∂H̃z

∂ỹ
− ∂H̃y

∂z̃
= ε′xxEx + ε′xyEy + ε′zxEz (7)

∂H̃x

∂z̃
− ∂H̃x

∂x̃
= ε′yxEx + ε′yyEy + ε′yzEz (8)

∂H̃y

∂x̃
− ∂H̃x

∂ỹ
= ε′zxEx + ε′zyEy + ε′zzEz (9)

[
µ′r

]
=




µ′xx µ′xy µ′xz

µ′yx µ′yy µ′yz

µ′zx µ′zy µ′zz


 =
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sysz

sx
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sx
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 (10)
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[
ε′r

]
=




ε′xx ε′xy ε′xz

ε′yx ε′yy ε′yz

ε′zx ε′zy ε′zz


 =




εxx
sysz

sx
εxy

sxsz
sy

εxz
sxsy

sz

εyx
sysz

sx
εyy

sxsz
sy

εyz
sxsy

sz

εzx
sysz

sx
εzy

sxsz
sy

εzz
sxsy

sz


 (11)

Here, the grid coordinates have been normalized according to

x̃ = k0x ỹ = k0y z̃ = k0z (12)

2.1. Finite-difference Approximation of Maxwell’s Equations

Following the procedure outlined in [7], the fields and materials are assigned to discrete points on a Yee
grid [28] and the derivatives in Eqs. (4)–(9) are approximated using central finite-differences [29]. The
integer variables i, j, and k are array indices.

Ez|i,j+1,k − Ez|i,j,k
∆ỹ

− Ey|i,j,k+1 − Ey|i,j,k
∆z̃

= µ′xxH̃x

∣∣∣
i,j,k

+
µ′xyH̃y

∣∣∣
i−1,j,k

+ µ′xyH̃y

∣∣∣
i,j,k

+ µ′xyH̃y

∣∣∣
i−1,j+1,k

+ µ′xyH̃y

∣∣∣
i,j+1,k

4

+
µ′xzH̃z

∣∣∣
i−1,j,k

+ µ′xzH̃z

∣∣∣
i,j,k

+ µ′xzH̃z

∣∣∣
i−1,j,k+1

+ µ′xzH̃z

∣∣∣
i,j,k+1

4
(13)

Ex|i,j,k+1 − Ex|i,j,k
∆z̃

− Ez|i+1,j,k − Ez|i,j,k
∆x̃

=
µ′yxH̃x

∣∣∣
i,j,k

+ µ′yxH̃x

∣∣∣
i+1,j,k

+ µ′yxH̃x

∣∣∣
i,j−1,k

+ µ′yxH̃x

∣∣∣
i+1,j−1,k

4
+µ′yyH̃y
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4
(14)
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=
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4

+
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4
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(15)
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∆ỹ
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+
ε′yzEz

∣∣i,j,k + ε′yzEz

∣∣i,j+1,k + ε′yzEz

∣∣i,j,k−1 + ε′yzEz

∣∣i,j+1,k−1

4
(17)

H̃y

∣∣∣
i,j,k

− H̃y

∣∣∣
i−1,j,k

∆x̃
−

H̃x

∣∣∣
i,j,k

− H̃x

∣∣∣
i,j−1,k

∆ỹ

=
ε′zxEx|i−1,j,k + ε′zxEx|i,j,k + ε′zxEx|i−1,j,k+1 + ε′zxEx|i,j,k+1

4

+
ε′zyEy

∣∣i,j−1,k + ε′zyEy

∣∣i,j,k + ε′zyEy

∣∣i,j−1,k+1 + ε′zyEy

∣∣i,j,k+1

4
+ ε′zzEz

∣∣i,j,k (18)

In these equations, the terms containing off diagonal tensor elements require special treatment
because each term in a finite-difference equation must exist at the same point in space. In Eq. (13), for
example, each term must exist at the same point as H̃x. The central finite-difference ensures that the
derivative terms on the left exist at this point. The last two terms on the right side of this equation
are averaged at four points in the grid to interpolate the values at the same point as H̃x. The same
interpolation operation is used on every term in Eqs. (13)–(18) containing an off diagonal tensor element.
Figure 1 illustrates the Yee cell and summarizes where each of the tensor elements are defined to exist
relative to the field components. The tensor elements µ′xx, µ′yx, and µ′zx are placed on the Yee grid at
the same points as H̃x. The tensor elements µ′xy, µ′yy, and µ′zy are placed at the same points as H̃y. The
tensor elements µ′xz, µ′yz, and µ′zz are placed at the same points as H̃z. Similarly for the permittivity,
the tensor elements ε′xx, ε′yx, and ε′zx are placed on the Yee grid at the same points as Ex. The tensor
elements ε′xy, ε′yy, and ε′zy are placed at the same points as Ey. The tensor elements ε′xz, ε′yz, and ε′zz
are placed at the same points as Ez.

Figure 1. 3D Yee cell along with position of the tensor elements.

2.2. Maxwell’s Equations in Matrix Form

Each of Eqs. (13)–(18) is written once for every cell in the grid so each finite-difference equation produces
a large set of linear algebraic equations. Each set of equations can be written in matrix form. To do this,
interpolation matrices R±

i are introduced to perform the four-point averaging. These will be discussed
in more detail later.

De
yez −De

zey = µ′xxh̃x + R−
x R+

y µ′xyh̃y + R−
x R+

z µ′xzh̃z (19)

De
zex −De

xez = R−
y R+

x µ′yxh̃x + µ′yyh̃y + R−
y R+

z µ′yzh̃z (20)

De
xey −De

yex = R−
z R+

x µ′zxh̃x + R−
z R+

y µ′zyh̃y + µ′zzh̃z (21)

Dh
y h̃z −Dh

z h̃y = ε′xxex + R+
x R−

y ε′xyey + R+
x R−

z ε′xzez (22)

Dh
z h̃x −Dh

xh̃z = R+
y R−

x ε′yxex + ε′yyey + R+
y R−

z ε′yzez (23)
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Dh
xh̃y −Dh

y h̃x = R+
z R−

x ε′zxex + R+
z R−

y ε′zyey + ε′zzez (24)

The terms ex, ey, ez, h̃x, h̃y and h̃z are column vectors that contain all of the field components
throughout the entire grid reshaped into linear arrays. The terms µ′mn and ε′mn are diagonal matrices
containing the relative tensor elements throughout the grid along their diagonals with the PML
incorporated. The terms De

x, De
y and De

z are banded matrices that calculate first-order spatial
derivatives of the electric fields across the grid. Similarly, the terms Dh

x, Dh
y and Dh

z calculate first-
order spatial derivatives of the magnetic fields across the grid. These are described in more detail in
Ref. [7]. When the 3D code is being used to model 2D or 1D systems, the derivatives along the uniform
directions take the special forms provided in Eqs. (25)–(27). The wave vector of the source is given by
~kinc = kx,incx̂ + ky,incŷ + kz,incẑ and I is the identity matrix.

De
x = Dh

x = −j
kx,inc

k0
I for devices uniform along x (25)

De
y = Dh

y = −j
ky,inc

k0
I for devices uniform along y (26)

De
z = Dh

z = −j
kz,inc

k0
I for devices uniform along z (27)

It is possible to “absorb” both the interpolation matrices and PML terms into the permittivity
and permeability tensors. When this is done, the tensor elements are written with a double-prime
superscript to remind us that the PML and interpolations have been absorbed into them.

[
µ′′r

]
=




µ′′xx µ′′xy µ′′xz

µ′′yx µ′′yy µ′′yz

µ′′zx µ′′zy µ′′zz


 =




µ′xx R−
x R+

y µ′xy R−
x R+

z µ′xz

R−
y R+

x µ′yx µ′yy R−
y R+

z µ′yz

R−
z R+

x µ′zx R−
z R+

y µ′zy µ′zz


 (28)

[
ε′′r

]
=




ε′′xx ε′′xy ε′′xz

ε′′yx ε′′yy ε′′yz

ε′′zx ε′′zy ε′′zz


 =




ε′xx R+
x R−

y ε′xy R+
x R−

z ε′xz

R+
y R−

x ε′yx ε′yy R+
y R−

z ε′yz

R+
z R−

x ε′zx R+
z R−

y ε′zy ε′zz


 (29)

The interpolation matrices R±
i are banded matrices that interpolate quantities across the grid [30].

The sign of the superscript indicates whether the interpolation is calculated by averaging a point with
the next or previous point on the grid. In this sense, the subscript indicates in which direction the
interpolation is happening. The interpolation matrices are very similar in form to the derivative
operators and differ only in signs and scaling. It is important to premultiply the tensor elements
by the interpolation matrices because it is the εE and µH products that are being interpolated. As a
quick example of what the interpolation matrices look like, they were computed for a two-dimensional
grid composed of only 4× 4 cells. Using Dirichlet boundary conditions, the interpolation matrices R+

x
and R+

y for this simple case are

R+
x =

1
2




1 1
1 1

1 1
1 0

1 1
1 1

1 1
1 0

1 1
1 1

1 1
1 0

1 1
1 1

1 1
1




(30)
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R+
y =

1
2




1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1
1

1
1




(31)

For this simple case, the interpolation matrices are composed of two dominant diagonals. Some off
diagonal terms can arise when periodic boundaries or other boundary conditions are incorporated.
Additional bands will appear when higher-order interpolation is used. The positive and negative
interpolation matrices are related through the complex Hermitian operation as R+

i =
(
R−

i

)H . The
interpolation matrices can have complex numbers when there are periodic boundary conditions.
Using interpolation matrices in this manner allows straightforward implementation of higher-order
interpolation schemes without having to modify the rest of the AFDFD code.

Maxwell’s curl equations can now be written in block matrix form as

Ce~e =
[
µ′′r

] ~̃h (32)

Ch~̃h =
[
ε′′r

]
~e (33)

~e =

[ ex

ey

ez

]
~̃h =




h̃x

h̃y

h̃z


 (34)

Ce =




0 −De
z De

y
De

z 0 −De
x−De

y De
x 0


 Ch =




0 −Dh
z Dh

y

Dh
z 0 −Dh

x

−Dh
y Dh

x 0


 (35)

2.3. Matrix Wave Equation

A matrix wave equation can be derived for the electric field by solving Eq. (32) for ~̃h and substituting
that expression into Eq. (33). A similar matrix wave equation can be derived for the magnetic field by
solving Eq. (33) for ~e and substituting that expression into Eq. (32). It is useful to write the matrix

wave equations in terms of a wave matrix A and the unknown fields, ~e or ~̃h.

Ae~e = 0 Ae = Ch
[
µ′′r

]−1 Ce − [
ε′′r

]
(36)

Ah
~̃h = 0 Ah = Ce

[
ε′′r

]−1 Ch − [
µ′′r

]
(37)

These equations cannot yet be solved because a source has not yet been incorporated.

3. ROTATION OF THE TENSORS

The material tensors at each point in the grid can be completely unique so the anisotropy can be varied
in any manner across the grid. Physical tensors have only three degrees of freedom, where three numbers
represent the material response along the principle axes (â, b̂, and ĉ) of the anisotropic material. When



Progress In Electromagnetics Research B, Vol. 61, 2014 61

the tensors are expressed in this diagonalized system, the three degrees of freedom are explicit. Most
often, anisotropic materials are specified in this manner. The convention is to list the constitutive values
along the diagonal in order of increasing magnitude.

[
εa 0 0
0 εb 0
0 0 εc

]
and

[
µa 0 0
0 µb 0
0 0 µc

]
(38)

To incorporate a tensor into a Cartesian grid, it is first necessary to convert the tensor given along
the principle axes

[
εabc

]
to an equivalent tensor in the coordinates of the model [εxyz]. In the present

work, Cartesian coordinates are used. The transformation is accomplished using Eq. (39) where P is a
rotation matrix.

[εxyz] = P
[
εabc

]
PT (39)

P =




x̂ • â x̂ • b̂ x̂ • ĉ

ŷ • â ŷ • b̂ ŷ • ĉ

ẑ • â ẑ • b̂ ẑ • ĉ


 (40)

The Cartesian tensor can be rotated into any arbitrary orientation using rotation matrices [31].
Equation (41) rotates the tensor [ε] by angle θ about the ith axis. Rotation matrices are both real and
unitary so [P ]T = [P ]−1. [

εrot
]

= [Pi (θ)] [εxyz] [Pi (θ)]
T (41)

Rotation matrices that rotate about the x, y, and z axes by an angle θ are given by Eq. (42),
Eq. (43), and Eq. (44) respectively.

[Px (θ)] =

[ 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

]
(42)

[Py (θ)] =

[ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]
(43)

[Pz (θ)] =

[ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

]
(44)

Rotation matrices can also be used in any combination. For example, to rotate a tensor by 30◦ about
the z-axis and then 120◦ about the x-axis, the following sequence of multiplications should be used.[

εrot
]

= [Px (120◦)] [Pz (30◦)] [εxyz] [Pz (30◦)]T [Px (120◦)]T (45)

4. TOTAL-FIELD/SCATTERED-FIELD FORMULATION

The powerful total-field/scattered-field (TF/SF) technique described in Ref. [7] for incorporating a
source can still be applied, but three field components are needed to describe the source. The source
field ~esrc is constructed according to Eq. (46). It is a column vector composed of three smaller column
vectors ex,src, ey,src, and ez,src that each contain the different field components of the source throughout
the Yee grid, but reshaped into 1D arrays.

~esrc =

[ ex,src

ey,src

ez,src

]
(46)

ex,src =




e
(1,1,1)
x,src

e
(1,1,2)
x,src

...
e
(Nx,Ny,Nz)
x,src




ey,src =




e
(1,1,1)
y,src

e
(1,1,2)
y,src

...
e
(Nx,Ny ,Nz)
y,src




ez,src =




e
(1,1,1)
z,src

e
(1,1,2)
z,src

...
e
(Nx,Ny,Nz)
z,src




(47)
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The masking matrix Q presented in Ref. [7] must be slightly modified and is constructed in the
form of Eq. (48). It is a block diagonal matrix composed of three matrices along its diagonal. Qx is
the scattered-field masking matrix for the Ex field, Qy is the scattered-field masking matrix for the Ey

field, and Qz is the scattered-field masking matrix for the Ez field.

Q =

[ Qx 0 0
0 Qy 0
0 0 Qz

]
(48)

Given the wave matrix A, source field f src, and the masking matrix Q, the source vector b is
calculated according to the equation presented in Ref. [7].

b = (QA−AQ)~esrc (49)

Now that a source has been incorporated, the field is calculated according to Eq. (50). Note that
the solution ~e must be parsed to extract the individual field components ex, ey, and ez. These three
terms can then then be reshaped from column vectors back to the original grid.

~e =

[ ex

ey

ez

]
= A−1b (50)

If needed, the magnetic field can be calculated from the electric field using Eq. (32). This is

~̃h =
[
µ′′r

]−1 Ce~e (51)

5. BENCHMARK SIMULATIONS

5.1. Scattering from an Anisotropic Guided-Mode Resonance Filter

Guided-mode resonance (GMR) filters consist of two electromagnetically coupled devices; a grating and
a slab waveguide [32]. When an external electromagnetic wave is incident on the device and a precise
phase matching condition is met, the external wave is diffracted by the grating and coupled into a guided
mode within the slab. Due to reciprocity, the guided waves slowly leak back out of the slab waveguide.
The leaked wave interferes with the incident wave to produce the overall frequency response.

GMR devices using ruled gratings are inherently sensitive to polarization due to the birefringence
imposed by the grating [32–36]. By incorporating anisotropy into the design, it becomes possible to
introduce birefringence that counteracts the grating to realize polarization independent designs. Using
the AFDFD code, an anisotropic ruled-grating GMR filter was designed to be polarization insensitive.
The results were verified by simulating the same design with Ansys HFSS. Both HFSS and AFDFD
used a plane wave as a source and periodic boundaries on the sides. AFDFD used UPML’s on the top
and bottom, but HFSS used Floquet ports.

Figure 2 depicts the spectral response of the anisotropic GMR filter obtained using both HFSS
and AFDFD and the results matched almost exactly. Both the transvers electric (TE) and transvers
magnetic (TM) modes were made resonant at 24.94 GHz by adjusting the anisotropy of the material.
The TE mode exhibited a 0.2% fractional bandwidth while the TM mode exhibited 0.16% fractional
bandwidth. Using the method presented in reference [37], a concept of how this device could be realized
is illustrated in Figure 3. In this diagram, anisotropy is introduced artificially using an array of air holes
formed through the otherwise ordinary dielectric. The array must be highly subwavelength to ensure
that it is not resonant.

5.2. Scattering from a Flat Lens for Far-Zone Focusing

Transformation optics (TO) uses coordinate transforms to design electromagnetic devices that
can control electromagnetic fields almost arbitrarily [38–40]. Since Maxwell’s equations are form
invariant [41, 42] the transform can be pulled out of the coordinates and absorbed into the constitutive
parameters. When this is done, the electromagnetic fields in the new constitutive parameters behave the
same as they did in the transformed coordinate system. Using TO, a flat lens for far-zone focusing was
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(a) (b)

Figure 2. (a) Anisotropic GMR filter spectral response simulated with Ansys HFSS. (b) Anisotropic
GMR spectral response simulated with AFDFD.

Figure 3. Concept drawing of a GMR filter incorporating artificial anisotropy produced by a highly
subwavelength array of holes in the dielectric.

designed in Ref. [43]. The lens effectively converts cylindrical waves into plane waves. In this design,
the permittivity and permeability were set equal. The resulting permittivity was

ε′xx =
√

a2 − x2 − g

l
(52)

ε′xy = ε′yx =
x (y − g)
l
√

a2 − x2
(53)

ε′yy =
1√

a2 − x2 − g

[
x2 (y − g)2

l (a2 − x2)
+ l

]
(54)

ε′zz =
√

a2 − x2 − g

l
(55)

ε′zx = ε′xz = ε′zy = ε′yz = 0 (56)

a =
(
g2 + w2

)1/2 (57)

The dimensions in this design were w = 0.4m, g = 0.05m, and l = 0.1m. The material parameters
are plotted across a 2D grid in Figure 4.
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Figure 4. Material parameters for a far-zone lens.

The far zone lens was simulated using the AFDFD method presented here. The field calculated
from the simulation is shown in Figure 5. There are UPML’s on all four sides of the simulation space.
The simulated results are extremely close to those shown in Figure 6 of Ref. [41]. There are slight
reflections at the interface of the lens and the cylindrical wave because the materials properties were
truncated to eliminate extreme values. Duplicating these results confirms the accuracy of the simple
AFDFD method.

(a) (b)

Figure 5. (a) Geometry of coordinate transformation. (b) Simulated far zone lens with AFDFD.

5.3. Scattering from a Cloak

Using TO, cloaks have been designed to work in the microwave region [10] and in the optical region [44].
Using the coordinate transform developed in Ref. [10], a cloak was made using the following coordinate
transform in the cylindrical coordinate system. In these equations, the parameter a is the inner radius
of the cloak and parameter b is the outer radius.

r′ =
b− a

b
r + a (58)

θ′ = θ (59)
z′ = z (60)

The dimensions used were a = 10 cm and b = 45 cm. For illustration purposes, Eqs. (58)–(60) were
converted into Cartesian space and plotted in Figure 6.
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Figure 6. Material parameters of cloak.

The tensor elements not shown in Figure 6 were set to zero. A standard plane wave was simulated
using AFDFD with UMPL’s on the left and right and Dirichlet boundaries on the other sides. The
same plane wave was simulated but with the cloak placed in the center of the simulation space. It can
be seen in Figure 7 that the cloak was successfully simulated using AFDFD. The cloak was able to
reconstruct a plane wave on the transmitted side of the device.

Figure 7. AFDFD simulation of cloak.

6. CONCLUSIONS

It was shown in detail how to modify the 3D FDFD method to be able to incorporate anisotropic
materials with arbitrary tensors. It was also shown how to use the 3D code as a 2D code and a 1D code
by special treatment of the derivative operators. The method was then successfully benchmarked by
simulating an anisotropic GMR filter in HFSS and in AFDFD. Finally, AFDFD was used to simulate
a far zone lens and a cloak generated with TO. All of the results obtained using AFDFD matched very
closely to results obtained by other tools and other authors.
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