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A General Solution to Wireless Power Transfer
between Two Circular Loops

Ada S. Y. Poon*

Abstract—Wireless power transmission has been analytically studied in near-field coupling systems
based on the small-antenna and near-field approximations, and in microwave power beaming systems
based on the far-field approximation. This paper attempts to provide a general solution based on
full-wave analysis to wireless power transmission between two circular loops. The solution applies to
arbitrary transmit and receive loop radii, transmission range, orientation and alignment of the loops,
and dielectric properties in a homogeneous isotropic medium. The power link is modeled as a two-port
network and the efficiency based on simultaneous conjugate matching is used as the performance metric.
The self and mutual admittances are analytically solved by expressing the current on the loops in Fourier
series and the fields in vector spherical wave functions, and by the use of vector addition theorem to
relate the coupling between the loops. The general solution is then applied to draw new insights such as
the optimal carrier frequency between symmetric loops and impact of higher order modes on the power
transfer efficiency between asymmetric loops.

1. INTRODUCTION

The concept of wireless power transfer has been introduced since the 19th century. In 1890’s, Tesla
demonstrated the first near-field coupling system that wirelessly powered a lamp based on a two-coil
system [1, 2]. Resonant circuits were used to enhance the transmission range. More than a hundred years
later, researchers from MIT introduced a four-coil system and performed similar experiment [3, 4]. The
additional two coils, one at the transmitter and one at the receiver, function as impedance transformers
to match the generator impedance with the self impedance of the primary coil, and to match the load
impedance of the lamp with the self impedance of the secondary coil, respectively. The near-field
coupling system as the name suggested, operates in the near field. To increase the transmission range,
far-field methods were investigated. Brown et al. demonstrated beamed microwave power transmission
to wirelessly power a helicopter in flight of 60 ft above the transmit aperture and thereafter, assessed
the concept of solar power satellite (SPS) [5, 6].

In near-field coupling, the dimension of the coils and the transmission range are comparable, and
they are much less than a wavelength. The coupling is dominated by the TE10 mode of the coils
and the transmission can be analytically solved by the near-field approximation. In microwave power
beaming, on the other hand, the transmission range is much larger than the dimension of the apertures.
The dimension can be on the order of or much greater than a wavelength. The coupling is dominated
by the resonant mode of the apertures and the transmission are analytically solved by the far-field
approximation. When neither of those conditions is satisfied, for example, the dimension of the coils
or the transmission range is on the order of a wavelength, there is no analytical solution reported in
the literature. This paper attempts to provide a general solution that applies to arbitrary dimension of
the coils, transmission range, alignment between the coils, and dielectric properties in a homogeneous
isotropic medium.
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Our analytical framework is based on a general two-port representation of the coupling between
two circular loops. As circular loop is one of the fundamental antenna structures, the self and mutual
admittances of two circular loops have been studied extensively. In [7], it evaluated the self and mutual
admittances of two coaxial, identical circular loops. The result was extended to an array of coaxial
circular loops with arbitrary radii [8]. In [9], an array of loops of arbitrary radii and orientation were
considered. The coupling between loops was derived through coordinate transformation and intensive
vector algebra. In contrast, we decompose the electromagnetic fields due to the circular loops into the
corresponding vector spherical wave functions. Then, we apply the vector addition theorem [10, 11] to
translate the wave functions from the secondary loop to the coordinate of the primary loop, and vice
versa to derive a set of equations that satisfy the boundary conditions of the loops. The use of the
vector addition theorem allows us to yield a very compact and succinct solution to the self and mutual
admittances.

Once we obtain the admittances of the two-port network, we are able to draw some new insights on
wireless power transfer. We investigate the optimal frequency in wireless power transfer between two
loops of similar dimensions. The TE10 modes achieve higher power transfer efficiency. Smaller loops
favor higher operating frequency while larger loops favor lower operating frequency. In addition, thinner
wires favor higher operating frequency but its impact is less significant than loop dimension.

In practice, the dimension of the two loops can be asymmetric in size. In the symmetric case, the
dominating modes of the loops and their coupling coincide, and TE10 modes achieve better efficiency.
In the asymmetric case, these dominating modes can differ. For example, the transmit loop can be
dominated by the 1st order harmonics while the receive loop is dominated by the 0th order harmonics,
but the coupling is dominated by the 1st order harmonics. We will illustrate that higher order modes
sometimes outperform the TE10 modes. They can be further exploited to attain higher efficiency in the
future.

2. ANALYTICAL FRAMEWORK

With reference to Figure 1, we consider a transmit structure driven by a source that induces current
density J1 on the transmit structure and J2 on the receive structure. The coupling between this pair
of structures is modeled by a two-port network, Z̄:

V1 = Z11I1 + Z12I2 (1a)
V2 = −ZLI2 = Z21I1 + Z22I2. (1b)

Maximizing energy transfer between them is equivalent to finding ZG and ZL that maximizes the power
delivered to the load ZL while minimizing the input power into the two port. It is achieved when ZG

and ZL are conjugate matched to the input impedance Zin and the output impedance Zout respectively.
This condition is known as the simultaneous conjugate matching.

Solving the following simultaneous equations:

Z∗
G = Z11 − Z12Z21

Z22 + ZL
Z∗

L = Z22 − Z12Z21

Z11 + ZG
,

yields the optimal impedances

ZG,opt = R1K + iX1

(
1 − Im Z2

12

2R2X1

)
ZL,opt = R2K + iX2

(
1 − Im Z2

12

2R1X2

)
(2)

Two-port network,

Figure 1. Models the coupling between the transmit and receive structures as a two-port network, Z̄.
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where Znn = Rn − iXn and

K =

√
1 − Re Z2

12

R1R2
−

( ImZ2
12

2R1R2

)2
.

The optimal efficiency is therefore given by

ηopt =
|Z12|2

2(1 + K)R1R2 − Re Z2
12

. (3)

In this paper, we will use ηopt as a figure of merit in the performance analyses. Various forms of RLC
networks in RF circuit design [12] can be implemented to synthesize ZG,opt and ZL,opt.

3. SELF AND MUTUAL ADMITTANCES OF TWO CIRCULAR LOOPS

In this section, we will first define self and mutual admittances in terms of the harmonics of the loops.
Then, we solve the admittances by satisfying a set of boundary conditions based on the technique of
method of moments.

3.1. Definition of Self and Mutual Admittances

We rewrite (1) in terms of the self and mutual admittances:

I1 = Y11V1 + Y12V2 (4a)
I2 = Y21V1 + Y22V2. (4b)

The self admittance Y11 is obtained when a voltage source V1 is applied to loop 1 and loop 2 is shorted
(V2 = 0), as illustrated in Figure 2(a). Suppose that the loop is thin. The induced current density on
loop 1 can be modeled as

J11(r) = φ̂J11,φ(φ)
δ(θ − π/2)

r
δ(r − l). (5)

The φ dependence can be expanded by the orthogonal basis {eimφ}:

J11,φ(φ) =
∞∑

m=−∞
xm,11e

imφ. (6)

The self admittance Y11 is then given by

Y11 =
J11,φ(0)

V1
=

∞∑
m=−∞

xm,11

V1
. (7)

Suppose that loop 1 is centered at the origin and loop 2 is at r12. The current induced on loop 2 satisfies

J21(r− r12) = φ̂J21,φ(φ)
δ(θ − π/2)

r
δ(r − l) (8)

Loop 2 

Loop 1 

(a) (b)

Figure 2. (a) To define Y11 and Y12, a voltage source is applied to loop 1 and loop 2 is shorted; and
(b) to define Y22 and Y21, a voltage source is applied to loop 2 and loop 1 is shorted.
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and

J21,φ(φ) =
∞∑

m=−∞
xm,21e

imφ. (9)

The mutual admittance Y21 is then given by

Y21 =

∞∑
m=−∞

xm,21

V1
. (10)

Similarly, we can obtain Y12 and Y22 by applying a voltage source V2 to loop 2 while shorting loop 1, as
illustrated in Figure 2(b).

3.2. Analytical Solutions based on Method of Moments (MOM)

The set of Fourier coefficients {xμ,nm} for μ, n, m = 1, 2 are determined by satisfying the boundary
conditions. Suppose that the loops are made of material with finite conductivity σ, and ln, an, and
Aw,n are the loop radius, wire radius, and effective cross sectional area†, respectively. We assume that
an � ln and an is much less than a wavelength such that we can use the delta-gap model to model the
feed region. Let us first consider the scenario in Figure 2(a) and denote the electric field from Jnm by
Enm for n, m = 1, 2. The φ direction of the electric field is required to satisfy:

E11,φ(l1 + a1, π/2, φ) + E21,φ(l1 + a1, π/2, φ) =
J11,φ(φ)
σAw,1

− V1δ(φ)
l1 + a1

(11)

and

E11,φ(r) + E21,φ(r) =
J21,φ(φ)
σAw,2

, ∀r ∈ {r : r − r12 = (l2 + a2, π/2, φ) for some φ} . (12)

To derive the electric fields, let us first introduce the vector spherical wave functions, Mnm(r) and
Nnm(r). From definitions and results from [13],

Mnm(r) = h(1)
n (kr)r∇Ynm(θ, φ) × r̂ (13a)

Nnm(r) = n(n + 1)
h

(1)
n (kr)
kr

Ynm(θ, φ)r̂ +
[
h

(1)
n−1(kr) − n

h
(1)
n (kr)
kr

]
r∇Ynm(θ, φ). (13b)

Furthermore, we introduce the operator Rg . When it acts on Mnm(r) and Nnm(r), the spherical

Hankel function h
(1)
n (·) is replaced by the spherical Bessel function jn(·). Denote the projection of the

φ component of RgMnm(r) and RgNnm(r) onto the basis of the source current e−imφ by

p1nm(l) = kl

∫
RgMnm,φ(l, π/2, φ)e−imφdφ (14a)

p2nm(l) = kl

∫
RgNnm,φ(l, π/2, φ)e−imφdφ. (14b)

Note that pκ,n,−m(l) = (−1)mp∗κnm(l). The electric fields are given by

E11(r) = −kη

∞∑
n=1

n∑
m=−n

xm,11

n(n + 1)
[
p∗1nm(l1)Mnm(r) + p∗2nm(l1)Nnm(r)

]
(15a)

E21(r) = −kη

∞∑
n=1

n∑
m=−n

xm,21

n(n + 1)
[
p∗1nm(l2)Mnm(r− r12) + p∗2nm(l2)Nnm(r − r12)

]
. (15b)

The expression for E11(r) is valid for r > l1 while the expression for E21(r) is valid for r > l2. As
Mnm(r) is transverse to r, it is referred to as the TEnm mode. The Nnm(r) is referred to as the TMnm

mode.
† The effective cross sectional area equals to wire perimeter times its skin depth.
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The vector spherical functions Mnm(r) and Nnm(r) are orthogonal while their translated versions
Mnm(r − r12) and Nnm(r − r12) are not. Applying the vector addition theorem [10, 11],

Mnm(r − r12) = n(n + 1)
∑
n′,m′

[
αnm,n′m′(r12)RgMn′m′(r) + βnm,n′m′(r12)RgNn′m′(r)

]
(16a)

Nnm(r − r12) = n(n + 1)
∑
n′,m′

[
αnm,n′m′(r12)RgNn′m′(r) + βnm,n′m′(r12)RgMn′m′(r)

]
(16b)

for r < r12, where the coupling coefficients are given by

αnm,n′m′(r12) =
in

′−n

n(n + 1)n′(n′ + 1)

∑
n′′

[
n(n + 1) + n′(n′ + 1) − n′′(n′′ + 1)

]
γnm,n′m′,n′′(r12)

βnm,n′m′(r12) =
in

′−n+1

n(n + 1)n′(n′ + 1)

∑
n′′

{
kr12 cos(π − θ12) · 2m′γnm,n′m′,n′′(r12)

+kr12 sin(π − θ12)
[
ei(π+φ12)

√
(n′ − m′)(n′ + m′ + 1)γnm,n′(m′+1),n′′(r12)

+e−i(π+φ12)
√

(n′ + m′)(n′ − m′ + 1)γnm,n′(m′−1),n′′(r12)
]}

γnm,n′m′,n′′(r12) = (−1)min
′′
Yn′′,m−m′(π − θ12, π + φ12)h

(1)
n′′ (kr12)

√
π(2n + 1)(2n′ + 1)(2n′′ + 1)(

n n′ n′′
0 0 0

)(
n n′ n′′

−m m′ m − m′
)

.

The summations over n′′ increments by a step of 2 and over the range |n − n′| ≤ n′′ ≤ n + n′. In the

expression,
(

j1 j2 j3

m1 m2 m3

)
is the Wigner 3-j symbol, and captures the strength of the coupling among

the multipoles with indices (j1,m1), (j2,m2), and (j3,m3). Now, E21(r) can be expressed as a sum of
vector spherical functions RgMnm(r) and RgNnm(r) which are orthogonal.

Denote the projection of the φ component of Mnm(r) and Nnm(r) onto the basis e−imφ by

q1nm(l) = kl

∫
Mnm,φ(l, π/2, φ)e−imφdφ (17a)

q2nm(l) = kl

∫
Nnm,φ(l, π/2, φ)e−imφdφ. (17b)

The boundary condition (11) can be written as a set of linear algebraic equations:

zm,11xm,11 +
∞∑

m′=−∞
zmm′,12xm′,21 = V1, m = 0,±1, . . . (18)

where

zm,11 =
2π(l1 + a1)

σAw,1
+

∞∑
n=max{1,|m|}

2∑
κ=1

η

n(n + 1)
p∗κnm(l1)qκnm(l1 + a1) (19a)

zm′m,12 = η

∞∑
n=max{1,|m|}

∞∑
n′=max{1,|m′|}

[
p∗1nm(l2)αnm,n′m′(r12)p1n′m′(l1 + a1)

+p∗2nm(l2)αnm,n′m′(r12)p2n′m′(l1 + a1) + p∗1nm(l2)βnm,n′m′(r12)p2n′m′(l1 + a1)

+p∗2nm(l2)βnm,n′m′(r12)p1n′m′(l1 + a1)
]
. (19b)

The first term in zm′m,12 captures the coupling from the TEn′m′ mode to the TEnm mode; the second
term captures the coupling from the TMn′m′ mode to the TMnm mode; the third term captures the
coupling from the TMn′m′ mode to the TEnm mode; and the last term captures the coupling from the
TEn′m′ mode to the TMnm mode.
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Translating the origin of the coordinate systems to r12, the electric fields become

E11(r) = −kη

∞∑
n=1

n∑
m=−n

xm,11

n(n + 1)
[
p∗1nm(l1)Mnm(r + r12) + p∗2nm(l1)Nnm(r + r12)

]
(20a)

E21(r) = −kη

∞∑
n=1

n∑
m=−n

xm,21

n(n + 1)
[
p∗1nm(l2)Mnm(r) + p∗2nm(l2)Nnm(r)

]
. (20b)

Define

zm,22 =
2π(l2 + a2)

σAw,2
+

∞∑
n=max{1,|m|}

2∑
κ=1

η

n(n + 1)
p∗κnm(l2)qκnm(l2 + a2) (21a)

zm′m,21 = η
∞∑

n=max{1,|m|}

∞∑
n′=max{1,|m′|}

[ 2∑
κ=1

p∗κnm(l1)αnm,n′m′(−r12)pκn′m′(l2 + a2)

+p∗1nm(l1)βnm,n′m′(−r12)p2n′m′(l2 + a2) + p∗2nm(l1)βnm,n′m′(−r12)p1n′m′(l2 + a2)
]
. (21b)

The boundary condition (12) can be written concisely as
∞∑

m′=−∞
zmm′,21xm′,11 + zm,22xm,21 = 0, m = 0,±1, . . . . (22)

Furthermore, the boundary conditions (18) and (22) can be written more concisely in matrix form
as

Z̄11x11 + Z̄12x21 = V11 (23a)

Z̄21x11 + Z̄22x21 = 0 (23b)

where 1 is a vector of all ones,

Z̄νν =

⎡
⎢⎢⎢⎢⎢⎣

. . .
...

...
...

. . . z−1,νν 0 0 . . .

. . . 0 z0,νν 0 . . .

. . . 0 0 z1,νν . . .
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ Z̄νμ =

⎡
⎢⎢⎢⎢⎢⎣

. . .
...

...
...

. . . z−1,−1,νμ z−1,0,νμ z−1,1,νμ . . .

. . . z0,−1,νμ z00,νμ z01,νμ . . .

. . . z1,−1,νμ z10,νμ z11,νμ . . .
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ (24)

and
xνμ = [. . . x−1,νμ x0,νμ x1,νμ . . .]t .

This yields

x11 = V1

(
Z̄11 − Z̄12Z̄−1

22 Z̄21

)−1 1 (25a)

x21 = V1

(
Z̄12 − Z̄11Z̄−1

21 Z̄22

)−1 1. (25b)

Hence,

Y11 = 1t
(
Z̄11 − Z̄12Z̄−1

22 Z̄21

)−1 1 (26a)

Y21 = 1t
(
Z̄12 − Z̄11Z̄−1

21 Z̄22

)−1 1. (26b)

Similarly, when we apply the above derivation to the scenario in Figure 2(b), we obtain

Y22 = 1t
(
Z̄22 − Z̄21Z̄−1

11 Z̄12

)−1
1 (27a)

Y12 = 1t
(
Z̄21 − Z̄22Z̄−1

12 Z̄11

)−1
1. (27b)
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3.3. Coaxial Loops

When the loops are coaxial, αnm,n′m′ and βnm,n′m′ are non-zero only if m = m′. The matrices Z̄12 and
Z̄21 are diagonal. The admittances simplify to

Y11 =
∞∑

m=−∞

zm,22

zm,11zm,22 − zmm,12zmm,21
(28a)

Y21 = −
∞∑

m=−∞

zmm,21

zm,11zm,22 − zmm,12zmm,21
(28b)

Y12 = −
∞∑

m=−∞

zmm,12

zm,11zm,22 − zmm,12zmm,21
(28c)

Y22 =
∞∑

m=−∞

zm,11

zm,11zm,22 − zmm,12zmm,21
. (28d)

Let us define the impedance matrix for the mth harmonics by

Z̄m =
[

zm,11 zmm,12

zmm,21 zm,22

]
. (29)

Each term inside the summation of (28) corresponds to the admittance of the mth harmonics. As a
result, the resultant two-port network Z̄ is a combined network of Z̄m’s connected in parallel. For ease
of exposition, all numerical examples presented later are computed assuming coaxial loops.

3.4. General Solutions

In deriving (27), we assume that the feed region of loop 2 aligns with that of loop 1. If the feed region
of loop 2 is not at φ = 0 but at φ = φ2, then V2 in the derivation should be replaced by V2e

imφ2 and
V21 becomes

V2

[
. . . e−imφ2 . . . 1 . . . eimφ2 . . .

]t
.

Furthermore in (16), we consider only the translation operator, that is, the axes of the two loops are in
parallel. For arbitrary direction of the axis of loop 2 with respect to that of loop 1, we can first apply the
rotation operator to the vector spherical wave functions to align the axis of loop 2 to be in parallel with
that of loop 1. Then, we apply the translation operator in (16), and followed by either another rotation
operator to align the feed region of both loops or changing V2 accordingly. Finally, the derivations of
the self and mutual admittances assume r12 > l1, l2. For all other cases, we have to interchange the
spherical Bessel and Hankel functions in the definitions of zm,νν , zmm′,νμ and γnm,n′m′,n′′(·) according
to [14, Appendix D].

In summary, our proposed approach in solving the self and mutual admittances is very general,
and applies to arbitrary loop radii, transmission range, alignment between the loops, and dielectric
properties of a homogeneous isotropic medium.

4. OPTIMAL FREQUENCY FOR SYMMETRIC COILS

Here, we compute ηopt between symmetric loops of various loop radii and wire radii. Figure 3(a) plots
the power transfer efficiency versus frequency for loop radius of 10 cm and transmit-receive separation
of 80 cm. The ratio of wire radius to loop radius varies from 0.1 to 0.01. Similarly, Figure 3(b) plots
the same set of curves for loop radius of 1 cm and transmit-receive separation of 8 cm. The power
transfer efficiency first increases with frequency. After reaching an optimal frequency, it decreases with
frequency more abruptly. In summary, smaller loops favor higher operating frequency while larger loops
favor lower operating frequency.

Before reaching the optimal frequency, wire radius has significant impact on the efficiency. Thicker
wire yields higher efficiency. After the optimal frequency, the set of curves converge as radiation loss
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η
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Figure 3. Plots ηopt versus frequency for (a) l1 = l2 = 10 cm and r12 = 80 cm, and (b) l1 = l2 = 1 cm
and r12 = 8cm. Each curve in the graph corresponds to different (a1

l1
, a2

l2
).

dominates. Let us look into the efficiency before the optimal frequency, and draw the equivalence
between thicker wire and multi-turn coils. For a loop radius of 10 cm, if a

l = 0.1, the wire radius will
be 1 cm. In practice, it can be too thick. Now, we can use a thinner wire but increase the number of
turns. Suppose that N is the number of turns on both coils. The mutual impedance |Z12| increases
with N2 while the self resistances R1, R2 increases with N . Hence, |Z21|2

R1R2
increase with N2. This holds

as long as the total length of the wire Nkl satisfies the condition for the small-antenna approximation.
When the loop radii remain the same, the operating frequency needs to be reduced by N times. As
|Z21|2
R1R2

∝ f , the net result is that |Z21|2
R1R2

only increases by a factor of N instead of N2. Similar increase
can be achieved by the use of single-turn loops with wire radii increased by

√
N . The corresponding

cross-sectional area is the same as the total cross-sectional area of the multi-turn coil.

5. HIGH-ORDER MODES

Near-field coupling focuses on power transmission between 0th order harmonics. Since the general
solution derived in Section 3 includes higher order harmonics, we will investigate their impact on wireless
power transfer.

5.1. Case 1: l1∼l2

First, we will reexamine the scenarios in Figure 3 — the loops are of similar dimensions while the
transmission range is several times larger. Let us begin with reviewing the impedance matrix of the 0th
order harmonics Z̄0 defined in (29). Its elements are defined in (19) and (21). From which, if we only
consider n, n′ = 1, the resultant impedance matrix captures the coupling between the TE10 mode of
the transmit and the receive loops. The corresponding efficiency is plotted in Figure 4 (the long-dashed
curve) for l1 = l2 = 10 cm, r12 = 80 cm, and a1

l1
= a2

l2
= 0.1. In the graph, we also reproduce the curve

from Figure 3(a) (the solid curve). It is the efficiency when all modes are taken into account, and is
tracked closely by the efficiency of the TE10 mode until around 200 MHz.

After 200 MHz, the 1st order harmonics become increasingly significant. Therefore, the efficiency
does not follow the trajectory of the TE10 mode. In the calculation of the impedances, if we sum over
n, n′ ≤ 2 and m ≤ 1, the resultant impedance matrix captures the contribution from TE10, TM11,
and TE21 modes. The corresponding efficiency is plotted in Figure 4 as the dash-dotted curve. It
tracks the efficiency curve closely until around 700 MHz. The 2nd order harmonics become increasingly
significant. The contribution from TEnm and TMnm modes for n ≤ 3,m ≤ 2 is plotted in Figure 4 as
the short-dashed curve. It tracks the abrupt decrease of the efficiency after 700 MHz.
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Figure 5. Plots ηopt versus frequency for l1 =
10 cm, l2 = 1 cm, and r12 = 80 cm. Each curve in
the graph corresponds to different (a1

l1
, a2

l2
).

In addition, we also observe that when the 1st order harmonics become significant, both TM11,
and TE21 modes contribute more or less equally. That is, both magnetic field and electric field in the
vicinity of the receive loop take part in the power transfer. Similarly, when the 2nd order harmonics
become significant, the TM22, TE30, TM31, and TE32 modes contribute approximately equally. On the
contrary, when the 0th order harmonics are significant, magnetic field dominates.

5.2. Case 2: l1 � l2

When the transmit and receive loops are of comparable dimension, the dominating modes of the transmit
loop coincide with those of the receive loop. These modes also dominate the coupling between the two
loops. Exciting the TE10 modes achieves higher power transfer efficiency, in general. However, when the
transmit loop is much larger than the receive loop, their dominating modes can differ and they might
not be the modes dominating the coupling between the two loops. We are interested in investigating if
exciting higher order modes achieves better efficiency.

Figure 5 plots the power transfer efficiency versus frequency for transmit loop radius of 10 cm,
receive loop radius of 1 cm, and transmit-receive separation of 80 cm with different wire radii. The set
of curves roughly converge at around 2GHz. In Figure 3(b), when both transmit and receive loop radii
are 1 cm, the set of curves also converge at around 2 GHz. When (a1

l1
, a2

l2
) = (0.1, 0.01), efficiencies of

higher order modes are comparable with that of TE10 mode. They outperform the TE10 mode when
(a1

l1
, a2

l2
) = (0.01, 0.01). Hence, thinner loops favor higher order modes.

Recall that xm,11 and xm,22 capture the contribution of the mth harmonics on the self impedance
of the transmit and the receive loops respectively. As the loops are coaxial, the coupling between the
mth transmit and the m′th receive harmonics are nonzero only if m = m′. The xm,12 captures the
strength of the coupling between the mth transmit and mth receive harmonics. Figure 6 plots the
magnitude of xm,11, xm,22, and xm,12 versus frequency. Below 300 MHz, the transmit loop, the receive
loop, and the coupling are dominated by the 0th order harmonics. In between 300 MHz and 800 MHz,
the transmit loop is dominated by the 1st order harmonics while the receive loop is dominated by the
0th order harmonics. The coupling is dominated by the 1st order harmonics. Hence, the admittances
can be approximated by

Y11 ≈ x−1,11 + x1,11

V1
Y12 = Y21 ≈ x−1,21 + x1,21

V1
Y22 ≈ x0,22

V2
. (30)

From (25), we have

x−1,11 = x1,11 ≈ V1

z1,11
x−1,21 = x1,21 ≈ − z11,21V1

z1,11z1,22
x0,22 ≈ V2

z0,22
. (31)
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Figure 6. The top figure plots the approximated efficiency in (32) versus frequency and the exact
efficiency curve. It also includes the efficiency curve of TE10 modes. The bottom three figures plot the
magnitude of xm,11, xm,22, and xm,12 versus frequency. In between the two dashed vertical lines defines
the range of frequency where the transmit loop is dominated by the 1st order harmonics.
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Consequently, the optimal efficiency can be approximated by

ηopt ≈ |Y12|2
4Re Y11 ReY22

≈ |2z11,21|2
4Re(2z1,11)Re z0,22

∣∣∣x1,22

x0,22

∣∣∣2. (32)

In Figure 6, we plot this approximated efficiency for (a1
l1

, a2
l2

) = (0.1, 0.1) (the dashed curve). It tracks
the efficiency curve closely in between 300 MHz and 800 MHz.

The first factor in (32) is the approximated efficiency of a two-port network with self impedances
2z1,11, z0,22 and mutual impedance 2z11,21. It is then weighted by the second factor which is the ratio of
|x1,22|2 to |x0,22|2. In general, when the dominating mode of the receive loop is the 0th order harmonics,
the optimal efficiency can be approximated by

ηopt ≈ |2z11,21|2
4Re(2zm,11)Re z0,22

∣∣∣x1,22

x0,22

∣∣∣2∣∣∣ x1,11

xm,11

∣∣∣2 (33)

where m is the dominating harmonic of the transmit loop at the frequency range of interest. As
|x1,22| � |x0,22| and |x1,11| � |xm,11|, if we are able to redistribute the mode contributions on the
transmit and the receive loops, higher efficiency can be attained. For example, in between 800 MHz and
3GHz, if we can excite the 1st order harmonics on the transmit loop while suppress the other modes,
the efficiency will approach (32) and will potentially outperform that of TE10 modes.

6. CONCLUSIONS

Wireless technologies have transformed the telecommunication industry. Wireless power transfer is
expected to bring wireless technologies to a new era of truly wireless in mobile devices. In the past,
long-haul power transmission schemes were researched. Recently, interests have shifted to contactless
power charger for mobile devices and short-distance power transmission schemes. This paper provides
an analytical framework that spans both spectrum of applications. Via the general solution, we
conclude that when the transmit and receive loops are of similar dimension, TE10 mode and near-
field approximations suffice to obtain the optimal solution. When there is asymmetry in the loop
dimensions, higher order modes might outperform TE10 modes. The efficiency can be further improved
if we are able to manipulate the mode distributions on the larger loop.
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