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CPML and Quasi-CPML for Cylindrical MRTD Method

Pin Zhang, Yawen Liu*, Shi Qiu, and Bo Yang

Abstract—Two absorbing boundary conditions (ABC’s) are derived for the cylindrical MRTD grids.
The first one is the convolutional perfectly matched layer (CPML) based on stretched coordinates with
complex frequency shifted constitutive parameters, and the other is the straightforward extension of
CPML named quasi-CPML (QCPML) as it is no longer perfectly matched for cylindrical interfaces.
Unlike the Berenger’s PML, the implementations of the two ABC’s are completely independent of the
host material. Numerical results show that both ABC’s can provide a quite satisfactory absorbing
boundary condition, and can save more CPU time and memory than the Berenger’s PML, while the
QCPML has an advantage of CPML at the proposed absorbing performance, CPU time and memory
saving. Moreover, it is shown that the QCPML is more effective than the PML and CPML at absorbing
evanescent waves.

1. INTRODUCTION

The Multi-Resolution Time-Domain (MRTD) technique was first proposed by Krumpholz and
Katehi [1, 2], and has been developed rapidly as one of the efficient numerical algorithms in the time-
domain such as the long established Finite Difference Time-Domain (FDTD) technique [3–15]. In [16],
the MRTD and PML-MRTD concepts have been applied to cylindrical coordinates.

In this work, the CPML [17, 18] and QCPML are derived for the cylindrical MRTD scheme. Unlike
the PML in [16], the implementation of the proposed two ABC’s is independent of the material medium,
which implies that no matter in homogeneous, inhomogeneous, lossy, dispersive, anisotropic or nonlinear
media, the implementation can be used without any further generalization. The absorbing effectiveness
of both ABC’s are investigated and compared with that of the PML [16, 19]. Numerical simulations show
that the CPML and QCPML have a very good absorbing performance. Moreover, the requirement for
CPU time and memory is also compared between PML, CPML and QCPML. It is shown that compared
with the PML, both CPML and QCPML, especially the QCPML, can save more computation time and
computer memory in general. It should be noticed that the compact support wavelet-Daubechies with
two vanishing moments (D2) [4, 7] is employed to the cylindrical MRTD in this work.

2. FORMULATION

2.1. MRTD for Cylindrical Grid

For simplicity, a homogeneous medium is considered. Maxwell’s first vector equation is stated by

∇× H = ε
∂E
∂t

(1)
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The MRTD solution of Maxwell’s equations requires the discretization of Eq. (1). In cylindrical
coordinates, Eq. (1) can be rewritten as

ε
∂Eρ

∂t
=

1
ρ

∂Hz

∂φ
− ∂Hϕ

∂z
(2)

ε
∂Eϕ

∂t
=
∂Hρ

∂z
− ∂Hz

∂ρ
(3)

ε
∂Ez

∂t
=

1
ρ

∂ (ρHϕ)
∂ρ

− 1
ρ

∂Hρ

∂ϕ
(4)

Also for the sake of simplicity and without loss of generality, the electric and magnetic fields are
expanded in terms of scaling functions only in space domain and pulse functions in time domain.

Eρ (r, t) =
+∞∑

i,j,k,n=−∞
Eφρ,n

i+1/2,j,khn (t)φi+1/2 (ρ)φj (ϕ)φk (z) (5)

Eϕ (r, t) =
+∞∑

i,j,k,n=−∞
Eφϕ,n

i,j+1/2,khn (t)φi (ρ)φj+1/2 (ϕ)φk (z) (6)

Ez (r, t) =
+∞∑

i,j,k,n=−∞
Eφz,n

i,j,k+1/2hn (t)φi (ρ)φj (ϕ)φk+1/2 (z) (7)

where Eφκ,n
i,j,k with κ = ρ, ϕ, z are the coefficients for the fields expansions in terms of scaling functions.

The indexes i, j, k and n are the discrete space and time indices related to the space and time coordinates
via ρ = iΔρ, ϕ = jΔϕ, z = kΔz and t = nΔt, where Δρ, Δϕ, Δz and Δt, represent the space and
time discretization intervals in ρ-, ϕ-, z- and t-direction. The function h (t) is defined as Haar’s scaling
function, and φ (v) is Daubechies’ scaling function. Moreover, the functions of hn (t) and φm (v) are
defined by

hn(t) = h

(
t

Δt
− n

)
(8)

φm (x) = φ
( v

Δv
−m

)
, v = ρ, ϕ, z (9)

Substituting (5)–(7) to (2)–(4) and applying Galerkin scheme and wavelet function as following:〈
hm(x),

∂hm′+1/2(x)
∂x

〉
= δm,m′ − δm,m′+1 (10)

〈ϕm(x), ϕm′(x)〉 = δm,m′Δx (11)〈
ϕm(x),

∂ϕm′+1/2(x)
∂x

〉
=
∑

l

a(l)δm+l,m′ (12)

As remarked by mathematicians [20], the shifted Daubechies D2 scaling functions has approximate
sampling properties. Therefore (9) is modified to

φi

( x

Δx
− i+M1

)
= δk,0, (13)

where

M1 =
∫ +∞

−∞
xφ (x)dx

is the first-order moment of the scaling function and δ the Kronecker delta function. This property
yields a simple algorithm for inhomogeneous problems through the local sampling of the field values
regardless of the complexity of the inhomogeneity. The numerical values of the coefficients {a (l)} have
been tabulated in [16].
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Take Eρ as example, the component of which at point ((i + 1/2)Δρ, jΔϕ, kΔz, nΔt) is given by

Eρ ((i+ 1/2) Δρ, jΔϕ, kΔz, nΔt) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Eρ (r, t) δ

(
ρ

Δρ
− i− 1

2

)

·δ
(
ϕ

Δϕ
−j
)
δ
( z

Δz
−k
)
δ

(
t

Δt
−n
)
ρdρdϕdzdt=Eφρ,n

i+1/2,j,k (14)

This equation related to the total electric value is the sampling value of this point, so we can obtain
the MRTD equations based on Daubechies scaling function as following:

Eφρ,n+1
i+1/2,j,k = Eφρ,n

i+1/2,j,k

+
Δt
ε

[
1

(i+ 1/2) ΔρΔϕ

∑
l

a (l)Hφz,n+1/2
i+1/2,j+l+1/2,k − 1

Δz

∑
l

a (l)Hφϕ,n+1/2
i+1/2,j,k+l+1/2

]
(15)

Eφϕ,n+1
i,j+1/2,k = Eφϕ,n

i,j+1/2,k

+
Δt
ε

[
1

Δz

∑
l

a (l)Hφρ,n+1/2
i,j+1/2,k+l+1/2 −

1
Δρ

∑
l

a (l)Hφz,n+1/2
i+l+1/2,j+1/2,k

]
(16)

Eφz,n+1
i,j,k+1/2 = Eφz,n

i,j,k+1/2

+
Δt
ε

[
1
iΔρ

∑
l

a(l)(i+ l + 1/2)Hφϕ,n+1/2
i+l+1/2,j,k+1/2−

1
iΔρΔϕ

∑
l

a(l)Hφρ,n+1/2
i,j+l+1/2,k+1/2

]
(17)

The other set of equations for updating H field can be obtained by duality. The stability and
dispersion analyses are available in [16], so it is not shown here for saving space.

2.2. CPML Scheme

In the CPML layer, the formulation is posed in the stretched coordinate space [21, 22]. For the sake
of generality example, a lossy medium is assumed here, we take E field as example, the H field can be
obtained by duality.

jωεEρ + σEρ =
1
ρ

∂Hz

sϕ∂ϕ
− ∂Hϕ

sz∂z
(18)

jωεEϕ + σEϕ =
∂Hρ

sz∂z
− ∂Hz

sρ∂ρ
(19)

jωεEz + σEz =
1
ρ̃sρ

∂ (ρ̃Hϕ)
∂ρ

− 1
ρsϕ

∂Hρ

∂ϕ
(20)

where si are the stretched-coordinate metric, which are proposed to be

si = κi +
σi

αi + jωε0
, i = ρ, ϕ, z (21)

where αi, σi and κi are all assumed to be real and αi > 0, σi > 0, κi ≥ 1, respectively. For simplicity,
α is defined as constant through the CPML, and sϕ is chosen to be

sϕ =
ρ̃

ρ

where ρ̃ can be defined as

ρ̃ =
∫ ρ

0
sρ

(
ρ′
)
dρ′ =

∫ ρ

0

[
κρ +

σ (ρ′)
αρ + jωε0

]
dρ′ =

(
κ′ρ +

σ′ρ
αρ + jωε0

)
ρ = sρ′ (22)

Then the Eq. (20) can be rewritten as

jωεEz + σEz =
Hϕ

ρ̃sρ

∂ρ̃

∂ρ
+

1
sρ

∂Hϕ

∂ρ
− 1
ρ̃

∂Hρ

∂ϕ
=
Hϕ

sρ′
+

1
sρ

∂Hϕ

∂ρ
− 1
sρ′

∂Hρ

∂ϕ
(23)
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Defining that s′i = s−1
i , we can get

s′i =
1
κi

+
σ′i

α′
i + jωε′i

, i = ρ, ϕ, z, ρ′ (24)

where σ′i = −σi, ε′i = ε0κ
2
i and α′

i = κ2
iαi + κiσi. Using Laplace transform theory, it can be obtained

that s′i has the impulse response

s′i (t) =
δ (t)
κi

+
σ′i
ε′i
e
−α′

i
ε′
i
t
u (t) =

δ (t)
κi

+ ζi (t) (25)

where δ(t) is the unit impulse function and u(t) the step function. Utilizing (25), Eqs. (18), (19) and (23)
can transformed into time domain

ε
∂

∂t
Eρ (t) + σEρ (t) =

1
ρ
s′ϕ (t) ∗ ∂

∂ϕ
Hz (t) − s′z ∗

∂

∂z
Hϕ (t)

=
1
ρκϕ

∂

∂ϕ
Hz (t) − 1

κz

∂

∂z
Hϕ (t) +

∫ t

0

∂

∂ϕ
Hz (t− τ) ζz (τ) dτ

−
∫ t

0

∂

∂z
Hϕ (t− τ) ζϕ (τ) dτ (26)

ε
∂

∂t
Eϕ (t) + σEϕ (t) = s′z ∗

∂

∂z
Hρ (t) − s′ρ ∗

∂

∂ρ
Hz (t)

=
1
κz

∂

∂z
Hρ (t) − 1

κρ

∂

∂ρ
Hz (t) +

∫ t

0

∂

∂z
Hρ (t− τ) ζρ (τ) dτ

−
∫ t

0

∂

∂ρ
Hz (t− τ ) ζz (τ) dτ (27)

ε
∂

∂t
Ez (t) + σEz (t) = s′ρ ∗

∂

∂ρ
Hϕ (t) + s′ρ′ ∗

(
Hϕ − ∂

∂ϕ
Hρ (t)

)

=
1
κρ

∂

∂ρ
Hϕ (t) − 1

κρ′

∂

∂z

(
Hϕ (t) − ∂

∂ϕ
Hρ (t)

)
+
∫ t

0

∂

∂ρ
Hϕ (t− τ) ζϕ (τ) dτ

−
∫ t

0

(
Hϕ (t− τ) − ∂

∂z
Hρ (t− τ)

)
ζρ′ (τ) dτ (28)

The discrete impulse response for ζi(t) can be defined as

Si (m) =
∫ (m+1)Δt

mΔt
ζ (τ)dτ = − σi

ε0κ2
i

∫ (m+1)Δt

mΔt
e
−
(

σi
κiε0

+
αi
ε0

)
τ
dτ = aie

−
(

σi
κi

+α
)

i

mΔt
ε0 , (29)

where

ai =
σi

σiκi + κ2
iαi

(
e
−
(

σi
κi

+αi

)
Δt
ε0 − 1

)
. (30)

Then following the procedure of [17] and according to the wavelet-Galerkin scheme based on Daubechies’
compactly supported wavelets, the MRTD equations for Eρ, Eϕ and Ez can be obtained as following:

Eφρ,n+1

i+ 1
2
,j,k

= CAi+ 1
2
,j,kE

φρ,n

i+ 1
2
,j,k

+ CBi+ 1
2
,j,k

[
1

κ′ρ (i+ 1/2) ΔρΔϕ

∑
l

a (l)H
φz,n+ 1

2

i+ 1
2
,j+l+ 1

2
,k

− 1
κzΔz

∑
l

a (l)H
φϕ,n+ 1

2

i+ 1
2
,j,k+l+ 1

2

]
+ CBi+ 1

2
,j,k

(
ψ

φρ,n+ 1
2

eρϕ,i+ 1
2
,j,k

− ψ
φρ,n+ 1

2

eρz,i+ 1
2
,j,k

)
(31)

Eφϕ,n+1

i,j+ 1
2
,k

= CAi,j+ 1
2
,kE

φϕ,n

i,j+ 1
2
,k

+ CBi,j+ 1
2
,k

[
1

κzΔz

∑
l

a (l)H
φρ,n+ 1

2

i,j+ 1
2
,k+l+ 1

2
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− 1
κρΔρ

∑
l

a (l)H
φz,n+ 1

2

i+ 1
2
,j+l+ 1

2
,k

]
+ CBi,j+ 1

2
,k

(
ψ

φϕ,n+ 1
2

eϕz ,i,j+ 1
2
,k
− ψ

φϕ,n+ 1
2

eϕρ,i,j+ 1
2
,k

)
(32)

Eφz,n+1
i,j,k+1/2 = CAi,j,k+1/2E

φz,n
i,j,k+1/2 + CBi,j,k+1/2

[
1

κρΔρ

∑
l

a (l)Hφϕ,n+1/2
i+l+1/2,j,k+1/2

+
1

κ′ρiΔρ

⎛
⎝Hφϕ,n+ 1

2

i+1/2,j,k+1/2 +H
φϕ,n− 1

2

i+1/2,j,k+1/2

2
− 1

Δϕ

∑
l

a (l)H
φρ,n+ 1

2

i,j+l+1/2,k+1/2

⎞
⎠
⎤
⎦

+CBi,j,k+ 1
2

(
ψ

φz,n+1/2
ezρ,i,j,k+1/2 + ψ

φz,n+1/2
ezϕ,i,j,k+1/2

)
(33)

where

ψ
φρ,n+ 1

2

eρϕ,i+ 1
2
,j,k

= P ′
ρψ

φρ,n− 1
2

eρϕ,i+ 1
2
,j,k

+Q′
ρ

∑
l

a(l)
H

φz,n+ 1
2

i+ 1
2
,j+l+ 1

2
,k

(i+ 1/2) ΔρΔϕ
(34)

ψ
φx,n+ 1

2

eρz,i+ 1
2
,j,k

= Pzψ
φx,n− 1

2

eρz,i+ 1
2
,j,k

+Qz

∑
l

a(l)
H

φϕ,n+ 1
2

i+ 1
2
,j,k+l+ 1

2

Δz
(35)

ψ
φϕ,n+1/2
eϕz ,i,j+1/2,k = Pzψ

φϕ,n−1/2
eϕz ,i,j+1/2,k +Qz

∑
l

a(l)
H

φρ,n+1/2
i,j+1/2,k+l+1/2

Δz
(36)

ψ
φϕ,n+1/2
eϕρ,i,j+1/2,k

= Pρψ
φϕ,n−1/2
eϕρ,i,j+1/2,k

+Qρ

∑
l

a(l)
H

φz,n+1/2
i+l+1/2,j+1/2,k

Δρ
(37)

ψ
φz,n+1/2
ezρ,i,j,k+1/2 = Pρψ

φz,n−1/2
ezρ,i,j,k+1/2 +Qρ

1
Δρ

∑
l

a (l)H
φϕ,n+ 1

2

i+l+ 1
2
,j,k+ 1

2

(38)

ψ
φz,n+1/2
ezϕ,i,j,k+1/2 = P ′

ρψ
φz,n−1/2
ezϕ,i,j,k+1/2 +Q′

ρ

1
κ′ρiΔρ

×
⎛
⎝Hφϕ,n+ 1

2

i+1/2,j,k+1/2 +H
φϕ,n− 1

2

i+1/2,j,k+1/2

2
− 1

Δϕ

∑
l

a (l)H
φρ,n+ 1

2

i,j+l+1/2,k+1/2

⎞
⎠ (39)

CAi,j,k =
2εi,j,k − σi,j,kΔt
2εi,j,k + σi,j,kΔt

, CBi,j,k =
2Δt

2εi,j,k + σi,j,kΔt

P ′
ρ = e

−
(

σ′
ρ

κ′
ρ
+α′

ρ

)
Δt
ε0 , Q′

ρ =
σ′ρ

σ′ρκ′ρ + κ′2
ρ α

′
ρ

(
e
−
(

σ′
ρ

κ′
ρ
+α′

ρ

)
Δt
ε0 − 1

)

Pξ = e
−
(

σξ
κξ

+αξ

)
Δt
ε0 , Qξ =

σξ

σξκξ + κ2
ξαξ

(
e
−
(

σξ
κξ

+αξ

)
Δt
ε0 − 1

)
, ξ = ρ, ϕ, z

The other set of equations for updating H field can be obtained by duality.

2.3. QCPML Scheme

In Eqs. (18)–(20), if we define ρ̃ = ρ and sϕ = 1, the 3-D updating equations for E field in time-domain
can be given by

ε
∂Eρ

∂t
+ σEρ =

1
ρ

∂

∂ϕ
Hz − 1

κz

∂

∂z
Hϕ − ψeρz (40)
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ε
∂Eϕ

∂t
+ σEϕ =

∂Hρ

κz∂z
− ∂Hz

κρ∂ρ
+ ψeϕz − ψeϕρ (41)

ε
∂Ez

∂t
+ σEz =

1
ρsρ

∂ (ρHϕ)
∂ρ

− 1
ρ

∂Hρ

∂ϕ
+ ψezρ . (42)

Compared with the CPML formulations above, this system requires only 8 instead of 12 auxiliary
variables in the 3-D case, which implies that it is more advantageous to save computation time and
computer memory. Since it is not theoretically a perfect matched layer, thus it is named Quasi-CPML,
or simply QCPML. The discretization scheme of Eqs. (40)–(42) can follow Eqs. (31)–(39).

2.4. Berenger’s PML Scheme

Here we also take E field as example. Following the procedure of [16], the equations for the PML in a
lossy medium can be obtained as

ε
∂Eρϕ

∂t
+
(
σ + εrσ

ρ
E′
)
Eρϕ + ξρϕ =

1
ρ

∂ (Hzρ +Hzϕ)
∂φ

(43)

ε
∂Eρz

∂t
+ (σ + εrσ

z
E)Eρz + ξρz = −∂ (Hϕz +Hϕρ)

∂z
(44)

ε
∂Eϕz

∂t
+ (σ + εrσ

z
E)Eϕz + ξϕz =

∂ (Hρϕ +Hρz)
∂z

(45)

ε
∂Eϕρ

∂t
+
(
σ + εrσ

ρ
E

)
Eϕρ + ξϕρ = −∂ (Hzρ +Hzϕ)

∂ρ
(46)

ε
∂Ezρ

∂t
+
(
σ + εrσ

ρ
E

)
Ezρ + ξzρ =

∂Hϕ

∂ρ
(47)

ε
∂Ezϕ

∂t
+
(
σ + εrσ

ρ
E′
)
Ezϕ + ξzϕ =

1
ρ

(
Hϕ − ∂Hρ

∂ϕ

)
(48)

where
∂ξρϕ

∂t
=
σσρ

E′

ε0
Eρϕ,

∂ξρz

∂t
=
σσz

E

ε0
Eρz

∂ξϕz

∂t
=
σσz

E

ε0
Eϕz,

∂ξϕρ

∂t
=
σσρ

E

ε0
Eϕρ

∂ξzρ

∂t
=
σσρ

E

ε0
Ezρ,

∂ξzϕ

∂t
=
σσρ

E′

ε0
Ezϕ

where the definitions of σρ
E′ , σρ

E and σz
E are available in [16]. And the split PML equations can be

written as

Eφρϕ,n+1
i+1/2,j,k = exp

(
−
(
κ′i+1/2σ + εrσ

i+1/2
E′

)
Δt/κ′iε

)
Eφρϕ,n

i+1/2,j,k

+
1 − exp

(
−
(
κ′i+1/2σ + εrσ

i+1/2
E′

)
Δt/κ′i+1/2ε

)
(
κ′i+1/2σ + εrσ

i+1/2
E′

)

×
[

1
(i+ 1/2) ΔρΔϕ

∑
l

a (l)Hφz,n+1/2
i+1/2,j+l+1/2,k − ξ

n+1/2
ρϕ,i+1/2,j,k

]
(49)

Eφρz,n+1
i+1/2,j,k = exp

(
−
(
κkσ + εrσ

k
E

)
Δt/κkε

)
Eφρz,n

i+1/2,j,k

−1 − exp
(− (κkσ + εrσ

k
E

)
Δt/κkε

)(
κkσ + εrσk

E

)
×
∑

l

a (l)
[

1
Δz

H
φϕ,n+1/2
i+1/2,j,k+l+1/2 − ξ

n+1/2
ρz,i+1/2,j,k

]
(50)
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Eφϕz,n+1
i,j+1/2,k = exp

(
−
(
κkσ + εrσ

k
E

)
Δt/κkε

)
Eφϕz,n

i,j+1/2,k

+
1 − exp

(− (κkσ + εrσ
k
E

)
Δt/κkε

)(
κkσ + εrσk

E

)
×
[

1
Δz

∑
l

a (l)Hφρ,n+1/2
i,j+1/2

− ξ
n+1/2
ϕz,i,j+1/2,k

]
(51)

Eφϕρ,n+1
i,j+1/2,k = exp

(− (κiσ + εrσ
i
E

)
Δt/κiε

)
Eφϕρ,n

i,j+1/2,k

−1 − exp
(− (κiσ + εrσ

i
E

)
Δt/κiε

)(
κiσ + εrσi

E

)
×
[

1
Δρ

∑
l

a (l)Hφz,n+1/2
i+l+1/2,j+1/2,k − ξ

n+1/2
ϕρ,i,j+1/2,k

]
(52)

Eφzρ,n+1
i,j,k+1/2 = exp

(− (κiσ + εrσ
i
E

)
Δt/κiε

)
Eφzρ,n

i,j,k+1/2

+
1 − exp

(− (κiσ + εrσ
i
E

)
Δt/κiε

)(
κiσ + εrσ

i
E

)
×
[

1
Δρ

∑
l

a (l)Hφϕ,n+1/2
i+l+1/2,j,k+1/2 − ξ

n+1/2
zρ,i,j,k+1/2

]
(53)

Eφzϕ,n+1
i,j,k+1/2 = exp

(− (κ′iσ + εrσ
i
E′
)
Δt/κ′ε

)
Eφzϕ,n
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+
1 − exp
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)
Δt/κ′ε

)(
κ′iσ + εrσi

E′
) ×

⎡
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2iΔρ

− 1
iΔρΔϕ
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l

a (l)Hφρ,n+1/2
i,j+l+1/2,k+1/2 − ξ

n+1/2
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]
(54)

where

ξ
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ρϕ,i+1/2,j,k = ξ
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σσi
E′Δt
ε0

⎛
⎝Eφρϕ,n
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⎞
⎠ (55)
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2

⎞
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zϕ,i,j,k+1/2 = ξ
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σσi
E′Δt
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⎛
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2

⎞
⎠ (60)

The other set of equations for updating H field can be obtained by duality.
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3. NUMERICAL RESULTS

3.1. Validation of Convergence

In this section, we simulate a 3-D cylindrical case in the media with constitutive parameters εr = 3.0,
σ = 0.01 to validate the convergence of both CPML and QCPML methods. The computation domain
is discretized using a (Nρ, Nϕ, Nz) = (28, 30, 36) cell lattice with eight-cell-thick CPML and QCPML
terminate the grid in ρ and z directions. Within the ABC’s layer, the constitutive parameters σi and
κi are scaled using an mth order polynomial scaling [23]

σ(d) = σmax

(
d

Dpml

)m

(61)

κ(d) = 1 + (κmax − 1)
(

d

Dpml

)m

(62)

where d denotes the distance from the computational-space/PML interface into the PML layer, Dpml is
the depth of the PML, and m is the order of the polynomial. The choice for σmax can be expressed as

σmax = kσopt (63)

σopt =
(m+ 1)

150π
√
εrΔ

(64)

where k = σmax/σopt is nonnegative and real value. Here the designated parameters α = 0.01, κmax = 7
and σi = 0.5σopt. CPML and QCPML regions are terminated with a perfect electric conductor (PEC)
wall [2, 16]. The cell discretization size is uniform in the ρ and z directions Δρ = Δz = 5cm. The
source is a Gaussian pulse applied to the electric field component Ez located at the grid point (3, 0, 15)
as follows:

Eφz,n+1
3,0,15+1/2 = Eφz,n

3,0,15+1/2 − E0 exp [−4π (nΔt− t0) /τ ]
2 (65)

where τ = 2.0 ns, t0 = 0.8τ and E0 = 1000 V/m. The receiver is located at the grid point (18, 10,
21). From Fig. 1 the agreement between analytical curve and the numerical results of the CPML and
QCPML schemes is evident, and we can see little reflection from the CPML and QCPML region. Any
differences between the analytical and numerical solutions may be attributed to modelling errors such
as the discrete approximation or reflections due to imperfections at the CPML and QCPML. Note that
the source-receiver positioning is such that the pulse passes through the ρ = 0 axis. This also verifies
the accuracy and stability of the cylindrical MRTD algorithm in our discretization scheme.
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Figure 1. Comparison between analytical and numerical results for the CPML and QCPML schemes
in cylindrical coordinates.
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3.2. Reflection Error Analysis

In this section, we also simulate a 3-D cylindrical case in the media with constitutive parameters
εr = 3.0 and σ = 0.01. Since there is a need to work with a PML of finite thickness and because of the
discretization process, the CPML and QCPML are not reflectionless, and a small spurious reflection is
present. In order to investigate the amount of spurious reflection caused by the discrete CPML and
QCPML, two cylindrical MRTD grids are used: a test domain and a benchmark domain. The test
domain is discretized using a (Nρ, Nϕ, Nz) = (30, 30, 40) grid with ten-cell-thick CPML and QCPML
terminate the grid in ρ and z directions, and the benchmark domain has untreated boundaries but a
much larger size to isolate the error due to the CPML and QCPML. In this work, a cylindrical wave is
applied to the electric field component Eϕ as follows:

Eφϕ,n+1
3,1/2:Nϕ−1/2,Nz/2−3:Nz/2+3 = Eφϕ,n

3,1/2:Nϕ−1/2,Nz/2−3:Nz/2+3 − E0 exp [−4π (nΔt− t0) /τ ]
2 (66)

where τ = 6.0 ns, t0 = 0.8τ and E0 = 1000 V/m. The receiver is located at the grid point (10, 9, Nz/2).
The cell discretization size is uniform in the ρ and z directions Δρ = Δz = 15 cm, and the time step is
chosen as Δt = 38.856 ps. The reflection error can be defined as

errordB = 20 log10

∣∣Eϕ(t) − Eϕref
(t)
∣∣

max
∣∣Eϕref

(t)
∣∣ (67)

where Eϕ(t) represents the time-dependent discrete field computed within the test domain, Eϕref
(t)

represents the same discrete field computed in the benchmark domain.
First, it is instructive to observe the maximum reflection errors incurred by the CPML and QCPML

as a function of the constitutive parameters κmax, σmax and α. Fig. 2(a) and Fig. 2(b) show the contour
plots of the maximum relative error over 2000 time steps versus κmax and σmax with α = 0.01 and
m = 4 for the CPML and QCPML. It can be seen that the −77 dB maximum error is achieved for the
CPML, and −87 dB for the QCPML. Compared with the QCPML, the optimal error for the CPML is
realized over a much broader range of κmax and σmax, but an improvement of 10 dB is obtained with
the QCPML.
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Figure 2. Contour plots of the maximum relative error for the first 2000 time steps. (a) CPML. (b)
QCPML.

Figure 3(a) and Fig. 3(b) display the contour plots of the maximum relative error over 2000 time
steps versus κmax and α with k = 1.4 for the CPML and k = 1.2 for the QCPML. It can also be seen
that the −77 dB maximum error is achieved for the CPML, and −87 dB for the QCPML. The optimal
error for the CPML is realized over a much broader range of κmax and α than the QCPML, but an
improvement of 10 dB is obtained with the QCPML.

Figure 4(a) and Fig. 4(b) plot the contour plots of the maximum relative error over 2000 time steps
versus α and σmax with κmax = 6 for the CPML and κmax = 2 for the QCPML. And the conclusion is
similar as before: the −77 dB maximum error is achieved for the CPML, and −87 dB for the QCPML;
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QCPML.
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QCPML.

the optimal error for the CPML is realized over a much broader range of α and σmax, but an improvement
of 10 dB is obtained with the QCPML.

Next, the reflection errors are studied for the CPML and QCPML. As illustrated in Fig. 5(a) and
Fig. 5(b), the reflection errors as a function of NCPML and NQCPML are recorded, respectively. Here
we define κmax = 5, k = 1.4, α = 0.005 and m = 4 for the CPML method, and κmax = 2, k = 1.2,
α = 0.005, m = 4 for the QCPML method. It is seen that as NCPML increases, the maximum reflection
error has not reduced gradually, which is about on the order of −77 dB when NCPML ≥ 8 for the
CPML method, and in the late time, the CPML method can provide a satisfying reflection error when
NCPML ≥ 8. For the QCPML method, as NQCPML increases, the maximum reflection error becomes
smaller and smaller, which is less than −80 dB when NQCPML ≥ 8, and in the late time, the QCPML
method can also provide a satisfying reflection error when NQCPML ≥ 8.

Figure 6(a) and Fig. 6(b) show the reflection errors as a function of the polynomial order m for
the CPML and QCPML methods. Here we define κmax = 5, k = 1.4, α = 0.005 and NCPML = 10 for
the CPML method, and κmax = 2, k = 1.2, α = 0.005, NQCPML = 10 for the QCPML method. From
Fig. 6(a), it can be obtained that when m ≥ 2, the maximum reflection error for the CPML is about
on the order of −77 dB, and the absorbing effectiveness of CPML is satisfactory. Form Fig. 6(b), we
can see that for the QCPML method, when m ≤ 4, the maximum reflection error becomes smaller and
smaller as m increases, which is about on the order of −87 dB when m ≥ 4, and a satisfying reflection
error can be obtained when m ≥ 3.
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Figure 5. Local reflection error within test grid observed over the first 2000 time steps. (a) CPML.
(b) QCPML.
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Figure 6. Local reflection error within test grid observed over the first 2000 time steps. (a) CPML.
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Then the comparison of the reflection errors between the Berenger’s PML, CPML and QCPML
schemes is studied. The computational model is the same as before. For Berneger’s PML, σi

E =

− ε0c(m+1)
2Dpml

∣∣∣ i
Dpml

∣∣∣m ln [R (0)], i = ρ, z, here we define that m = 4, R (0) = 10−4; for the CPML method,
we define that κmax = 5, k = 1.4, α = 0.005, NCPML = 10 and m = 4; for the QCPML method,
κmax = 2, k = 1.2, α = 0.005, NQCPML = 10 and m = 5. As illustrated in Fig. 7, the reflection error
computed via (67) for each method is recorded. It is seen that no matter in the early or late time,
the error caused by the PML is obviously more than that caused by the CPML or QCPML, and the
QCPML has an advantage over the CPML.

In order to investigate the effectiveness of the CPML and QCPML at absorbing evanescent waves,
a 3-D lattice of the dimension 20×30×40 is used, surrounding a computation domain of the dimension
10×30×20 with a PML layer 10-cell thick. Specifically, a 5×30×10 PEC is immersed in a background
media with constitutive parameters εr = 3.0 and σ = 0.01, as illustrated in Fig. 8. The excitation is
applied to the electric field component Eϕ at point A (8, 12, 0) as follows

Eφϕ,n+1
8,1/2,12 = Eφϕ,n

8,1/2,12 − E0 exp [−4π (nΔt− t0) /τ ]
2 (68)
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where τ , t0 and E0 are the same as before. The receiver is located at point B (8, 20, 28). The cell
discretization and the time step are also the same as before.

As illustrated in Fig. 9, the reflection error computed via (67) for each method is recorded. It is
seen that in the late time, the error caused by the PML or CPML is obviously more than that caused by
the QCPML, which demonstrate that the QCPML is more effective at absorbing the evanescent waves.

3.3. Comparison of the CPU Time and Memory between the PML, CPML and QCPML
Schemes

In this section, the computation domain is discretized using a 30× 30× 60 cell lattice with twenty-cell-
thick PML, CPML and QCPML terminate the grid in ρ and z directions, the media in the computation
domain and the designated parameters α, κi and σi are the same as before. Here the hard ware
platform of the PC is as follows: Intel(R) Core(TM) i3 2.93 GHz CPU, 1.93 GB Memory; and the
software platform: Microsoft Windows XP Professional, Fortran 90 Complier. As Table 1 shows, it is
obvious that both the CPML and QCPML, especially the QCPML, have an advantage over PML at
saving the CPU time and memory.
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Table 1. CPU time and memory for PML and QPML.

Schemes PML CPML QPML
CPU time/s (5000Δt) 117.531 88.094 68.125

CPU memory/MB 11.59 7.97 6.39

4. CONCLUSION

The CPML and QCPML absorbing boundary conditions are derived for cylindrical MRTD method.
The implementation of both CPML and QCPML is independent of the host material, which implies
that the CPML and QCPML formulations are unchanged in generalized media. The accuracy of the
formulations is validated by computing the convergence. It is shown that the absorbing performance for
both CPML and QCPML is satisfying and better than that of the PML, while the QCPML algorithm
is more effective at absorbing the evanescent waves, and requires less CPU time and memory than PML
and CPML.
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