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A Quasi-Static Electromagnetic Analysis for Experiments
with Strong Permanent Magnets

Sven Nordebo* and Alexander Gustafsson

Abstract—An electromagnetic analysis is presented for experiments with strong permanent disc
magnets. The analysis is based on the well known experiment that demonstrates the effect of circulating
eddy currents by dropping a strong magnet through a vertically placed metal cylinder and observing
how the magnet is slowly falling through the cylinder with a constant velocity. This experiment is
quite spectacular with a super strong neodymium magnet and a thick metal cylinder made of copper or
aluminum. A rigorous theory for this experiment is provided based on the quasi-static approximation of
the Maxwell equations, an infinitely long cylinder (no edge effects) and a homogeneous magnetization
of the disc magnet. The results are useful for teachers and students in electromagnetics who wish to
obtain a deeper insight into the analysis and experiments regarding this phenomenon, or with industrial
applications such as the grading and calibration of strong permanent magnets or with measurements of
the conductivity of various metals, etc.. Several experiments and numerical computations are included
to validate and to illustrate the theory.

1. INTRODUCTION

A well known physics/electromagnetics experiment to demonstrate the effect of circulating eddy currents
is to drop a strong magnet through a vertically placed metal cylinder and to observe how the magnet,
quite unexpectedly, is not accelerating as usual but is only slowly falling through the cylinder with a
constant velocity. The stronger the magnet, or the lower the resistance of the metal cylinder, the slower
is the fall through the cylinder. The experiment demonstrates that circulating eddy currents are induced
inside the metal cylinder due to the changing magnetic flux, i.e., the Faraday’s law of induction, and
that these induced currents cause a secondary magnetic field and associated magnetic forces that oppose
the fall of the magnet, all in accordance to Lenz’s law as well as the Biot-Savart law [3, 7, 8]. Since the
magnet (according to the experiment) is falling with a constant velocity, it is immediately realized that
the loss in mechanical potential energy of the magnet must be equal to the electrical resistive losses
inside the metal cylinder.

This experiment is often conducted at high school level and in basic courses at the universities, etc.,
and is nowadays readily accessible by everyone due to the availability of cheap super strong neodymium
permanent magnets. This type of rare-earth magnets are typically made of an alloy of neodymium,
iron and boron (Nd2Fe14B), and the sintered neodymium magnets are currently the most powerful
permanent magnets that are commercially available [6]. The manufacturers grade these magnets in a
scale ranging from N35 up to N52 where a higher value indicates a stronger magnet. The super strong
neodymium magnets make the experiment quite spectacular together with at thick metal cylinder made
of copper or aluminum (or any other non-magnetic and highly conductive material). In the laboratory,
an efficient way of significantly increasing the conductivity of the cylinder is to cool it down by using
liquid nitrogen, or somewhat less spectacular by using dry ice or simply cooling it in a freezer.

Neodymium magnets are graded according to their maximum density of magnetic energy. Other
commonly used measures are the remanence of the magnet (the remaining magnetic flux density
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when there is no external field applied) and the coercivity (the material’s resistance to becoming
demagnetized). Even though these quantities are very useful to characterize the magnetic properties
of the magnetic material, these parameters are non-trivially connected to the experimental set-up as
described above, i.e., to the physical dimensions of the magnet and of the cylinder. Furthermore, since
the manufacturers specify these quantities based on test objects with different sizes their parameter
values are most likely subjected to dimensional effects that depend on the geometry of the test object. In
the present context it is therefore the magnetization (in Ampères per meter) that is the natural quantity
to quantify the strength of the magnet and which can be given a simple and rigorous interpretation in
terms of the present experiment and where the dimensional effect is taken into full account.

This experiment has previously been analyzed in [9, 10, 14, 15] where relevant approximations have
been addressed. It is easy to see that the quasi-static approximation (neglecting Maxwells displacement
current and leading to a diffusion equation) is accurate for all practical purposes of this experiment,
see e.g., [14]. In [9, 15] the magnet is approximated by using a dipole source and the cylinder is
assumed to be thin. In [10] the experiment is analyzed for the case with a superconducting pipe and
a discussion is given regarding the limit of vanishing resistivity. In [9, 10, 15] are also discussed the
validity of neglecting the self-inductance of the cylinder (the induced currents). When applicable, this
approximation will greatly simplify the analysis and allow for closed form solutions. Interestingly, even
though this approximation usually is valid with strong magnets and normal conductors, it turns out
that the self-induction of the cylinder can not be ignored in the limit of vanishing resistivity. Ultimately,
there will always be a skin-effect and a screening of the magnetic field which will cause the magnet to
fall freely [10, 14]. This is also coherent with the outcome of the experiment if it would be performed
with a superconducting tube [10]. In [14] is finally given a complete and rigorous theory as a basis for
a numerical solution of the diffusion equation, taking the geometry of the magnet and of the cylinder
as well as the self-induction (induced currents) into full account. In [14] is also given a quantitative
analysis and arguments for the rapid vanishing of edge effects. The aim of the present contribution is to
provide a simple physical law and an explicit solution for the important case when the magnet is very
strong and the self-induction of the cylinder can be ignored. The theory is general in that the geometry
of the magnet as well as of the cylinder is included in the model, see also [12].

The analysis presented here exploits cylindrical symmetries and relies on several well-known prop-
erties regarding cylindrical Bessel functions and related Green’s function expansions [1, 2, 4, 8, 13, 17],
and it provides finally an exact analytical expression for the motion of the falling magnet. The analysis
reveals the simple physical law for stationary motion

σM2v = − mg

μ2
0C

,

where σ is the conductivity of the metal cylinder, M the magnetization of the magnet, v the velocity
of the fall, m the mass of the magnet, g the gravitational acceleration, μ0 the permeability of vacuum
and C a structure constant that depends on the geometrical dimensions of the magnet and of the
cylinder. The transient motion is exponential with time constant τ = m/(σM2μ2

0C). The analysis is
based on the assumption that the self-induction of the cylinder can be neglected. It can be shown that
this approximation is valid when the final velocity v is much smaller than the characteristic recession
velocity v0 = 2/(μ0σd) where d is the thickness of the cylinder, see [9, 10, 15]. This is usually the case
with strong magnets, reasonable thick cylinders and ordinary metals (such as copper and aluminum,
etc.). A more precise determination of the validity or accuracy of the simplified theory can be obtained
by performing a complete numerical solution for the particular problem at hand as described in [14].

Even though the analysis here is based solely on cylindrical symmetries, it is expected that very
similar physical laws may be derived for more general magnet geometries. In particular, an interesting
approach for future work would be to expand the magnetic field of the magnet in a multipole expansion
(dipole, quadrupole, etc.) and to employ proper transformations between spherical and cylindrical
expansions [2] to derive a more general theory. Another interesting future extension of the theory
would be to asses the limits of validity for the quasi-static approximation by developing a rigorous
solution to the full Maxwell equations based on a complete wave guide (TE/TM) theory.

The application of the presented theory is illustrated by identifying the magnetization of a magnet
when the conductivity of the cylinder and the velocity of the fall is known. A validation of the theory
is obtained by demonstrating the consistency of this identification based on different measurement
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cylinders. The application of the theory is also illustrated by estimating the conductivity (and hence
the temperature) of the metal cylinders based on different temperature scenarios.

2. ANALYTICAL SOLUTION

2.1. Problem Formulation

A cylindrically shaped disc magnet with large homogeneous magnetization M [Am−1], mass m [kg],
height h [m] and radius a [m] is placed inside a metal cylinder as depicted in Figure 1. It is assumed that
the cylinder is infinitely long and hence that edge effects can be neglected. The cylindrical coordinates
are denoted (ρ, φ, z) and the corresponding unit vectors (ρ̂, φ̂, ẑ). The radius vector is r = ρρ̂+zẑ. The
cartesian coordinates are denoted (x, y, z) and the corresponding unit vectors (x̂, ŷ, ẑ).

z

a
h

ρ1

ρ2

Figure 1. Geometry of the problem.

The inner radius of the metal cylinder is ρ1 [m] and the outer radius ρ2 [m], and the conductivity of
the metal is σ [Sm−1]. The electromagnetic response of the magnet is neglected (the relative permittivity
and permeability are assumed to be ε = μ = 1), except that it exhibits a very strong homogeneous
magnetization (dipole moment per unit volume) with a magnetization vector M = M ẑ. It is observed
that this situation is equivalent to placing a cylindrically shaped sheat surface current in vacuum having
a current density Js = −ρ̂×M = M φ̂ at the corresponding magnet surface at radius a, and that there
are no other equivalent currents emanating from the top or bottom of the magnet, see e.g., [3, 7, 8].

The magnet is placed in a gravity field and experiences the force −mgẑ where g = 9.81ms−2. The
position of the center of the magnet is denoted z0(t) where t is the time. The magnet is released at
t = 0 with initial position z0(0) = 0 and velocity ż0(0) = 0, and where the dot denotes a differentiation
with respect to the time. The motion of the magnet will be determined for t ≥ 0.

2.2. The Quasi-Static Approximation

Let E(r, t), D(r, t), H(r, t), B(r, t) and J(r, t) denote the electric field intensity, the electric flux density,
the magnetic field intensity, the magnetic flux density and the electric current density, respectively, see
e.g., [3, 7, 8]. The Maxwell equations under the quasi-static approximation are given by⎧⎨

⎩
∇× E(r, t) = − ∂

∂t
B(r, t),

∇× H(r, t) = J(r, t),
(1)

where the displacement current ∂
∂tD(r, t) has been neglected and there are no retarded potentials and

no wave propagation phenomena [8]. If the conduction current σE(r, t) is included in the source term
above a diffusion equation is obtained [8, 14].

Consider a conductive material with real relative permittivity εr, conductivity σ and displacement
current

∂

∂t
D(r, t) = ε0εr

∂

∂t
E(r, t) + σE(r, t), (2)
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where the conduction current is perceived as part of the displacement current. Under normal
circumstances with a strong magnet, normal metals and (hence) reasonable low velocities the first
term of the displacement current above can be neglected, see e.g., [14]. To see this, consider the time
scale τ = d/v (frequency scale ω = v/d) as the magnet passes through the cylinder. The ratio between
the dielectric displacement current and the conduction current is then ωε0εr/σ = vεr/(c0η0σd) where c0
and η0 are the velocity and impedance of vacuum, respectively. In normal circumstances this ratio will
be very small and can safely be ignored [14].

The conduction term in (2) (and hence the diffusion, and the self-induction) can be neglected
only if the time scale for diffusion τd = d2μ0σ [8] is much smaller than the time scale for the fall
τ , i.e., d2μ0σ � d/v, or v � 1/(μ0σd). This assertion is equivalent to require that the skin-depth
δ =

√
2/(μ0σω) [8] is much larger then the characteristic dimension d, i.e., δ � d, or v � v0 = 2/(μ0σd)

where v0 is the characteristic recession velocity [9, 10, 15].
To neglect the conduction current σE(r, t) the magnet must also be very strong, so that the effect of

the equivalent current source J(r, t) will dominate over the effect of the displacement current ∂
∂tD(r, t).

As the magnet is getting stronger (M is getting larger) a smaller induced current inside the cylinder
will be required to oppose the acceleration. Hence, as M is getting larger, the equivalent source term
J(r, t) in (1) will increase at the same rate as the induced current σE(r, t) will decrease. The magnet
will fall with less power loss and a lower speed.

2.3. Ampère’s Current Law

The first step is to determine the magnetic field of the permanent magnet when it is at rest at
z = 0. Here, the source consists of a cylindrically shaped sheath surface current with current density
Js = −ρ̂ × M = M φ̂ at the surface of the magnet at radius a. The magnetic vector potential is hence
given by

A(r) = μ0

∫ 2π

0

∫ h/2

−h/2

1
4π|r − r′|Js(r′) dS′, (3)

where μ0 = 4π · 10−7 Hm−1 is the permeability of vacuum, Js(r′) = M φ̂′ and dS′ = adφ′ dz′, cf., e.g.,
[3, 7, 8].

The potential A(r) is then evaluated in the x-z plane where φ = 0, and adequate symmetries are
exploited to yield

A(r) = μ0aM φ̂

∫ 2π

0

∫ h/2

−h/2

1
4π|r − r′| cosφ′ dφ′ dz′, (4)

where A(r) is axial-symmetric (Aφ is independent of φ), φ̂′ = −x̂ sinφ′ + ŷ cosφ′, and in the x-z plane
the Green’s function 1/4π|r − r′| is even in φ′ and ŷ = φ̂.

Next, the free space Green’s function is expanded in cylindrical Bessel functions as

1
4π|r − r′| =

i
8π

∫ ∞

−∞

∞∑
m=−∞

Jm(i|α|ρ<)H(1)
m (i|α|ρ>)eim(φ−φ′)eiα(z−z′) dα, (5)

see e.g., [1, 4, 8, 12] and Appendix A. Here, Jm(·) and H(1)
m (·) are the regular Bessel functions and the

Hankel functions of the first kind, respectively, both of order m, see e.g., [1, 8, 13, 17]. The arguments
above are defined by ρ< = min{ρ, ρ′} and ρ> = max{ρ, ρ′}, the integration variable α is a real valued
Fourier variable corresponding to a Fourier transformation along the longitudinal coordinate z, and | · |
denotes the absolute value, see Appendix A.

By inserting (5) into (4) and integrating over the φ′ and z′ coordinates, the magnetic potential is
given by

A(r) = μ0ahM φ̂
i
4

∫ ∞

−∞
J1(i|α|ρ<)H(1)

1 (i|α|ρ>)
sin(αh/2)
αh/2

eiαz dα, (6)
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where ρ′ = a, and where the following integrals have been used⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 2π

0
e−imφ′

cosφ′ dφ′ = π(δm,1 + δm,−1),

∫ h/2

−h/2
e−iαz′ dz′ = h

sin(αh/2)
αh/2

,

(7)

where δm,n denotes the Kronecker delta [1], and the relations C−m(ζ) = (−1)mCm(ζ) have been used
which are valid for any cylinder function of order m [13].

The magnetic flux density is given by B = ∇× A, and in cylindrical coordinates

Bz(ρ, z) =
1
ρ

∂

∂ρ
ρAφ(ρ, z). (8)

The following explicit results are obtained

B(1)
z (ρ, z) = μ0ahM

i
4

∫ ∞

−∞

1
ρ

∂

∂ρ
ρJ1(i|α|ρ)H(1)

1 (i|α|a)sin(αh/2)
αh/2

eiαz dα, (9)

where ρ < ρ′ = a, and

B(2)
z (ρ, z) = μ0ahM

i
4

∫ ∞

−∞

1
ρ

∂

∂ρ
ρH(1)

1 (i|α|ρ)J1(i|α|a)sin(αh/2)
αh/2

eiαz dα, (10)

where ρ > ρ′ = a. The total flux in the z-direction, through a circular surface parallel to the x-y plane
with radius ρ > a and with its center positioned at height z (and x = y = 0), is given by

Φ(ρ, z) =
∫ a

0

∫ 2π

0
B(1)

z (ρ′, z)ρ′ dρ′ dφ′ +
∫ ρ

a

∫ 2π

0
B(2)

z (ρ′, z)ρ′ dρ′ dφ′ =
∫ ∞

−∞
F (α, ρ)eiαz dα, (11)

where
F (α, ρ) = μ0ahM

π

2
ρH(1)

1 (i|α|ρ)iJ1(i|α|a)sin(αh/2)
αh/2

. (12)

The functions H(1)
1 (i|α|ρ) and iJ1(i|α|a) are real valued (see the next section), and hence the function

F (α, ρ) is real valued and even in the variable α.

2.4. Computational Issues and Asymptotics of Integrands

For computational purposes it is useful to employ the regular and the singular modified Bessel functions
Im(ζ) and Km(ζ), respectively, which are defined by⎧⎨

⎩
Im(ζ) = i−mJm(iζ),

Km(ζ) = im+1π

2
H(1)

m (iζ),
(13)

and which are real valued for real arguments ζ, see [1, 13]. For analysis purposes it is also useful to
employ the following small argument asymptotics⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Jm(ζ) ∼ 1
m!

(
ζ

2

)m

,

H(1)
0 (ζ) ∼ i

2
π

ln
ζ

2
,

H(1)
m (ζ) ∼ −i(m− 1)!

π

(
2
ζ

)m

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Im(ζ) ∼ 1
m!

(
ζ

2

)m

,

K0(ζ) ∼ − ln
ζ

2
,

Km(ζ) ∼ (m− 1)!
2

(
2
ζ

)m

,

(14)

as ζ → 0, where m ≥ 0 in the first line above and m ≥ 1 in the third, cf., [1, 13].
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To compute the magnetic flux density Bz(ρ, z) for ρ = 0 and z = 0 based on (9), it is noted that
the term 1

ρ
∂
∂ρρJ1(i|α|ρ) ∼ i|α| as ρ→ 0, and hence that

Bz(0, 0) = μ0ahM
1
π

∫ ∞

0
αK1(αa)

sin(αh/2)
αh/2

dα, (15)

where (13) has been used, as well as the fact that the integrand is even. By using (14), it is seen that
the integrand in (15) approaches the value 1/a as α→ 0.

The large argument asymptotics of the regular Bessel functions and of the Hankel functions of the
first kind are given by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Jm(ζ) ∼
√

2
πζ

cos
(
ζ − 1

2
mπ − 1

4
π

)
,

H(1)
m (ζ) ∼

√
2
πζ

ei(ζ− 1
2
mπ− 1

4
π)

(
1 + i

4m2 − 1
8ζ

)
,

(16)

as ζ → ∞, see [1, 13]. Hence, for large α it is concluded that the integrand in (15) decays with an
exponential factor e−αa as α→ ∞.

2.5. Faraday’s Law of Induction

The integral form of Faraday’s law of induction [3, 7, 8] is given by∫
C
E(r, t) · dr =

∫
S
− ∂

∂t
B(r, t) · dS, (17)

where S is the circular surface with radius ρ positioned at height z and C its (right-handed) contour.
The quasi-static approximation is now incorporated by letting Φ(ρ, z−z0(t)) describe the magnetic flux
of the moving magnet at position z0(t) and where Φ(ρ, ·) is given by (11). By further exploiting the
axial symmetries using E(r, t) = φ̂Eφ(ρ, z, t), the Faraday’s law of induction yields

Eφ(ρ, z, t)2πρ = − ∂

∂t
Φ(ρ, z − z0(t)) = − ∂

∂t

∫ ∞

−∞
F (α, ρ)eiα(z−z0(t)) dα, (18)

or
Eφ(ρ, z, t) =

ż0(t)
2πρ

∫ ∞

−∞
iαF (α, ρ)eiα(z−z0(t)) dα. (19)

The induced current density is obtained as
Jφ(ρ, z, t) = σEφ(ρ, z, t), (20)

and it is noted that Jφ(ρ, z, t) is a real valued function that is odd in the variable z − z0(t). Hence, the
induced current is circulating in opposite directions above and below the center of the magnet, all in
accordance to Lenz’s law [3, 7, 8].

The total induced current for z > z0(t) is given by

Iind(t) =
∫ ρ2

ρ1

∫ ∞

z0(t)
Jφ(ρ, z, t) dρdz = σ

ż0(t)
2π

∫ ∞

−∞
iα

∫ ρ2

ρ1

1
ρ
F (α, ρ) dρ

∫ ∞

0
eiαz dz dα

= σ
ż0(t)

4
μ0ahM

∫ ∞

−∞

1
|α|

sin(αh/2)
αh/2

J1(i|α|a)
(
H(1)

0 (i|α|ρ2) − H(1)
0 (i|α|ρ1)

)
dα. (21)

The relation (12) was used in the derivation above, as well as the identity H(1)
1 (ζ) = − ∂

∂ζ H(1)
0 (ζ), and

the Fourier integral ∫ ∞

0
eiαz dz =

1
−iα

+ πδ(α), (22)

which should be interpreted in the sense of distributions [18].
By using the modified Bessel functions defined in (13), the total induced current (21) can also be

written
Iind(t) = σż0(t)μ0ahM

1
π

∫ ∞

0

1
α

sin(αh/2)
αh/2

I1(αa) (K0(αρ2) − K0(αρ1)) dα. (23)
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2.6. Power Loss and the Velocity of the Fall

The resistive power loss in the metal can be computed based on Poyntings theorem [8] as

Ploss(t) = σ

∫ ρ2

ρ1

∫ 2π

0

∫ ∞

−∞
|Eφ(ρ, z, t)|2 ρdρdφdz, (24)

where Eφ(ρ, z, t) is given by (19). It follows that

Ploss(t) = σ2π
∫ ρ2

ρ1

∫ ∞

−∞

(
ż0(t)
2πρ

)2 ∫ ∞

−∞
iαF (α, ρ)eiα(z−z0(t)) dα

∫ ∞

−∞
−iα′F (α′, ρ)e−iα′(z−z0(t)) dα′ρdρdz

= σ2π
∫ ρ2

ρ1

(
ż0(t)
2πρ

)2 ∫ ∞

−∞

∫ ∞

−∞
αF (α, ρ)α′F (α′, ρ)

∫ ∞

−∞
ei(α−α′)(z−z0(t)) dz dα dα′ρdρ

= σż2
0(t)

∫ ∞

−∞

∫ ρ2

ρ1

1
ρ2
α2F 2(α, ρ)ρdρdα, (25)

where the distributional relation
∫ ∞
−∞ ei(α−α′)(z−z0(t)) dz = 2πδ(α−α′) has been used. By inserting (12)

into the last line above, the following result is obtained

Ploss(t) = σM2ż2
0(t)μ

2
0C, (26)

where C (in units [m3]) is a structure constant that depends on the geometrical parameters (a, h, ρ1, ρ2)
of the magnet and of the cylinder, and which is explicitly given by

C = a2h2π
2

4

∫ ∞

−∞
α2 sin2(αh/2)

(αh/2)2
|J1(i|α|a)|2

∫ ρ2

ρ1

(
H(1)

1 (i|α|ρ)
)2
ρdρdα. (27)

The inner integral can be computed explicitly by use of the so called Lommel integral [1, 13, 17] yielding∫ ρ2

ρ1

(
H(1)

1 (i|α|ρ)
)2
ρdρ =

1
2
ρ2

2

[(
H(1)

1 (i|α|ρ2)
)2

− H(1)
0 (i|α|ρ2)H

(1)
2 (i|α|ρ2)

]

−1
2
ρ2

1

[(
H(1)

1 (i|α|ρ1)
)2 − H(1)

0 (i|α|ρ1)H
(1)
2 (i|α|ρ1)

]
. (28)

For computational purposes it is adequate to employ the modified Bessel functions defined in (13),
yielding

C = a2h2

∫ ∞

0
α2 sin2(αh/2)

(αh/2)2
I21(αa)

π2

2

∫ ρ2

ρ1

(
H(1)

1 (iαρ)
)2
ρdρdα, (29)

where
π2

2

∫ ρ2

ρ1

(
H(1)

1 (iαρ)
)2
ρdρ = ρ2

2

[
(K1(αρ2))2 − K0(αρ2)K2(αρ2)

] − ρ2
1

[
(K1(αρ1))2 − K0(αρ1)K2(αρ1)

]
.

(30)
By using (14), it is seen that the integrand in (29) approaches the value 0 as α → 0. For large α, (13)
and (16) are used to conclude that the integrand in (29) decays with a dominating exponential factor
e−2α(ρ1−a) as α→ ∞.

Experiments show that the magnet very quickly assumes a constant velocity as it falls through
the metal cylinder. When there is a constant velocity v (in units [ms−1]) there is no power exchange
associated with an acceleration of the magnet, and all the resistive losses must be attributed to the loss
in mechanical potential energy. Based on (26) this gives the power balance equation

σM2v2μ2
0C = −mgv, (31)

yielding the simple physical law for stationary motion

σM2v = − mg

μ2
0C

, (32)
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where the structure constant C has been defined in (27) and (29).
The resulting velocity v given by (32) can now be inserted into (23) to yield the total induced

current
Iind = − mgah

μ0MC

1
π

∫ ∞

0

1
α

sin(αh/2)
αh/2

I1(αa) (K0(αρ2) − K0(αρ1)) dα. (33)

It is noted that the induced current in (33) is independent of the conductivity σ, as expected. The
integrand in (33) approaches the value −(a/2) ln(ρ2/ρ1) as α→ 0, and for large α the integrand decays
with a dominating exponential factor e−α(ρ1−a) as α→ ∞.

2.7. Equation of Motion

To determine the motion of the falling magnet the induced magnetic reaction forces acting on the
magnet must be derived. Hence, the induced magnetic potential is calculated from the induced current
Jφ(ρ, z, t) as

Aind(r, t) = μ0

∫ ρ2

ρ1

∫ 2π

0

∫ ∞

−∞

1
4π|r − r′|Jφ(ρ′, z′, t)φ̂′ρ′ dρ′ dφ′ dz′. (34)

The field Aind(r, t) is then evaluated in the x-z plane where φ = 0, and adequate symmetries are
exploited to yield

Aind(r, t) = μ0φ̂

∫ ρ2

ρ1

∫ 2π

0

∫ ∞

−∞

1
4π|r − r′|Jφ(ρ′, z′, t) cosφ′ρ′ dρ′ dφ′ dz′, (35)

where Aind(r, t) is axial-symmetric, φ̂′ = −x̂ sinφ′ + ŷ cosφ′, and in the x-z plane the Green’s function
1/4π|r − r′| is even in φ′ and ŷ = φ̂.

By inserting the free space Green’s function expansion (5) into (35) and integrating over the φ′
coordinate, the magnetic potential is given by

Aind(r, t) = μ0
i
4
φ̂

∫ ∞

−∞

∫ ρ2

ρ1

∫ ∞

−∞
J1(i|α|ρ)H(1)

1 (i|α|ρ′)Jφ(ρ′, z′, t)eiα(z−z′)ρ′ dρ′ dz′ dα, (36)

where ρ < ρ1, cf., Section 2.3 for further details. Next, by inserting (12), (19) and (20) into the
expression above, and integrating over the z′ coordinate, the magnetic potential becomes

Aind
φ (ρ, z, t) = μ2

0

(
iπ
2

)2

σ
ż0(t)
2π

ahM

∫ ∞

−∞
iαJ1(i|α|ρ)J1(i|α|a)sin(αh/2)

αh/2
eiα(z−z0(t))

∫ ρ2

ρ1

(
H(1)

1

(
i|α|ρ′))2

ρ′ dρ′ dα, (37)

where the relation
∫ ∞
−∞ ei(α−α′)z′ dz′ = 2πδ(α − α′) has been used. The induced magnetic flux density

at ρ = a is given by

Bind
ρ (a, z, t) = − ∂

∂z
Aind

φ (a, z, t)

= μ2
0

π2

4
σ
ż0(t)
2π

ahM

∫ ∞

−∞
α2 |J1(i|α|a)|2 sin(αh/2)

αh/2
eiα(z−z0(t))

∫ ρ2

ρ1

(
H(1)

1

(
i|α|ρ′))2

ρ′ dρ′ dα. (38)

The magnetic force acting on the magnet is given by the Lorentz force equation

Fmag =
∫ 2π

0

∫ z0(t)+h/2

z0(t)−h/2
Js(r) × Bind(r) dS, (39)

and hence

Fmag
z = −M

∫ 2π

0

∫ z0(t)+h/2

z0(t)−h/2
Bind

ρ (a, z, t)adφdz = −2πMa

∫ z0(t)+h/2

z0(t)−h/2
Bind

ρ (a, z, t) dz. (40)
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By using ∫ z0(t)+h/2

z0(t)−h/2
eiα(z−z0(t)) dz = h

sin(αh/2)
αh/2

, (41)

the final expression for the magnetic force is

Fmag
z = −σM2μ2

0Cż0(t), (42)

where C is the structure constant given by (27) and (29).
The equation of motion is obtained by applying Newton’s second law

−σM2μ2
0Cż0(t) −mg = mz̈0(t), (43)

which has an exponential solution for t ≥ 0⎧⎪⎪⎨
⎪⎪⎩

z0(t) = gτ
[
τ(1 − e−t/τ ) − t

]
,

ż0(t) = gτ
[
e−t/τ − 1

]
,

z̈0(t) = −ge−t/τ ,

(44)

where the time constant τ is given by
τ =

m

σM2μ2
0C

. (45)

The stationary velocity is
v = −gτ = − mg

σM2μ2
0C

, (46)

which is in agreement with (32).

3. EXPERIMENTAL VALIDATION AND ESTIMATION

3.1. Experimental Set-up and Measurements

Two neodymium permanent disc magnets of grade N45 and N42 have been tested together with two
metal cylinders made of aluminum and copper. These measurement objects are referred to here as N45,
N42, Al and Cu, respectively, and their structural parameters are listed in Table 1.

Table 1. Magnet and cylinder data.

Magnet radius a [mm] height h [mm] mass m [g]
N45 15 20 107
N42 17.5 20 144

Cylinder radius ρ1 [mm] radius ρ2 [mm] length L [mm]
Al 20 30 102
Cu 16.1 17.5 136

The experiments have been conducted in three different test cases denoted by N45-Al, N42-Al
and N45-Cu, and with the measurement cylinder in four different temperature scenarios: 1) cylinder
heated with boiling water (+100◦C) during a few minutes; 2) cylinder in room temperature (+23◦C)
for calibration; 3) cylinder cooled in a freezer (−20◦C) for at least 8 hours and 4) cylinder cooled with
liquid nitrogen (−196◦C) during a few minutes. The experiments were recorded on video and the time
required for the magnet to fall the distance L− h through the cylinder was measured by time-stepping
and visually inspecting the video. The resulting measured timing data in the four temperature scenarios
are summarized in Table 2.
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Table 2. Measured timing data.

Test case +100◦C +23◦C −20◦C −196◦C
timing t1 [s] t2 [s] t3 [s] t4 [s]
N45-Al 0.90 1.10 1.30 3.85
N42-Al 1.43 1.73 2.05 5.98
N45-Cu 1.78 2.00 2.29 9.35

3.2. Computation and Parameter Estimation

The structure constant C is first calculated based on (29), and the magnetization M of the magnet is then
identified by using (32) together with data (σ and v) corresponding to the calibration measurement at
room temperature. The conductivity data at different temperatures for aluminum and copper have been
obtained from [11]. Here, σ = 3.77 ·107 Sm−1 for aluminum at +20◦C and σ = 5.96 ·107 Sm−1 for copper
at +20◦C, and which are adjusted to +23◦C by using the appropriate temperature coefficients [16]. Once
the magnetization M of the magnet has been identified, the induced current Iind and the maximum
magnetic flux density B = Bz(0, 0) can be calculated from (33) and (15), respectively. The normalized
integrands for computing C, Iind and B are shown in Figure 2 for the test case N45-Al. It has been
shown in Section 2.4 and 2.6 that these integrands are well behaved continuous functions that decay
exponentially for large α. Hence, a simple numerical integration scheme is used here based on the
composite Simpson’s rule [5], and all the integrals evaluated in these examples converged to 4–5 digits
based onN = 1001 sample points and an integration interval [0, 1000]. The computer software MATLAB
was used and the computation time for each test case was less than 1 second on a standard PC. The
resulting set of estimated parameters for the three test cases are summarized in Table 3 including the
time constant τ given by (45) as well as the measured velocity v used for calibration (and where v = gτ).

0 200 400 600 800 1,000

0

0.5

1

α [m −1]

Normalized integrands (α )

C (α )

in d (α )

B (α )

Figure 2. Numerical integration for the test case N45-Al at calibration temperature T = +23◦C. The
plots show the normalized integrands IC(α), Iind(α) and IB(α) in the numerical integration of C defined
by (29), Iind defined by (33), and Bz(0, 0) defined by (15), respectively.

Table 3. Estimated parameters of the neodymium magnets. The rightmost column shows the measured
velocities at +23◦C.

Test case C [mm3] M [kAm−1] Iind [A] B [T] τ [ms] at +23◦C v [cms−1] at +23◦C
N45-Al 296 899 61 0.63 7.6 7.5
N42-Al 647 884 54 0.55 4.8 4.7
N45-Cu 193 1003 24 0.70 5.9 5.8
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3.3. Validation and Discussion

A validation of the theory is obtained by considering the estimated values for M and B regarding the
same magnet N45 obtained from the two test cases N45-Al and N45-Cu, as shown in Table 3. In this
case, the relative error is about 10%. Plausible sources of uncertainty in this parameter estimation
are the conductivity values for aluminum and copper used for calibration at room temperature. It
is known that the aluminum cylinder is made of an alloy labeled 6082-T6, but the exact conductivity
corresponding to the correct alloy was not known for any of the two cylinders. Considering that there are
many sources of uncertainty related to this experiment (parameter uncertainties, cylinder edge effects,
tilted magnets, etc), the relative error of 10% mentioned above is therefore considered to be satisfactory
under the present circumstances (see also the discussion below).

According to the data sheets of the manufacturer the remanence and the coercivity of both the
N45 and the N42 magnets are about 1.3T and 1152 kAm−1, respectively (which are related to, but not
exactly the same as the present definition of B and M). It should be noted that the manufacturer
specify these values based on test objects with different sizes and hence that these values are probably
subjected to dimensional effects that may depend on the geometry of the test object.

It is also interesting to observe the relatively small induced (displacement) current in the cylinders
Iind ≈ 20–60A in comparison to the equivalent current of the magnets Mh ≈ 18–20 kA, and which
justifies the quasi-static approximation as discussed in Section 2.2 above. The characteristic recession
velocities for the aluminum cylinder and for the copper cylinder are v0 = 422 cms−1 and v0 = 267 cms−1,
respectively, and which should be compared to the measured velocities displaced in Table 3.

It is illustrative to demonstrate an application of temperature (or resistivity/conductivity)
measurements, and the fact that the resistivity of conductors is strongly dependent on the temperature.
Hence, the temperature of the measurement cylinders in the four different temperature scenarios
described above are estimated based on the calibrated magnetization M given in Table 3. The timing
data of Table 2 is used to determine the velocity v of the fall and the corresponding conductivity σ of
the cylinder is then obtained from (32). The corresponding resistivity � = 1/σ is then inversely mapped
to a temperature T according to the material data given in [11]. The results are summarized in Table 4,
and the mapping T 
→ � 
→ v is illustrated in Figure 3 for the test case N45-Al. It is noted that the
resistivity � of the cylinder, and hence the velocity v of the fall, are almost linear in the temperature T .
It is observed that the cylinder is very quickly cooled (heated) when it is brought from the boiling water
at +100◦C (boiling nitrogen at −196◦C) to room temperature, due to the large temperature difference
and heat exchange. As expected, the temperature estimations in the two test cases N45-Al and N42-Al
are essentially similar, as the same aluminum cylinder was employed in both cases.

Table 4. Estimated cylinder temperatures.

Test case temperature +100◦C T1 [◦C] +23◦C T2 [◦C] −20◦C T3 [◦C] −196◦C T4 [◦C]
N45-Al 76 23 −14 −145
N42-Al 73 23 −14 −144
N45-Cu 54 23 −8 −170

It is emphasized that the purpose of these measurements have been for illustration of the theory
rather than for accurate parameter identification. Hence, an industrial application for accurate
parameter identification would incorporate a much more controlled experiment with an elaborate device
for timing measurements, etc.. For practical use, further work would also be needed to obtain error
estimates with respect to the measurement imperfections (timing errors, etc.) as well as the modeling
imperfections (uncertainties regarding parameter values, composition of alloys, the protective coating
of the neodymium magnets, the permeability of the magnet, the quasi-static approximation, etc.). As
for example, the conductivity of the aluminum cylinder is quite uncertain in the present experiment. If
instead of using data from [11], the value σ = 3.55 · 107 Sm−1 is used for the conductivity of aluminum
at T = +20◦C as in [16], then the estimated parameter values corresponding to N45-Al becomes
(M = 927 kAm−1, B = 0.65T), which is a slightly better match in comparison to the test case N45-
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Figure 3. Temperature estimation in the N45-Al test case: The plot shows the velocity v of the fall
vs. cylinder temperature T . The magnetization M is calibrated based on the measured timing data
at T = +23◦C, and the corresponding point is indicated with a square in this plot. The resistivity
data for aluminum at different temperatures from [11] (the CRC handbook) are incorporated into the
model and indicated with an “x”, and the corresponding linearly interpolated values are indicated by
the dotted line. The experimental data are then incorporated into the model (inversely mapped) and
the corresponding temperature estimations are indicated with an “o”.

Cu. This example demonstrates that the experiment has a high sensitivity with respect to errors in
the “known” conductivity. Hence, for an accurate calibration it is very important to obtain correct
information about the conductivity of the cylinder metal for the particular alloy that is used, etc.. In
summary, it is suggested that an accurate measurement procedure would incorporate

• An elaborate electronic measurement device to facilitate an accurate timing of the falling magnet.
• A measurement set-up that avoids edge effects by using motion detectors inside the cylinder.
• An inner non-magnetic bearing to keep the magnet horizontally aligned through the fall.
• An accurate determination of the conductivity of the cylinder metal used for calibration.

If carefully controlled, it is anticipated that the procedure described above can be used to accurately
determine the magnetization of a strong neodymium permanent magnet based on a cylinder with known
electrical properties. Once the magnet has been calibrated, the procedure can also be used to accurately
determine the conductivity of an arbitrary metal cylinder.

3.4. Predicted Performance

Finally, it is interesting to study the predicted performance of this experiment and how it depends
on the cylinder geometry. In Figure 4 is shown the predicted velocity of the fall as a function of the
cylinder thickness d = ρ2−ρ1 when the cylinder is made of aluminum or copper, and the inner radius is
ρ1 = 20mm or ρ1 = 16.1mm, respectively. The prediction is performed for the N45 magnet (a = 15mm
and h = 20mm) with the cylinders at T = +23◦C. The results for the N45-Al and N45-Cu test cases
are indicated with the circle and the square, respectively.

Simple physical arguments can be used to asses the general limiting behavior of these curves. As for
example, it is reasonable that the (stationary) velocity v → ∞ when d→ 0, as there will be no induced
current to prevent the acceleration when the cylinder vanishes. On the other hand, when d → ∞ the
velocity v must approach a minimum non-zero value, as there must be induced currents (localized close
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Figure 4. Predicted velocity v of the falling N45 magnet as a function of the cylinder thickness d.
The plots show the four combinations corresponding to a cylinder made of aluminum or copper and
the inner radius ρ1 = 20mm or ρ1 = 16.1mm, respectively. The circle and the square indicate the test
cases N45-Al and N45-Cu, respectively. The magnetization is chosen according to the test case N45-Al.
The diamond indicates the predicted value for validation.

to the magnet) and corresponding power losses that are associated also with a lossy cylinder of infinite
thickness. Further, as ρ1 → a, the velocity v must also decrease to a minimum non-zero value, again
because there will always be power losses associated with a lossy cylinder regardless of its geometry.
It should be noted, however, that there will be difficulties to determine the latter limit by numerical
computations because of the poor convergence in the numerical evaluation of the integral in (29) as
ρ1 → a. In practice, this is not a problem since in a practical application ρ1−a should have a minimum
feasible non-zero value.

As an analysis example, it is interesting to note that there is only a slight potential to decrease
the velocity of the fall (by increasing the wall-thickness of the cylinder) for the N45-Al test case (the
circle in Figure 4), whereas a more significant decrease can be implemented for the N45-Cu test case
(the square in Figure 4) and which is due to the fact that here ρ1 is relatively close to the radius a of
the magnet.

Finally, as a validation of the predicted performance, a new aluminum cylinder was manufactured in
the same material as before, with the same length (100mm) and with ρ1 = 16.1mm and ρ2 = 38.1mm
(d = 22mm). The predicted velocity is 2.88 cms−1 and the measured velocity was 2.79 cms−1 (3%
error), see also Figure 4.

4. SUMMARY

A rigorous quasi-static electromagnetic analysis has been presented for experiments and calibration of
strong permanent magnets falling inside a metal cylinder. The results can be used by teachers and
students in electromagnetics who wish to obtain a deeper insight into the analysis and experiments
regarding this phenomenon. If the experiment is carefully controlled, the theoretical results can also
be employed with industrial applications such as with an accurate grading or calibration of strong
permanent magnets, or to accurately determine the conductivity of an arbitrary metal cylinder.
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APPENDIX A. EXPANSION OF THE FREE SPACE GREEN’S FUNCTION

The free space Green’s function for the scalar Helmholtz wave equation satisfies{∇2 + k2
}
G(r, r′) = −δ(r − r′), (A1)

where k is the wavenumber of the free space and δ(·) the three-dimensional Dirac delta function, cf.,
[8]. When the time-dependence is given by the factor e−iωt, the Green’s function is given explicitly by
the outgoing spherical wave

G(r, r′) =
eik|r−r′|

4π|r − r′| , (A2)

where k = ω/c and where ω is the angular frequency and c the speed of light in the free space [8]. The
Green’s function (A2) can be expanded in cylindrical scalar wave functions as

eik|r−r′|

4π|r − r′| =
i

8π

∫ ∞

−∞

∞∑
m=−∞

Jm(κρ<)H(1)
m (κρ>)eim(φ−φ′)eiα(z−z′) dα, (A3)

where α is the Fourier variable corresponding to a Fourier transformation along the longitudinal
coordinate z, and Jm(·) and H(1)

m (·) are the regular Bessel functions and the Hankel functions of the
first kind, both of order m, respectively, see e.g., [4, 8]. Here, the transverse wavenumber is defined by

κ =
√
k2 − α2, (A4)

where the square root† κ =
√
w is defined such that 0 < argw ≤ 2π and 0 < arg κ ≤ π and hence

Imκ ≥ 0. The arguments of the cylindrical functions above are furthermore defined by ρ< = min{ρ, ρ′}
and ρ> = max{ρ, ρ′}, and where the primed variables represent the source point and the unprimed
variables represent the field point. It is noted that the expansion in (A3) involves regular Bessel
functions Jm(κρ) for ρ < ρ′ and outgoing (radiating) Hankel functions H(1)

m (κρ) for ρ > ρ′. It is also
noted that the combination Jm(κρ<)H(1)

m (κρ>) is continuous across the point where ρ = ρ′ with its
value Jm(κρ′)H(1)

m (κρ′).
To verify that the expansion in (A3) satisfies (A1), it is first noted that the cylindrical scalar wave

functions ψm(κρ)eimφeiαz satisfy the homogeneous Helmholtz wave equation{∇2 + k2
}
ψm(κρ)eimφeiαz = 0, (A5)

where ψm(κρ) is any cylindrical function of order m satisfying the Bessel differential equation [1, 8, 13]{
1
ρ

∂

∂ρ
ρ
∂

∂ρ
+ κ2 − m2

ρ2

}
ψm(κρ) = 0. (A6)

Consider now the distributional relationship (A1) in cylindrical coordinates{
1
ρ

∂

∂ρ
ρ
∂

∂ρ
+

1
ρ2

∂2

∂φ2
+

∂2

∂z2
+ k2

}
G(ρ, φ, z, ρ′, φ′, z′) = −1

ρ
δ(ρ− ρ′)δ(φ − φ′)δ(z − z′). (A7)

Take the Fourier transform of (A7) to yield{
1
ρ

∂

∂ρ
ρ
∂

∂ρ
− m2

ρ2
− α2 + k2

}
Gm(ρ, α, ρ′, φ′, z′) = −1

ρ
δ(ρ − ρ′)

1
2π

e−imφ′
e−iαz′ , (A8)

where the following relationships have been used ∂
∂φ ↔ im, ∂

∂z ↔ iα,
∑

m eim(φ−φ′) = 2πδ(φ − φ′) and∫
eiα(z−z′) dα = 2πδ(z − z′).

From (A3), it follows that the conjecture to be proven is

Gm(ρ, α, ρ′, φ′, z′) =
i
4
Jm(κρ<)H(1)

m (κρ>)e−imφ′
e−iαz′ , (A9)

† If the square root is defined as e.g., with the MATLAB software where −π/2 < arg
√

w ≤ π/2 for −π < arg w ≤ π, then κ can be
defined here as κ = i

√−k2 + α2 which implies that 0 < arg κ ≤ π.
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and it will now be verified that (A9) satisfies the distributional relationship (A8). Hence, by inserting
(A9) into (A8), it follows that{

1
ρ

∂

∂ρ
ρ
∂

∂ρ
− m2

ρ2
− α2 + k2

}
Jm(κρ<)H(1)

m (κρ>) = i
2
π

1
ρ
δ(ρ− ρ′). (A10)

It is noted that Jm(κρ<)H(1)
m (κρ>) is a continuous function across ρ = ρ′, and with a discontinuous

derivative. Hence, by applying to (A10) the integration
∫ ρ′+
ρ′− {·}ρdρ it follows that

[
ρ
∂

∂ρ
Jm(κρ<)H(1)

m (κρ>)
]ρ′+

ρ′−
= i

2
π
, (A11)

where ρ′+ and ρ′− means taking a limit towards ρ′ from above and from below, respectively. It follows
that

κρ′
[
Jm(κρ′)H(1)′

m (κρ′) − J′m(κρ′)H(1)
m (κρ′)

]
= i

2
π
, (A12)

where J′m(·) and H(1)′
m (·) denote a differentiation with respect to the argument. The validity of (A12),

and hence of (A8), is finally verified by using the Wronskian relation W(Jm(ζ),H(1)
m (ζ)) = 2i/(πζ), cf.,

[1, 13].
The analysis and results given above are also valid when k = 0, and the expansion used in (5) is

hence given by (A3) with κ = i|α| and where | · | denotes the absolute value.
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