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On Inhomogeneous Metamaterials Media: A New Alternative

Method for Analysis of Electromagnetic Fields Propagation

Consuelo Bellver-Cebreros* and Marcelo Rodriguez-Danta

Abstract—The analysis of waves propagation in homogeneous anisotropic media constitutes a classical
topic in every field of science and has been preferentially discussed using locally plane waves. Specific
physical quantities and their behaviour laws are really what make the difference. Although the use of
Fourier transform enables an approach formally analogous to that of plane waves in linear evolution
equations, its application to constitutive equations of inhomogeneous media involves cumbersome
convolution products that mask the solution. This paper proposes a polar representation (amplitude and
phase) of electromagnetic fields, that appears to be more suitable and provides two sets of equations that
can be easily decoupled, reducing the problem to the superposition of two simpler ones. The procedure
is based upon the following steps: a) The identification of dispersion equation with Hamilton-Jacobi
equation yields the evolution laws of rays and/or wave-fronts. b) From the knowledge of tensor ¯̄ε(r̄) at
any point r̄ of the wave front (or the ray), the use of the intrinsic character (conjugation relations) of
fields, introduced by the authors in a previous work, together with ray velocity or phase gradient (found
in the first step) the remaining fields are immediately obtained.

1. INTRODUCTION

Only few decades ago, electromagnetic characterization of a new material required experimental studies
in order to find a model of its equivalent circuit. Continuing advances in numerical methods have
provided not only exact solutions for real problems with given boundary conditions and constitutive
laws, but the design of new metamaterials whose optical properties may be controlled.

In this sense, Transformation Optics is a promising recent field, dealing with the design of
metamaterials to control and manipulate the trajectories of light [1–3]. One of the most important
objectives of this discipline is the achievement of macroscopic invisibility-cloaking structures [4–6].
Nevertheless, in Transformation Optics impedance matched to vacuum media are required, where the
relative permittivity tensor is equal to the relative permeability one (¯̄ε = ¯̄μ) at every point of space,
when referred to the same vector basis (¯̄ε(r̄) = ¯̄μ(r̄)). Moreover, since these tensors are functions of
the position vector, r̄, media are also inhomogeneous. Eigenvalues of ¯̄ε, at every point, are named ε1,
ε2 and ε3. We are then concerned with those artificial media (metamaterials) that obey the following
linear constitutive equations when subjected to external actions:

D̄ = ε0 ¯̄ε(r̄) Ē; B̄ = μ0 ¯̄ε(r̄) H̄ (1)

The approximate plane waves propagation model constitutes an excellent calculation tool, in such
a way that for homogeneous media the accuracy of its results is so high that no other model is needed.

Although description of physical quantities in terms of its Fourier transform enables an approach
for inhomogeneous media formally analogous to that of plane waves, its application to constitutive
laws require (according to the convolution theorem:“the Fourier transform of a product of functions is
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equal to the convolution of their Fourier transforms” [7]) to replace matrix products by cumbersome
convolution matrix products in dispersion equation.

For that reason, a simplified model of wave fields with slowly varying amplitude and rapidly
changing phase (appropriate for the geometric limit λ0 → 0) are traditionally adopted to continue
using plane waves solutions [8]. Also, a wave front can be considered a moving surface of discontinuity
travelling through a continuous medium, similar to a shock wave [9].

In one of his lessons, Jacobi asserted that “the main difficulty in integrating a given differential
equation lies in introducing convenient variables, which there is no rule for finding. Therefore, we must
travel the reverse path and after finding a suitable substitution, look for problems to which it can be
successfully applied” [10]. This sentence taken by Arnold [11] fits perfectly to our aims. Thus, in this
paper we propose a polar representation of electromagnetic fields and we look for the conditions that
the proposed functional form must fulfill under the hypotheses of smooth eikonal and propagation in
metamaterials, in order to be an exact solution. The procedure yields two sets of equations that can be
easily decoupled, reducing the problem to the superposition of two simpler ones. A detailed analysis of
the proposed method is shown below.

2. LAWS OF EVOLUTION

Here we propose the representation of fields in polar form (amplitude and phase), because, in our opinion,
it appears to be the most suitable for analysing propagation of electromagnetic waves in inhomogeneous
anisotropic media with ¯̄ε = ¯̄μ. Thus,

Ē = Ê(r̄, t) ei S ; B̄ = B̂(r̄, t) ei S ; D̄ = D̂(r̄, t) ei S ; H̄ = Ĥ(r̄, t) ei S (2)

where amplitude Ê, B̂ D̂ and Ĥ denote any vector functions of position and time and S is the eikonal
or phase, any real function of position and time, too.

Substitution of these fields into Maxwell equations for source-free media

∇× Ē +
∂B̄

∂ t
= 0 ; ∇× H̄ − ∂D̄

∂ t
= 0 (3)

and separating the real and imaginary parts, we find that:

∇× Ê +
∂B̂

∂ t
= 0 ; ∇× Ĥ − ∂D̂

∂ t
= 0 (4)

∇S × Ê +
∂S

∂ t
B̂ = 0 ; ∇S × Ĥ − ∂S

∂ t
D̂ = 0 (5)

We have obtained two sets of equations equivalent to (3): a set (4) depends on the fields amplitudes
only, and the other one (5) depends on eikonal S† and on amplitudes; assuming the validity of (1) for
any amplitude of electromagnetic fields, it is possible to decouple the problem of propagation in an
anisotropic and inhomogeneous media into two simpler and amenable problems:

a) Maxwell equations for amplitudes Ê and Ĥ.
b) Wavefront evolution, that becomes formally identical to equations of propagation of local plane

waves from which eikonal equation and its law of evolution are obtained.
Throughout the paper it will be shown that from the knowledge of tensor ¯̄ε (relative permittivity/

permeability) at any point r̄ of the wave front (or the ray), the use of direct and reciprocal bases
associated with vector fields [6, 12] together with ray velocity or phase gradient (found in the first
step) the remaining fields may be obtained immediately. In fact, for a given electromagnetic energy
density, not all the fields are allowed: only those whose directions form reciprocal bases with respect to
relativepermittivity/permeability tensor are possible.

2.1. Background

From the analysis of Equations (4) and (5), many relevantant results (some of them, although trivial,
are included in order to attain a self-contained theory) concerning propagation of electromagnetic waves
in these media arise. In next subsections, their derivations are shown.
† For monochromatic quasi-plane waves: k̄ = ∇S ; ∂S/∂t = −ω
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2.1.1. Energy Evolution

Following the usual steps, we obtain an analogue to the Poynting’s theorem in terms of fields amplitudes.
Indeed,

∇ ·
(
Ê × Ĥ

)
+

∂Ŵ

∂ t
= 0 (6)

where Ŵ is the corresponding electromagnetic energy density for linear media [13] given by

Ŵ =
1
2

(
Ê · D̂ + Ĥ · B̂

)
(7)

that, written in the form of an equation of continuity, leads to the following expression for the velocity
of propagation of energy (ray velocity):

v̂ =
Ê × Ĥ

Ŵ
(8)

2.1.2. Evolution of Phase S

Multiplying the first equation in (5) scalarly by Ĥ, and the second one by Ê and adding, and taking
into account (8), one has that:

v̂ · ∇S +
∂S

∂t
= 0 =⇒ D S

D t
= 0 (9)

according to the definition of material derivative [14]. This means that S behaves as a material surface,
namely the surface that consists of the same set of material points for all time. Then S is a wavefront,
that geometrically accounts for the discontinuity surface of field amplitude [9].

2.1.3. Evolution of Electromagnetic Momentum

Defining the corresponding electromagnetic momentum density as the vector product of fields D̂ and
B̂ [15], and taking into account Equation (5), we obtain:

D̂ · ∇S = B̂ · ∇S = 0 (10)

that accounts for the condition that D̂ and B̂ are on the plane tangent to the wave front. Then,
according to (10), one can write:

D̂ ×
(
∇S × Ê

)
+ B̂ ×

(
∇S × Ĥ

)
= −2

∂ S

∂ t

(
D̂ × B̂

)
=⇒ ∇S = −∂S

∂t

(
D̂ × B̂

)
Ŵ

(11)

Equation (11) enables us to identify the evolution direction of electromagnetic momentum density
(D̂ × B̂) with the normal to the wave front (∇S).

2.1.4. Correspondence between Ray and Wave-Front

We start from the mathematical property [14] that says: For all vector ā, b̄ and an invertible tensor ¯̄A:(
¯̄A · ā

)
×
(

¯̄A · b̄
)

=
(
det ¯̄A

)
¯̄A−1 · (ā × b̄

)
(12)

Applying this property to the product D̂ × B̂ , assuming constitutive equations given in Equation (1),
and taking into account Equations (8) and (11), one has:

D̂ × B̂ =
1
c2

(
¯̄ε · Ê

)
×
(
¯̄ε · Ĥ

)
= I3 ¯̄ε−1 ·

(
Ê × Ĥ

)
/c2 (13)

where I3 = ε1 ε2 ε3 is the third invariant of tensor(determinant) of ¯̄ε. Then:

∇S = −I3

c2

∂S

∂t
¯̄ε−1 · v̂ or v̂ = −c2

I3

¯̄ε · ∇S
∂S
∂t

(14)

expression that puts into correspondence the ray velocity (v̂) with the normal to the wave-front (∇S).
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2.1.5. Dispersion Equation Versus Hamilton-Jacobi Equation

Bearing in mind the mathematical property (12), expressions in (5) lead to:(
∇S × Ĥ

)
×
(
Ê ×∇S

)
=
((

Ê × Ĥ
)
· ∇S

)
∇S =

(
∂S

∂t

)2 (
D̂ × B̂

)
= I3ε0μ0

(
∂S

∂t

)2

¯̄ε−1 ·
(
Ê × Ĥ

)
(15)

Then, ((
Ê × Ĥ

)
· ∇S

)
∇S =

I3

c2

(
∂S

∂t

)2

¯̄ε−1 ·
(
Ê × Ĥ

)
(16)

valid for any value of the corresponding Poynting’s vector (Ê × Ĥ). Naming ¯̄ε−1 = ¯̄τ and writing the
ith-component: (

I3

c2

(
∂S

∂t

)2

τij − ∂S

∂ xi

∂S

∂ xj

)(
Ê × Ĥ

)
j

= 0 valid for all
(
Ê × Ĥ

)
(17)

Nontrivial solutions can be obtained if and only if the determinant of the coefficients vanishes∣∣∣∣∣I3

c2

(
∂S

∂t

)2

τij − ∂S

∂ xi

∂S

∂ xj

∣∣∣∣∣ = 0 (18)

If tensor τij is expressed in principal directions {ı̄1, ı̄2, ı̄3},

τij =

⎛
⎝

1
ε1

0 0
0 1

ε2
0

0 0 1
ε3

⎞
⎠

(̄ı1 ,̄ı2 ,̄ı3)

(19)

vanishing of the determinant leads to the compact expression:

I3

c2

(
∂S

∂t

)2

−∇S · ¯̄ε · ∇S = 0 (20)

Equation (20) constitutes the eikonal equation [16, 17] as well as the dispersion equation for propagation
of waves in an inhomogeneous anisotropic media with ¯̄ε = ¯̄μ and may be written as:

∂S

∂t
± c

√
∇S · ¯̄ε

I3
· ∇S = 0 (21)

Identifying p̄ with ∇S and comparing with the Hamilton-Jacobi equation:
∂S

∂t
+ H

(
∂ S

∂ q
, q

)
= 0 (22)

it follows that the Hamiltonian of the equivalent mechanical problem can be expressed in terms of
momentum and vector position as

H(r̄, p̄) = c

√
∇S · ¯̄ε

I3
· ∇S = c

√
p̄ · ¯̄ε

I3
· p̄ (23)

and from Hamilton equations

∇p̄H =
c√
I3

¯̄ε · p̄√
p̄ · ¯̄ε · p̄ =

∂H

∂∇S
= v̂ (24)

∇r̄H = − ∂

∂ t
(∇S) = − ˙̄p (25)

Then, p̄ = ∇S and r̄ (where v̄ = d r̄/d t) are conjugate variables and consequently they provide
equations of evolution of the wave front: the problem is decoupled into two independent and amenable
problems: 1) wave front propagation and 2) fields amplitudes evolution.

Taking into account Equation (20), it is immediate to show that expression of v̂ given by
Equation (14) coincides with that of (24).
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2.2. Geometrical Structure of Fields

We see from Equation (5) that vectors D̂ and B̂ are orthogonal to ∇S and that vector Ê is orthogonal
to B̂. Moreover, Equations (8), (11) and (14) also show relevant geometrical relations between
electromagnetic fields. Naming tensor ¯̄ε−1 = ¯̄τ , from Equations (1) and (14) one can write

¯̄τ · D̂ = ε0 Ê; ¯̄τ · B̂ = μ0 Ĥ; ¯̄τ · v̂ = −c2

I3

∇S
∂S
∂t

(26)

Following the procedure given in [6], two conjugate vector bases can be introduced. We choose a
direct local basis (P, ēi/{i = 1, 2, 3}) consisting of three unit vectors:

ē1 =
D̂

|D̂| ; ē2 =
B̂

|B̂| ; ē3 =
v̂

|v̂| ; (27)

We can also define a reciprocal local basis (P, ēj/ {j = 1, 2, 3}) as:

ēj =
¯̄τ · ēj

τj
j ∈ (1, 2, 3) → ēi · ēj = δj

i (28)

where τj = ēj · ¯̄τ · ēj . It is immediate to find that:

ē1 =
ε0 Ê

|D̂| τ1

; ē2 =
μ0 Ĥ

|B̂| τ2

; ē3 = − c2 ∇S

I3 |v̂| ∂S
∂t τ3

(29)

Therefore, directions of fields D̂, B̂ and v̂ are a triad of conjugate directions with respect to tensor
¯̄τ = ¯̄ε−1 and constitutes a local basis, whose reciprocal one is formed by directions of Ê, Ĥ fields and
∇S. It must be pointed out that fields have only a component (covariant or contravariant) in these
bases: e.g., D̂ = D1 ē1; Ê = E1 ē1 and so on. There is an intrinsic geometrical structure associated with
propagation of electromagnetic waves in transformation media. Thus, the Euclidean space is endowed,
at every point P , with two dual bases defined from physical properties of the medium (see Fig. 1).

O

P

OP
=
r

S(r,t) = 0

D

H

E

B

V

S

e2
e1

e1

e2

e3

e3

Figure 1. Local reciprocal vector bases ēi and ēi associated with the structure of electromagnetic waves
propagating in an inhomogeneous anisotropic media with ¯̄ε = ¯̄μ.

Evaluating τi, one gets

τ1 =
ε0 Ê · D̂
|D̂|2 =

Ŵ

Ŵ0

; τ2 =
μ0 Ĥ · B̂
|B̂|2 =

Ŵ

Ŵ0

; τ3 = − c2 ∇S · v̂
I3

∂S
∂t |v̂|2

=
n2

r

I3
(30)

where nr is the ray index, defined as nr = c/|v̂| [13] and then,

ē1 =
ε0 Ŵ0

|D̂| Ŵ Ê; ē2 =
μ0 Ŵ0

|B̂| Ŵ Ĥ; ē3 = −|v̂|∇S
∂S
∂t

(31)
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where τ1 = τ2 are the ratio between the electromagnetic energy density in the medium, Ŵ , and the
electromagnetic energy density Ŵ0, carried by the wave if propagation were in vacuum.

According to continuum mechanics [18, 19], the bound vector to an unit vector (e.g., ē1) by ¯̄τ tensor
is defined as τ̄1 = ¯̄τ · ē1. Then τ1 = ē1 · ¯̄τ · ē1 represents the normal intrinsic component of bound vector
τ̄i and its graphical representation is named Cauchy’s quadric. Assuming, without loss of generality,
that eigenvalues of ¯̄τ are all positive, Cauchy’s quadric becomes an ellipsoid, that is known in optics as
ellipsoid of wave normals [13]. Since the normal to Cauchy’s quadric at every point [18] is collinear with
bound vector τ̄u for any direction ū, conjugacy of electromagnetic vectors enable to determine the wave
structure easily. For instance, the orthogonality of vectors ē1 and ē3 (and from Cauchy’s theorem [18], ē3

and ē1) implies that ē1 and ē3 are conjugate directions. In order to visualize these concepts, a section of
Cauchy’s quadric of revolution is shown (see Fig. 2) and conjugate vectors lie along conjugate diameters
of the elliptic section [20, 21].
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e
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^

Figure 2. Conjugacy of vector fields. Section of the Cauchy’s quadric associated with tensor ¯̄ε = ¯̄μ.
The orthogonality between vectors ē1 and ē3 implies that vectors ē1 and ē3 are directed along conjugate
directions.

3. REFRACTION AT A BOUNDARY SURFACE

In the frame of optical-mechanical analogies, when mechanical energy is a constant, Maupertuis’
principle [22] from mechanics (Δ

∫ r̄
r̄0

p̄ · d r̄ = 0) leads for monochromatic waves to Fermat’s principle
given by Δ

∫
n ds = 0.

In a previous paper [23] we introduced an alternative dual eikonal equation, in terms of ξ, in
momentum space (duality is understood in the sense of Young), where ∇pξ and ∂ ξ/∂t play the role of
r̄ and ω(r̄, p̄), respectively. This duality provides an useful and powerful tool in determining particular
solutions of eikonal equation in certain cases. Associated with dual eikonal equation, a dual Maupertuis’
principle in momentum space can be written as:

Δχ = Δ
∫ p̄

p̄0

r̄ · d p̄ = 0 (32)

that, when applied to a discontinuity surface Σ separating two media, Snell’s law yields immediately.
Therefore, refraction is completely analogous to the imposition of an impulsive constraint in mechanics
and, reciprocally, if principle (32) is applied to a discontinuity surface, coplanarity of p̄1, p̄2 and unit
normal to the boundary n̄ arises in agreement with the Snell’s law of refraction.

4. CONCLUSIONS

The use of a phase-amplitude description for fields has allowed us to reobtain some laws of evolution,
in which phases decouple from amplitudes and unavoidable convolution products, inherent to the
application of integral transforms, vanish. The two sets of obtained equations are easily interpretable:
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(i) In the framework of transformation theory in classical mechanics, phase evolution (dispersion
equation) is identified with Hamilton-Jacobi equation and from Hamilton equations (for the
associated Hamiltonian), ray evolution is determined.

(ii) Its geometry is intrinsically related to the physics of the problem. Indeed, local reciprocal bases
lie along field vectors, Poynting’s vector and electromagnetic momentum and the associated space
metrics is related to local relative permittivity/permeability tensor of the medium, ¯̄ε. Therefore,
from the knowledge of the ray trajectory, the wave front can be immediately determined and vice
versa.

It must be noticed that polar representation of fields provides and exact solution of the equations,
in decoupling the problem and reducing it to another equivalent one, that is the superposition of two
known problems.

On the other hand, in searching solutions of section (i), the specific functional dependency of
tensor ¯̄ε is sometimes greatly facilitated if dual dispersion equation is used [23]. According to the
cited procedure, refraction at a boundary surface can be identified with the imposition of a mechanical
impulsive constraint and the facilities of dual Fermat’s principle in the discussion is suggested.

ACKNOWLEDGMENT

The authors are indebted to the anonymous referees for constructive and valuable comments and
suggestions, which have improved the paper very much.

REFERENCES

1. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility , Dover, Mineola,
2010.

2. Urzhumov, Y. A., N. B. Kundtz, D. R. Smith, and J. B. Pendry, “Cross-section comparison of
cloaks designed by transformation optical and optical conformal mapping approaches,” Journal of
Optics, Vol. 13, 024002, 2011.

3. Pendry, J. B., D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, Vol. 312,
No. 5781, 1780–1782, 2006.

4. Halimeh, J. C. and M. Wegener, “Time-of-flight imaging of invisibility cloaks,” Opt. Express,
Vol. 20, No. 1, 63–74, 2012.

5. Halimeh, J. C. and M. Wegener, “Photorealistic rendering of unidirectional free-space invisibility
cloaks,” Opt. Express, Vol. 21, 9457–9472, 2013.

6. Bellver-Cebreros, C. and M. Rodriguez-Danta, “An alternative model for wave propagation in
anisotropic impedance-matched metamaterials,” Progress In Electromagnetics Research, Vol. 141,
149–160, and References Therein, 2013.

7. Melrose, D. B. and R. C. McPhedran, Electromagnetic Processes in Dispersive Media, Cambridge
University Press, Cambridge, 1991.

8. Schurig, D., J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in
transformation media,” Opt. Express, Vol. 14, No. 21, 9794–9804, 2006.

9. Bellver-Cebreros, C. and M. Rodriguez-Danta, “Eikonal equation from continuum mechanics and
analogy between equilibrium of a string and geometrical light rays,” Am. J. Phys., Vol. 69, 360–367,
2001.

10. Jacobi, C. G., Vorlesungen Fiber Dynamik, A. Clebsch, Berlin, 1866, Reprinted by Chelsea, 1969.
11. Arnold, V. I., Mathematical Methods of Classical Mechanics, 2nd edition, (Section 47), Springer-

Verlag, 1989.
12. Bellver-Cebreros, C. and M. Rodriguez-Danta, “Conjugacy and reciprocal bases in anisotropic

dielectric media,” Optica Pura Y Aplicada, Vol. 44, No. 3, 571–580, 2011.
13. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, New York, 1999.



108 Bellver-Cebreros and Rodriguez-Danta

14. Chandrasekharaiah, D. L. and L. Debnath, Continuum Mechanics, Page 80, Academic Press, San
Diego, 1994.

15. Jackson, J. D., Classical Electrodynamics, Page 80, John Wiley and Sons, Hoboken, New Jersey,
1994.

16. Landau, L. D. and E. M. Lifshitz, The Classical theory of Fields, 3rd edition, Vol. 2, Pergamon
Press, Oxford, 1971.

17. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd
edition, Vol. 8, Butterworth-Heinemann, Oxford, 1984.

18. Fung, Y. C., Foundations of Solid Mechanics, Prentice Hall, Englewood Cliffs, New Jersey, 1965.
19. Bellver-Cebreros, C. and M. Rodriguez-Danta, “Analogies between the torque-free motion of a

rigid body about a fixed point and light propagation in anisotropic media,” Eur. J. Phys., Vol. 30,
285–294, 2009.

20. Salmon, G., A Treatise on Conic Sections, AMS Chelsea Publishing, Providence, Rhode Island,
1960.

21. Zwikker, C., The Advanced Geometry of Plane Curves and Their Applications, Dover Publications,
Mineola, NY, 2005.

22. Landau, L. D. and E. M. Lifshitz, Mechanics, Pergamon Press, 1976.
23. Bellver-Cebreros, C., M. Rodriguez-Danta, and E. Gomez-Gonzalez, “Angle eikonal from reciprocal

action and other optical-mechanical analogues,” Optik , Vol. 111, No 6, 261–268, and References
Therein, 2000.


