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Abstract—During the last two-three decades the importance of computer simulations based on
numerical full-wave solutions of Maxwell’s has continuously increased in electrical engineering. Software
products based on integral equation methods have an unquestionable importance in the frequency
domain electromagnetic analysis and design of open-region problems. This paper deals with the surface
and volume integral equation methods for finding time-harmonic solutions of Maxwell’s equations. First
a review of classical integral equation representations and formulations is given. Thereafter we briefly
overview the mathematical background of integral operators and equations and their discretization with
the method of moments. The main focus is on advanced techniques that would enable accurate, stable,
and scalable solutions on a wide range of material parameters, frequencies and applications. Finally,
future perspectives of the integral equation methods for solving Maxwell’s equations are discussed.

1. INTRODUCTION

Our modern world of wireless communications, portable electronics, microwave and other electrical
devices and instruments is built upon fundamental theory of electromagnetics (EM) [1, 2]. This theory
is summarized by Maxwell’s equations [3, 4] — the partial differential equations of EM. Maxwell’s
equations have been proven to be valid for very different length scales, from subatomic to intergalactic
length scales [5], and they also have a highly predictive power. Once solutions to Maxwell’s equations
are found, they often can predict the experimental outcome reliably and accurately [6]. The ability to
perform numerical simulations based on full-wave solutions of Maxwell’s equations has therefore become
increasingly important for research and development in various fields of modern electrical engineering.

Maxwell’s equations lead to complicated mathematical and numerical models that are challenging
to solve. Analytical solutions are available only in very rare simplified cases, and complex three-
dimensional (3D) real-world engineering problems call for more general numerical approaches. This gives
rise to Computational Electromagnetics (CEM), a branch of computational science and engineering that
especially focuses on numerical modeling and simulations of EM phenomena. CEM finds applications
from nano-scale plasmonics and artificial material (metamaterial) structures to photonics, from wireless
sensors and communication devices to Earth observations and remote sensing, and from biomedical and
bioimaging instruments to radars and antenna arrays. This large variety of applications, materials,
geometries and frequency ranges leads to a very rich domain of theoretical and computational aspects,
making CEM fascinating and interdisciplinary realm of science arising from Maxwell’s equations.

Full-wave methods in CEM can be generally classified as partial differential equation methods
(PDEMs) and as integral equation methods (IEMs). The difference here is that PDEMs, such as
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the finite element method (FEM) [7–9], and the method of finite differences (FD) [10–12], typically
consider directly solutions of Maxwell’s equations, whereas in the IEMs the problem of solving Maxwell’s
equations is reformulated as integral equations for equivalent sources [5, 13, 14]. IEMs provide elegant
solutions for many open-region scattering and radiation problems in particular to those formulated with
mathematical boundary conditions. These boundary conditions allows one to restrict the equations and
sources to the boundary of an object. This leads to the surface integral equation (SIE) method; the
method that reduces the dimensionality of the problem by one, and therefore allows significant reduction
on the number of degrees of freedom (dof), as well as much simplified geometry and data representations.
In cases where the SIE methods are not available, integral equations based on volume discretizations [15],
i.e., volume integral equation methods (VIEs), are required.

An IEM starts by formulating the problem in terms of integral equations and equivalent sources.
Then a discretization strategy is applied to approximate the unknown functions and to convert the
continuous equations into discrete ones. Finally, the resulting finite system of linear equations (matrix
equation) is solved. To develop efficient and stable numerical EM simulation software based on integral
equations is, however, far from being a trivial task. Integral equations and their numerical discretization
and implementation are plagued with several theoretical and practical challenges and obstacles, such as
low frequency instabilities and dense-mesh breakdown. In addition, the matrix equations arising from
discretization of integral equations are fully-populated and expensive to solve.

This paper deals with the surface and volume IEMs for finding time-harmonic solutions of Maxwell’s
equations. First we review the classical integral equation representations and formulations. Thereafter,
brief overviews of the mathematical background of the integral operators and equations, and their
discretization with the method of moments are given. The main focus is on advanced techniques —
formulations, discretization strategies, regularization, and fast solvers — that would lead to an algorithm
with the following properties:

(i) Accuracy: The results should be accurate and converge towards the correct solution as the number
of dof is increased.

(ii) Stability: The solution should be stable. Small changes on the initial conditions should only result
in small changes on the solution.

(iii) Scalability: The amount of required computer resources should not increase too much as the size
of the problem is enlarged.

Finally, some future perspectives of the EM IEMs are discussed.

2. HISTORICAL OVERVIEW

The IEMs for solving Maxwell’s equations have been around for a long time [16]. The advent of
computers in the 60’ opened new possibilities for numerical methods. First numerical solutions of
integral equations were developed for simplified two-dimensional (2D) problems, such as scattering
by infinitely long cylinders [17–19]. The first class of three-dimensional (3D) problems consisted
wire antennas and scatterers [20, 21]. In the turn of 70’s and 80’s methods were developed for (3D)
rotationally symmetric structures — “bodies of revolution” [22–24]. A significant step towards solution
of 3D problems involving arbitrary geometries was presented in 1982 [25]. In that celebrated paper, a
basis function, nowadays known as the Rao-Wilton-Glisson (RWG) function, was introduced and used
to expand surface current densities on planar arbitrarily shaped surface patches (triangles).

The discovery of the RWG basis functions made it possible to develop more general numerical
methods and to solve complex scattering and radiation problems involving arbitrarily shaped 3D
dielectric [26], composite metallic and dielectric [27], as well as impedance bodies [28]. However, soon
the high computational complexity of the IEMs became a major bottleneck in the practical simulations,
and so it was crucial to come up with techniques that would reduce the high computational load of the
IEMs and enable efficient solutions of large-scale problems. These techniques, known as fast integral
equation solvers, significantly extended the usability of the IEMs and made IEMs very compatible with
the computationally less expensive PDEMs [6, 29].

The first fast integral equation solvers for 3D structures were based on the CG-FFT (Conjugate
Gradient-Fast Fourier Transform) method [30–33]. These methods effectively reduced the high
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computational load of the IEMs, but required uniform rectangular grid and thus had rather limited
capacity of modeling arbitrarily shaped structures. More versatile methods, like the adaptive integral
method (AIM) [34] and the precorrected FFT method (pFFT) [35], were developed in the 90’s. Another
approach, also available for arbitrary meshes and geometries, is the fast multipole method (FMM) [36].
The multilevel version of FMM, multilevel fast multipole algorithm (MLFMA), introduced in the mid
90’s [37–39], have had a significant impact on the solution of large-scale problems with the IEMs. Recent
parallel implementations of MLFMA are able to solve problems with the order 108 dof [40, 41].

The fast integral equation solvers, as effective they are, may not alone be sufficient, and the
poor convergence of an iterative solution is a bottleneck. It became extremely important to develop
techniques that would improve conditioning of the linear system. In the 21st century research on
various regularization and preconditioning techniques [42–47] as well as on novel integral equation
formulations [48–52] and discretization techniques [53–60] has been very active. The research on these
areas is still ongoing [61].

3. BACKGROUND

This section provides background for the rest of the paper. We introduce EM theory needed to formulate
integral equations for time-harmonic solutions of Maxwell’s equations, and briefly review mathematical
background of the integral operators and equations and their discretization with MoM.

3.1. Maxwell’s Equations and Boundary Conditions

Maxwell’s equations are the fundamental partial differential equations of EM. These equations,
supplemented with constitute relations of matter, boundary, and interface conditions, describe
interaction of EM waves with material. For time-harmonic fields, with time convention e−iωt, Maxwell’s
equations in a linear and source free domain read

∇× E = iωB, (1)
∇× H = −iωD, (2)
∇ · D = 0, (3)
∇ · B = 0. (4)

The field intensities E and H are related to the flux densities D and B via the constitutive relations

D = ¯̄ε · E and B = ¯̄μ · H, (5)

where ¯̄ε and ¯̄μ are dyadic electric permittivity and magnetic permeability. A medium is called
homogeneous if functions ¯̄ε and ¯̄μ are constants, otherwise the medium is inhomogeneous. If ¯̄ε and ¯̄μ
are scalar, the medium is isotropic, otherwise it is anisotropic. Generalization of this is a bi-anisotropic
medium with constitutive relations [62]

D = ¯̄ε ·E + ¯̄ξ · H and B = ¯̄μ · H + ¯̄ζ · E, (6)

where ¯̄ξ and ¯̄ζ are the magneto-electric material parameters.
On interfaces between two media with different material properties the solutions of Maxwell’s

equations should satisfy boundary or interface conditions. Generally, on an interface between two linear
media (assuming that there are no source on the interface) the following field components

Etan, Htan, n · D, and n ·B, (7)

are continuous across the interface. Here Ftan denotes tangential component of a vector field F on a
surface and n is the unit normal vector of the surface. On the surface of an ideally conducting object
(perfect electric conductor, PEC), the boundary conditions read

Etan = 0 and n ·B = 0. (8)

If the conductor is not ideally conducting, it may be modelled with the impedance boundary condition
(IBC) [63]

Etan = ¯̄ZS · (n× H) (9)
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where ¯̄ZS is the surface impedance. It is also possible to write the boundary conditions solely in terms
of the normal field components [64, 65].

On unbounded regions the solutions of Maxwell’s equations should also satisfy the radiation
condition

lim
|r|→∞

|r|
(
ηH(r) × r

|r| −E(r)
)

= 0, (10)

where η =
√
μ/ε is the wave impedance of a homogeneous medium.

3.2. Integral Equation Representations

IEMs for finding solutions of Maxwell’s equations are based on equivalence principles, also known as
integral equation representations. With these principles the scatterer or other structure is removed and
replaced with equivalent sources that radiate the same EM fields as in the original physical problem.

First we assume that a (virtual) surface S encloses a homogeneous and isotropic domain that
is characterized with constant and scalar material parameters ε and μ, and that the sources of the
primary fields Ep and Hp are inside that domain. Then the surface equivalence principle (SEP) states
that the total fields inside the domain are uniquely determined by the primary fields and the secondary
fields expressed in terms of the (rotated) tangential components of the total fields on S. These rotated
tangential field components are known as the equivalent surface current densities

JS(r) = n(r) × H(r), and MS(r) = E(r) × n(r), (11)

where n is the unit normal vector of S pointing into the domain in which the field representations are
applied.

Next assume that an inhomogeneous and anisotropic object with position dependent dyadic material
parameters ¯̄ε and ¯̄μ is embedded in a homogeneous and isotropic medium with constant material
parameters ε and μ (not necessarily vacuum). Then the volume equivalence principle (VEP) states
that the secondary fields, generated as the primary fields interact with the object, can be expressed in
terms of the volume (polarization) current densities

JV (r) = −iωε¯̄τE(r) ·E(r), and MV (r) = −iωμ¯̄τH(r) · H(r). (12)

Here dyadic material contrast functions are given by

¯̄τE(r) = ¯̄εr(r) − ¯̄I and ¯̄τH(r) = ¯̄μr(r) − ¯̄I, (13)

and ¯̄I is the identity dyadic. By introducing a potential integral operator (on surfaces this operator is
known as the single layer operator)

SΩ[FΩ](r) :=
∫
Ω

G(r, r′)FΩ(r′)dΩ′, (14)

with the homogeneous space Green’s function G(r, r′) = exp(ik|r − r′|)/(4π|r − r′|) and wavenumber
k = ω

√
εμ, both the SEP and VEP can be mathematically formulated as

Θ(r)E(r) = Ep(r) − η

ik

(∇∇ · +k2
)
SΩ[JΩ](r) −∇× SΩ[MΩ](r), (15)

Θ(r)H(r) = Hp(r) − 1
ikη

(∇∇ · +k2
)
SΩ[MΩ](r) + ∇× SΩ[JΩ](r). (16)

Here Ω is the support of the equivalent sources, either volume V or surface S, and Θ is a function of
the field point r. For volume sources, Θ(r) = 1 for all r ∈ R

3 and G is the Green’s function of the
(homogeneous and isotropic) background medium. For surface sources Θ is defined as

Θ(r) =

{ 1 if r ∈ D,
1/2 if r ∈ S,
0 otherwise,

(17)

where D is the domain (occupied by S) in which the SEP is formulated and G is the Green’s function
of that (homogeneous and isotropic) domain.
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For later use, let us introduce the following three integral operators
LΩ[F](r) : =

(∇∇ · +k2
)
SΩ[F](r), (18)

T Ω[F](r) : = ∇×∇× SΩ[F](r), (19)
KΩ[F](r) : = ∇× SΩ[F](r). (20)

Similarly as the potential operator S above, also these operators are defined for both volume and
surface sources. For the surface sources these operators are defined as Cauchy principal value integrals
if the field point is on the surface. In the following, the currents and operators are denoted without Ω,
whenever there is no chance of misinterpretation.

3.3. Surface Integral Equation Formulations

In principal, SIEs can be used in any media where Green’s function is known [15, 66], but from a practical
implementation point of view the Green’s function should have an expression that allows efficient enough
numerical evaluations.

We continue by deriving two fundamental SIEs in a homogeneous and isotropic medium that are
used to develop alternative SIE formulations. The fields are first expressed using representations (15)
and (16). Since these representations give 3D fields in terms of their (2D) rotated tangential components,
SIEs are usually derived by taking tangential traces (components) of the field representations on the
boundaries. Operating with a rotated tangential trace operator

γrF := n × F|S, (21)
gives the electric and magnetic current surface integral equation (JMSIE), also known as the rotated
tangential or N-equations [48, 68],⎡

⎢⎣ −γrK +
1
2
I η

ik
γrL

−1
ikη

γrL −γrK +
1
2
I

⎤
⎥⎦[ J

M

]
=
[

γrHp

−γrEp

]
. (22)

Here I [F] = F is the identity operator. Another set of equations is obtained with a tangential trace
operator

γtF := −n× n× F|S . (23)
This gives the electric and magnetic field surface integral equations (EHSIE), the tangential or T-
equations [48, 68], ⎡

⎢⎣
η

ik
γtL −γtK − 1

2
γr

γtK − 1
2
γr

1
ikη

γtL

⎤
⎥⎦
[

J
M

]
=
[
γtEp

γtHp

]
. (24)

† It is important to note that Equations (22) and (24) without the boundary or interface conditions are
not solvable. Consider first a penetrable homogeneous and isotropic object D2 in a homogeneous and
isotropic background D1. Because the tangential field components are continuous across the interface
of D1 and D2, the current densities on the opposite sides of the interface are equal (up to a sign).
Thus, there are only two independent unknowns, one electric and one magnetic. In order to have the
same number of unknowns and equations, the number of equations should be reduced, too. This can
be done in infinitely many ways. Let us call the equations of (22) the electric and magnetic current
integral equations of domain Dj, ECIEj and MCIEj, and the equations of (24) the electric and magnetic
field integral equations of domain Dj , EFIEj and MFIEj , respectively. All the equations and associated
operators Lj and Kj are defined with material parameters εj , μj, and Green’s functions Gj of domain
Dj , j = 1, 2. Then, the equations of Dj are combined into two equations [48, 69]

ajECIEj + bjEFIEj, (25)
cjMCIEj + djMFIEj . (26)

† We have used unconventional names for integral Equations (22) and (24). Justification of these names is that Equation (22) defines
a mapping from the equivalent currents to themselves and Equation (24) defines a mapping from the equivalent currents to the
tangential fields.
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The choice of the coupling coefficients aj, bj , cj and dj , j = 1, 2, has a significant effect on both
theoretical and numerical properties of the resulting SIE formulation. Coefficients of five popular SIE
formulations are listed in Table 1 (columns 2–6). Finally, Equations (25) and (26) arising from the
opposite sides of an interface are combined leading to two combined equations for two unknowns [48].

Table 1. Coupling coefficients of the surface integral equation formulations.

CNF CTF PMCHWT NMüller JMCFIE PEC/IBC-EFIE PEC/IBC-MFIE PEC/IBC-CFIE

aj 1 0 0 μrj 1 0 1 1

bj 0 ηj 1 0 ηj 1 0 ηj

cj 1 0 0 εrj 1 0 0 0

dj 0 1/ηj 1 0 1/ηj 0 0 0

For example, the equations of PMCHWT [71] and CNF [48] formulations are as follows (assuming
that the primary field have only sources in domain D1) ‡⎡

⎢⎣
η1

ik1
γtL1 +

η2

ik2
γtL2 γtK1 + γtK2

−γtK1 − γtK2
1

ik1η1
γtL1 +

1
ik2η2

γtL2

⎤
⎥⎦
[

J
M

]
=
[
γtEp

γtHp

]
(27)

and⎛
⎝
⎡
⎣ −γrK1 + γrK2

1
ik1η1

γrL1 − 1
ik2η2

γrL2

ik1η1γrL1 − ik2η2γrL2 γrK1 − γrK2

⎤
⎦+

[
I 0
0 I

]⎞⎠[
J
M

]
=
[
γrHp

γrEp

]
. (28)

In the case of an impenetrable object, modeled with a mathematical boundary condition, the current
and field equations are first derived similarly as above, but only on the background medium. Then one
of the unknown currents is usually eliminated via the boundary condition. The last three columns of
Table 1 give the coupling coefficients of the three most well-known SIE formulations for the PEC and
IBC boundary conditions, assuming that the magnetic current is eliminated from the equations. We
note that magnetic equations, MCIE and MFIE, are not used if M does not appear as an unknown.

The electric field integral equation with the PEC condition reads (PEC-EFIE)
η

ik
γtL[J] = γtEp (29)

and the magnetic field integral equation (PEC-MFIE) is §(
−γrK +

1
2
I
)

[J] = γrHp. (30)

For the IBC with scalar surface impedance ZS the IBC-EFIE and IBC-MFIE are [72]
η

ik
γtL[J] − γtK [ZSn× J] +

ZS

2
J = γtEp, (31)

−1
ikη

γrL [ZSn× J] − γrK[J] +
1
2
J = γrHp. (32)

A similar procedure as above can be applied for other boundary conditions as well, e.g., for so called DB
and D′B′ conditions [73, 74]. This, however, results in integral equations and formulations that depend
on the boundary condition [53, 73, 74]. Recently, an alternative more general approach is proposed for
the IBC [58] — a rather similar idea was proposed about 30 years before [27]. In this approach the
integral equations are written for both the electric and magnetic currents and the boundary condition
is enforced in the weak sense as an additional equation.
‡ Using the same terminology as above, these equations should be called as coupled field formulation and coupled current formulation,
respectively. To avoid further confusion, we have used their old names, PMCHWT and CNF.
§ Using the terminology above, this equation should be called as PEC-ECIE, the electric current integral equation.



Progress In Electromagnetics Research, Vol. 149, 2014 21

The extension of the SIE formulation for multiple non-connected impenetrable or penetrable objects
with the same material parameters is rather straightforward. The situation, however, becomes much
more involved for connected composite objects with altering materials and/or boundary conditions.
The challenge here is an efficient treatment of the “junctions” of the boundaries and interfaces. In [75]
a systematic and easy-to-follow approach was proposed to solve the problem.

3.4. Volume Integral Equation Formulations

VIEs are required in cases where the object is truly inhomogeneous and/or anisotropic and Green’s
functions for the SIEs are not available or feasible. Assume next that D is a bounded domain in R

3

with position depended dyadic material parameters ¯̄ε and ¯̄μ, and that D is embedded in a homogeneous
and isotropic (background) medium with constant parameters ε and μ. Formulation of the VIEs starts
by expressing the total fields with VEP (15) and (16). Depending on the choice of the unknown function
alternative formulations can be obtained. First, one can write the volume currents in terms of the electric
and magnetic flux densities

J = −iω
(

¯̄I − ¯̄ε−1
r

)
·D and M = −iω

(
¯̄I − ¯̄μ−1

r

)
· B. (33)

Then by multiplying Equation (15) with ε and Equation (16) with μ, we obtain the VIE for the flux
densities, the DBVIE formulation,[ −LχE

+ ¯̄ε−1
r · −iωεKχH

iωμKχE
−LχH

+ ¯̄μ−1
r ·

] [
D
B

]
=
[

Dp

Bp

]
. (34)

Here Dp = εEp, Bp = μHp, Aχ[F] = A[χF], and

χE = ¯̄I − ¯̄ε−1
r and χH = ¯̄I − ¯̄μ−1

r . (35)
A formulation for the field intensities is obtained by using identity [51]

LV [F] = T V [F] − F, (36)
and by expressing the volume currents in terms of the fields. The equations of this EHVIE formulation
read [ −T τE

+ ¯̄εr· −iωμKτH

iωεKτE
−T τH

+ ¯̄μr·
] [

E
H

]
=
[

Ep

Hp

]
. (37)

The third option, JMVIE formulation, written in terms of scaled volume currents J̃ = J/
√
ε and

M̃ = M/
√
μ, is given by [57][ I − ¯̄τE · L −ik ¯̄τE · K

ik ¯̄τH · K I − ¯̄τH · L
] [

J̃
M̃

]
=
[

J̃p

M̃p

]
. (38)

Here J̃p = −iωε¯̄τE · Ẽp and M̃p = −iωμ¯̄τH · H̃p with Ẽp = Ep/
√
ε and H̃p = Hp/

√
μ. Other possible

VIE formulations are presented, e.g., in [51, 76].
For a bi-anisotropic medium the VIE representations have exactly the same form as for an

anisotropic medium with the difference that the volume currents contain extra terms due to the magneto-
electric coupling parameters

J = −iωε¯̄τE · E − iω ¯̄ξ ·H and M = −iωμ¯̄τH ·H − iω ¯̄ζ ·E. (39)
The JMVIE formulation for a bi-anisotropic medium can be expressed as[

I − ¯̄τE · L + ik ¯̄ξr · K − ¯̄ξr · L − ik ¯̄τE · K
− ¯̄ζr · L + ik ¯̄τH · K I − ¯̄τH · L − ik ¯̄ζr · K

] [
J̃
M̃

]
= −iω

[
¯̄τE · D̃p + ¯̄ξr · B̃p

¯̄τH · B̃p + ¯̄ζr · D̃p

]
, (40)

with ¯̄ξ =
√
εμ ¯̄ξr, ¯̄ζ =

√
εμ ¯̄ζr, D̃p =

√
εEp and B̃p =

√
μHp.

If the structure to be modeled contains both penetrable (inhomogeneous and/or anisotropic) and
impenetrable regions, coupled volume-surface integral equation (VSIE) formulation is needed. In this
formulation the total fields are expressed as a sum of the primary fields and the secondary fields due to
both the equivalent surface and volume currents [77].
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3.5. Integral Operators and Equations

Consider next a linear integral operator

A[u](r) :=
∫
Ω

K(r, r′)u(r′)dΩ′, (41)

where u is an unknown function and K is a known function — the kernel of A. An operator A can be
interpreted as a linear mapping from the domain space D onto the range space R. Operator is called
a smoothing operator if the range space consists of functions that are “smoother” than in the domain
space. If the operator decreases the smoothness of a function it acts like a differential operator.

Linear integral operators can be classified due to the singularity of their kernel. If the order of
the singularity of the kernel is lower than the dimension of the integral, the kernel is called weakly
singular. An operator with a weakly singular kernel is smoothing and bounded. Spectrum of a bounded
operator is bounded in the complex plane. If the spectrum accumulates to the origin, the operator is
called compact. If the order of the singularity of the kernel is equal or higher than the dimension of the
integral, the kernel is singular or hyper-singular. Operators with strongly or hyper-singular kernels can
be unbounded in which case the spectrum tends to go to the infinity.

Integral equations in turn can be classified as integral equations of the first kind
A1[u] = v, (42)

and as integral equations of the second kind
(A2 + I) [u] = v, (43)

where A1 and A2 are linear integral operators. A very important class of integral equations is the
Fredholm’s integral equations of the second kind — compact plus identity. The mathematical theory
of these equations is well-established. They are uniquely solvable if A2 + I is one-to-one and their
spectrum accumulates to a constant value in the complex plane. Unfortunately in EM, the integral
equations are of this nice form only in some very rare special cases. Generally, for uniquely solvable
equations, operators A1 and A2+B (this is a generalization of (43)) should be one-to-one, and operator
A1 should be coercive (“bounded from below”), and operator A2 should be compact and B should be
bounded with a bounded inverse.

3.6. Method of Moments

Method of Moments (MoM) is a general projection method for finding numerical (approximate) solutions
of linear (integral) operator equations [78]. With MoM infinite dimensional integral equations are
converted to finite dimensional matrix equations

Ax = b, (44)
that can be solved with numerical methods. Here A is a system matrix, b is an excitation vector, and
vector x contains the unknown coefficients of the approximation of the unknown function. The basic
steps of MoM can be summarized as follows [79]:
(i) Approximate an unknown function u with a linear combination of known basis functions u1, . . . ,uN

u ≈
N∑

n=1

cnun. (45)

(ii) Minimize the residual of the approximate equations, obtained by substituting (45) into the integral
equation, against known testing or weighting functions wm, m = 1, 2, . . ..

Assuming that the testing procedure is based on the symmetric L2 product

〈w, v〉 :=
∫
Ω

w(r) · v(r)dΩ, (46)

where Ω is either a volume (V ) or a surface (S), the elements of (44) (for an integral equation of the
first kind (42)) are

Amn = 〈wm , A1[un]〉 , bm = 〈wm , v〉 , m, n = 1, . . . , N. (47)
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3.7. Function Spaces

Next we introduce the mathematical function spaces, Sobolev spaces, associated with the analysis of the
solutions of the EM integral equations [80]. For the field intensities the natural function space is the
space of square integrable functions whose curls are also square integrable [80–82], called here as curl
space,

Hcurl(V ) :=
{
F |F ∈ L2(V )3 and ∇× F ∈ L2(V )3

}
. (48)

Here L2(V )3 denotes the space of square integrable (vector) functions and V is a bounded domain in
3D. If V is unbounded, square integrability is defined locally on each bounded subset of V [80]. For the
flux densities we define the div space

Hdiv(V ) :=
{
F |F ∈ L2(V )3 and ∇ · F ∈ L2(V )

}
. (49)

Furthermore, as can be deduced from Maxwell’s equations (3) and (4), in a source free medium the flux
densities are solenoidal (divergence vanishes). Therefore, define a third function space

Hdiv, sol(V ) := {F |F ∈ Hdiv(V ) and ∇ · F = 0} . (50)
These three function spaces (48), (49), and (50), together with L2(V )3, are the ones needed to analyze
the EM VIEs [91].

For the analysis of the SIEs, the trace spaces of the above-mentioned curl and div space are
needed [80, 83]. Let S denote the surface of V with unit normal vector n. Then the trace operators
introduced in Section 3.3 define the following mappings [82]

γt : Hcurl(V ) �→ H
−1/2
Curl (S), (51)

γr : Hcurl(V ) �→ H
−1/2
Div (S). (52)

Here “the surface curl space” and its L2 dual space, “the surface div space”, are defined as

H
−1/2
Curl (S) : =

{
F |F ∈ H−1/2(S) and CurlF ∈ H−1/2(S)

}
, (53)

H
−1/2
Div (S) : =

{
F |F ∈ H−1/2(S) and DivF ∈ H−1/2(S)

}
. (54)

Operations Curl F = n · ∇s × F and DivF = ∇s · F are the surface curl and surface divergence of a
tangential vector field defined on the surface. Space H−1/2(S) is the L2 dual of the fractional order
scalar Sobolev space H1/2(S) [80]. Spaces (53) and (54) are the ones used to analyze properties of the
SIEs expressed in terms of the surface current densities. For SIEs containing surface charge densities

ρ = n ·D and ζ = n ·B, (55)
a normal trace operator

γnF := n ·F|S (56)
is needed. This trace operator defines the following mapping

γn : Hdiv(V ) �→ H−1/2(S). (57)
and H−1/2(S) is the function space for the surface charge densities.

4. ACCURATE, STABLE AND SCALABLE SOLUTIONS

The previous section provides background for the EM IEMs. Next we turn our attention to the properties
of various formulations and equations. We, in particular, look for methodologies that would lead to
accurate, stable, and scalable solutions on a wide range of material parameters and frequencies.

4.1. Accuracy

Accuracy is the first fundamental property of any numerical method. It depends on many factors such as
modeling of the geometry and materials, approximation of the unknown function, accuracy of numerical
evaluations, e.g., numerical integration, and solution of the linear system [84]. We consider two issues
related to the accuracy of the solution: Numerical evaluation of singular integrals with the singularity
subtraction technique (SST) and choices of the basis and testing functions that lead to conforming
discretization strategies.
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4.1.1. Evaluation of Singular Integrals

The kernels of the integral operators become singular as the field and source points coincide. In EM the
kernels are defined with the Green’s function, its derivatives, and in some VIEs with additional material
parameter depended functions. Green’s function has a weak O(1/R) singularity as R = |r − r′| → 0.
Differentiating the Green’s function increases the order of the singularity. Gradient of the Green’s
function has a O(1/R2) singularity that for surface integrals leads to a strongly singular kernel that
generally is not integrable. For the surface integral operator LS, having a strongly singular kernel, the
order of the singularity can be reduced by moving gradient from the singular Green’s function to a
differentiable testing function by integrating by parts

〈w,LS [JS ]〉 = −〈Divw,SS[Div JS]〉 + k2 〈w,SS [JS ]〉 . (58)
It is important to note that this form is valid only if a testing function w has a correct differentiability
property (divergence conforming, see the next section).

For volume integrals gradient of the Green’s function still defines a weakly singular kernel, but
double derivative leads to a strongly singular one. In the latter case, the singularity can be decreased
by moving one of the derivatives to the testing function. The difference compared to (58) is that for
VIEs similar nice symmetric variational form does not usually exist and we need to consider boundary
integrals, too. For example, for the operator LV , appearing in the JMVIE formulation and tested with
a L2 conforming function w, we have [57]

〈w, ¯̄τE ·LV [JV ]〉=− 〈∇ · (¯̄τT
E · w) ,∇SV [JV ]

〉
+
∫

∂V

n · (¯̄τT
E · w) · ∇SV [JV ]dS+k2 〈w, ¯̄τE · SV [JV ]〉 . (59)

Here ∂V denotes the boundary of V and n is the unit normal vector of ∂V .
However, it is not possible to avoid all singularities and special techniques are still required to obtain

satisfactory accuracy. After discretizing SIEs and VIEs with MoM one has to consider, for example,
the following types of double integrals (omitting possible vector and material parameter functions)∫

Ω

∫
Ω

P (q)
m (r)P (p)

m (r′)G(r, r′)dΩ′dΩ, and
∫
Ω

∫
Ω

P (q)
m (r)P (p)

m (r′)∇G(r, r′)dΩ′dΩ. (60)

Here P (q)
m and P (p)

m are polynomials of orders p and q (related to the testing and basis functions).
The idea in SST is to subtract and add singular term(s) from the kernel [85, 86]. By expanding the

exponential function with the power series homogeneous space Green’s function can be expressed as

G(R) =
∞∑

p=0

(ik)pRp−1

4πp!
=

1
4πR

− k2R

8π
+O(R2), R 
= 0. (61)

Then by subtracting and adding every second term up to order four gives

G(R) =

⎛
⎝G(R) −

∑
p=0,2,4

(ik)p Rp−1

4πp!

⎞
⎠+

∑
p=0,2,4

(ik)pRp−1

4πp!
. (62)

The terms with odd p are not usually considered since they are smooth functions. The terms on
the right-most of (62) can be evaluated analytically on planar polygons and the remaining term on
the right hand side of (62) is usually sufficiently smooth to allow numerical integration with standard
techniques [87, 88]. It is important to note that subtracting only one term may not be enough since
the function to be evaluated numerically may not be smooth enough and for strongly singular integrals
usually at least three terms should be subtracted from the kernel [87].

It is also important to note that with the SST presented here it is not possible to obtain arbitrary
accuracy (with finite number of quadrature points). In many practical cases including planar elements
the accuracy of SST, however, is sufficient. Curved elements still pose major challenges for SST,
and other methods based, e.g., on the singularity cancellation method [89] or the direct evaluation
method [90] can allow much easier treatment of singular integrals in those cases. Finally, we note that
methods like Duffy’s transformation does not usually give satisfactory accuracy, in particular, for SIEs
with strongly singular kernels and for the VIEs in the case of high material contrast [51].
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4.1.2. Conforming Discretization Techniques

Accuracy of the MoM solution depends strongly on the choices of the basis and testing functions. A
wrong choice of these functions may deteriorate the accuracy and lead to non-converging solutions. In
order to guarantee that the MoM solution converges in the norm of the numerical solution space, with
the testing procedure of (46), requires finding the basis functions from the finite dimensional subspace
of the domain of an integral operator and the testing functions from the dual of the range space of the
operator [91, 92]. This leads to conforming discretization strategies. A finite element (FE) space is said
to be H conforming if it is a finite dimensional subspace of a function space H [82] and a discretization
strategy is said to be conforming if both the basis and testing FE spaces are conforming.

In order to find out the needed conforming FE spaces, the domain and range spaces of the associated
integral operators need to be known. The volume integral operators introduced in Section 3.4 define
the following mappings [57]

DBVIE : Hdiv(V ) ×Hdiv(V ) �→ Hcurl(V ) ×Hcurl(V ), (63)
EHVIE : Hcurl(V ) ×Hcurl(V ) �→ Hdiv(V ) ×Hdiv(V ), (64)
JMVIE : L2(V )3 × L2(V )3 �→ L2(V )3 × L2(V )3. (65)

Recall that Hdiv(V ) and Hcurl(V ) are L2 dual spaces to each other and that L2(V )3 is its own dual.
Then results (63) through (65) show that in order to use conforming discretization strategies so that
the operators become tested in the dual of their range spaces, the FE spaces of the basis and testing
functions for all three VIEs considered here should be identical. For DBVIE one should use Hdiv

(divergence) conforming functions, for EHVIE we need Hcurl (curl) conforming functions, and for
JMVIE L2 conforming functions. These functions differ by their continuity properties [82]. Divergence
conforming functions, such as SWG functions [93], have continuous normal component across the faces of
the mesh, curl conforming Nedelec’s edge functions [94] have continuous tangential component from an
element to another and L2(V ) conforming functions do not pose any continuity between the elements. In
other words, these functions have the same continuity properties as the corresponding physical quantities
(flux, field and current) approximated with these functions.

The surface integral operators derived in Section 3.3 define the mappings [56]

JMSIE : H
−1/2
Div (S) ×H

−1/2
Div (S) �→ H

−1/2
Div (S) ×H

−1/2
Div (S), (66)

EHSIE : H
−1/2
Div (S) ×H

−1/2
Div (S) �→ H

−1/2
Curl (S) ×H

−1/2
Curl (S). (67)

Since H
−1/2
Div (S) is the L2 dual of H−1/2

Curl (S), EHSIE should be discretized with H
−1/2
Div (divergence)

conforming basis and testing functions, but for the JMSIE only the basis functions should be divergence
conforming, and the testing functions should be H−1/2

Curl (curl) conforming. The difference here is that
a divergence conforming function has continuous component perpendicular to the edges of the mesh
and well-defined surface divergence, whereas a curl conforming function has a continuous component
parallel to the edges of the mesh and well-defined surface curl.

If the lowest order divergence conforming FE space, i.e., the RWG [25] space, is used as the basis
function space for JMSIE, the curl conforming FE space obtained by operating with n× to the RWG
space, can not be used as the testing function space. The reason is that these two spaces do not define
an appropriate non-degenerate L2 dual pairing [95]. Instead, another curl conforming FE space, a dual
curl conforming space, is needed. This space may for example consists of the rotated tangential Buffa-
Christiansen functions [96]. Conforming discretization techniques utilizing above-mentioned FE spaces
are summarized in Table 2.

Table 2 shows an important fundamental result. Conventionally, in CEM the integral equations
have been discretized using Galerkin’s method with identical basis and testing functions. This method,

Table 2. Conforming discretization strategies for the volume and surface integral equations.

DBVIE EHVIE JMVIE JMSIE EHSIE
Basis FE space div conf. curl conf. L2 conf. div conf. div conf.

Testing FE space div conf. curl conf. L2 conf. dual curl conf. div conf.
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Figure 1. Total scattering versus the mesh parameter (average edge length): (a) a PEC sphere with
r = λ/2 and (b) a homogeneous dielectric sphere with r = λ/2 and εr = 4. Here d stands for testing in
the dual of the range space (conforming), r for testing in the range space (non-conforming) and g for
testing with Galerkin’s method (in CFIE and JMCFIE the field equations are tested in the dual of their
range spaces, but the current equations are tested in the range spaces). In all cases basis functions are
the RWG functions.

as indicated by Table 2, gives conforming discretization strategy for all other formulations except for
the JMSIE. Consequently, using standard RWG-Galerkin approaches for equations based on JMSIE,
such as PEC-MFIE, CNF and NMüller, may not guarantee that the solution converges in the norm of
the numerical solution, i.e., in the H−1/2

Div (S) norm. In particular, the solution for the charge may not
converge [54, 97]. Figure 1 illustrates that conforming strategies (denoted with solid lines) give much
faster converging solutions than the non-conforming ones (denoted with dashed lines).

The rationale why testing in the dual of the range space is important can be found by studying the
Helmholtz decompositions of the testing function spaces. Consider first testing of the DBVIE. Define
the following (incomplete) Helmholtz decomposition (the harmonic part is removed) for the volumetric
divergence conforming testing function space

wdiv
V = ∇× wV + wnsol

V . (68)

Here ∇× wV is a solenoidal, and wnsol
V is a non-solenoidal function. Since DBVIE defines a mapping

from the flux densities onto the field intensities, consider testing of the electric field with a divergence
conforming function having decomposition (68). Integrating by parts gives〈

wdiv
V , E

〉
=
〈
∇× wV + wnsol

V , E
〉

= 〈wV , ∇× E〉 − 〈wV , γrE〉S +
〈
wnsol

V , E
〉

= iω 〈wV , B〉 − 〈wV , γrE〉S +
〈
wnsol

V , E
〉
. (69)

This shows that by testing the DVIE part of the DBVIE in the dual of its range space, tests both the
electric field and its curl, i.e., the magnetic flux, inside the volume, and the tangential component of
the electric field on the interfaces. Analogously, testing the BVIE part of the DBVIE in the dual of its
range space, tests both the magnetic field and the electric flux inside the volume, and the tangential
component of the magnetic field on the interfaces. If the equations are not tested in the dual of the
range space, the flux densities may not be tested properly and their solutions may not converge.

With similar arguments, and using Helmholtz decomposition of a curl conforming testing function
space, it can be shown that testing the equations of EHVIE in the dual of their range spaces tests
the flux densities and the fields inside the volume, and the normal components of the fluxes on the
interfaces. If the equations are not tested in the dual of the range space, the field intensities may not
be tested.
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Consider next the surface formulations. Testing the tangential electric field with the Helmholtz
decomposition of the divergence conforming testing function space

wdiv
S = n×∇sφ+ wnsol

S , (70)

where n×∇sφ is a solenoidal function and wnsol
S is a non-solenoidal function, gives〈

wdiv
S , γtE

〉
=
〈
n ×∇sφ+ wnsol

S , γtE
〉

= 〈φ, DivM〉 +
〈
wnsol

S , γtE
〉

= iω 〈φ, γnB〉 +
〈
wnsol

S , γtE
〉
. (71)

This shows that by testing the EFIE part of the EHSIE in the dual of its range space, tests the boundary
or interface conditions for both the tangential electric field and the normal magnetic flux. Analogously,
utilizing Helmholtz decomposition of a curl conforming testing function space shows that testing the
ECIE (rotated tangential component of the magnetic field) part of the JMSIE in the dual of its range
tests both the electric surface current density and its divergence [97]. If the operators are not tested in
the dual of their range spaces, the normal components of flux densities may not be tested in the EHSIE
and the surface divergence of the currents may not be tested in the JMSIE, and the convergence of the
solution for these non-tested field quantities is not guaranteed.

4.2. Stability

The formulations and their conforming discretizations considered so far do not necessarily guarantee
that the resulting matrix equation is stable and well-conditioned. Generally, stability is related to the
condition number of the matrix, measure of the sensitivity of the linear system. If the condition number
of a matrix is high, the system is usually ill-conditioned and small changes on the initial conditions may
cause large changes on the solution.

Another very important issue related to the conditioning of a matrix is the convergence rate of
iterative solutions. For efficient iterative solutions with Krylov subspace methods a matrix should be
sufficiently well-conditioned. Strictly speaking, only Fredholm’s integral equation of the second kind
can lead to a well-conditioned matrix [98]. In all other cases additional regularization or preconditioning
techniques may be needed. Next we investigate stability of the VIE and SIE formulations and their
regulatization.

4.2.1. Analysis of the Volume Formulations

Consider first properties of the volume formulations (34), (37), and (38). First we note that among these
three formulations only the JMVIE is of the form — an integral operator plus the identity operator.
In the other two formulations, DBVIE and EHVIE, the identity operator is multiplied with material
parameters.

To guarantee that the volume formulations are well-posed, the material parameters should be
bounded from both below and above [91, 92]. For example, the electric permittivity should satisfy

a 〈F∗, F〉 ≤ |〈F∗, εF〉| ≤ b 〈F∗, F〉 (72)

for some 0 < a, b <∞, and for any F ∈ L2(V )3. Here F∗ denotes complex conjugate. Obviously, at the
limiting cases ε→ 0 and ε→ ∞ these conditions are not valid. Consequently, the VIE formulations may
not be equivalent in the sense of the existence and uniqueness of the solution, and numerical stability
issues might arise when approaching these limits. In particular, as discussed in [91], the standard
discretization procedures used in the EHVIE and DBVIE might give rise to larger solution spaces as
the intended ones.

From the physical point of view, the constitutive relations D = εE, and B = μH, and the finite
energy assumption, indicate the following about the flux densities and the fields at the limiting cases:

lim
ε→0

D = 0, lim
μ→0

B = 0, lim
ε→∞E = 0, lim

μ→∞H = 0. (73)

Obviously these limiting cases cause numerical problems for the formulations using the fields or fluxes
as unknowns. The equivalent volume currents J and M are linear combinations of the fluxes and fields
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and do not vanish in the limiting cases. The stability of the JMVIE formulation is illustrated in Figure 2
for a radially anisotropic sphere.

As is mentioned in Section 3.7, in a source free medium the flux densities should have zero
divergence. To satisfy this, the basis functions used to approximate the flux densities should be
solenoidal [99]. Figure 2 shows that, compared to the standard discretization of DBVIE with SWG
functions, the use of solenoidal functions stabilizes DBVIE at small permittivity values, but the condition
number of the matrix is increases on other values. By defining the solenoidal loop functions with
projections, as proposed in [47] for surface formulations, improves conditioning of the matrix. This,
however, requires inversion of the Gram matrix whose efficient computation can be challenging.

Nonetheless, the standard discretization of the DBVIE formulation with Galerkin’s method and
SWG functions might give convergent results in the L2 norm. However, it is not clear that the divergence
of the flux density converges inside the scatterer. As illustrated in Figure 3, with the solenoidal functions
the solution of the DBVIE has an equal converge rate both in the L2 and Hdiv norms.
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Figure 2. (a) Backscattered RCS and (b) the number of GMRES iterations of various VIE formulations
versus the radial component of the permittivity and permeability dyadics of a sphere with size parameter
kr = 2. Here k is the wavenumber of the background (vacuum) and sol. stands for the solenoidal basis
and testing functions.
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Figure 3. (a) Relative error in the total scattering cross section for different VIE formulations and (b)
the accuracy of the solution of the DBVIE formulation inside the object using various norms. In both
cases the object is a dielectric (εr = 5) sphere of size kr = 2.
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4.2.2. Material Parameter Regularization of Volume Formulations

Another problem related to the VIEs is that the condition number of the matrix tends to increase
as the material contrast of the object is increased. In order to avoid this, we consider a Helmholtz
decomposition based preconditioner for the JMVIE in the case of a homogeneous isotropic object with
ε = εrε0 and μ = μ0 [100].

Any vector field F ∈ L2(V )3 can be decomposed using Helmholtz decomposition into the
irrotational, solenoidal and gradient of harmonic parts [101]

F = ∇P + ∇× w + ∇H, (74)

where P ∈ H1
0 (V ), w ∈ Hcurl0(V ), and H is a harmonic function with zero Laplacian in V . Here

H1(V ) :=
{
u |u ∈ L2(V ) and ∇u ∈ (L2(V ))3

}
(75)

is the classical Sobolev space of square integral functions whose first derivatives are also square
integrable, and index 0 stands for vanishing functions in V (H1

0 (V )) or for vanishing tangential
components on the boundary of V (Hcurl0(V )). According to (74), electric volume current J can be
decomposed as

J = Jsol + Jirr + Jharm. (76)

Since inside the volume ∇ · Jsol = 0, and on the boundary n · Jsol = 0, JMVIE for the solenoidal part
reduces to

Jsol − τEk
2
0S[Jsol] = Jp. (77)

If τE = εr − 1 is bounded, Equation (77) is of the desired form, identity plus compact, and its spectrum
accumulates to unity.

To analyze the irrotational part we use identity (36) and write JMVIE as

εrJ− τET [J] = Jp. (78)

Now operator T vanishes since ∇ × Jirr = 0 and on the boundary n × Jirr = 0. Thus, only the
permittivity and the identity operators act on the irrotational part, and the accumulation point of the
spectrum is at εr.

Finally, substituting the gradient of the harmonic function, Jharm = ∇H, into the JMVIE,
integrating by parts, and using the fact that Laplacian of H vanishes, gives [100]

Jharm + τE ∇S[γnJharm] − k2
0S[Jharm] = Jp. (79)
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Figure 4. The number of GMRES iterations versus the number of elements for a sphere with (a)
kr = 1 and εr = 5 and versus the permittivity of a sphere with (b) kr = 0.4. Here (Helmh.) stands for
the Helmholtz decomposition of the volume current. At εr = 40 the increase in the GMRES iterations
is due to a physical resonance of a dielectric sphere.
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Here γn is the normal trace operator (56). Equation (79) is of the form identity plus bounded plus
compact. If the boundary ∂V is smooth, the equation can be reduced to the form identity plus compact
with an accumulation point (εr + 1)/2.

In conclusion, this analysis indicates that the spectrum of the JMVIE operator depends on the
material parameter, which may have a negative effect on the stability of the numerical solution. This
also indicates that JMVIE is solvable in L2(V ) if εr 
= 0 or εr 
= −1 and explains why convergence
of iterative solvers tend to slow down as the material contrast is increased. Even more importantly
the analysis shows that an efficient preconditioner is obtained by scaling the JMVIE in the irrotational
subspace by 1/εr and in the harmonic subspace by (εr + 1)/2 [100].

Figure 4 illustrates that the conditioning of the JMVIE formulation is clearly less dependent on
the mesh density than that of the other VIE formulations, and in particular that after regularization
via the Helmholtz decomposition, the conditioning of JMVIE is nearly independent on the permittivity
contrast, when implemented using similar projection operators as in [47].

4.2.3. Analysis of the Surface Formulations

Consider next properties of the surface formulations. First we note the fundamental difference between
equations JMSIE and EHSIE, namely only the first one can lead to integral equations of the second
kind, since the second one contains the rotation operator n× rather than the identity operator.

With the PEC boundary condition PEC-EFIE (29) is an integral equation of the first kind and
PEC-MFIE (30) is an integral equation of the second kind. However, none of these two equations is
of the desired form that would generally guarantee uniquely solvable solutions. Firstly, they both fail
to be one-to-one at internal Maxwell resonance frequencies of a closed object. This problem can be
avoided, e.g., with the PEC-CFIE [23]. Secondly, due to the infinite dimensional null-space of the Div
operator within the L operator, the corresponding variational form (58) or the operator itself is not
coercive [95]. Using Helmholtz decomposition the null-space of the Div operator can be extracted and
a coercive variational form can be obtained [102]. In addition, if the surface is non-smooth, the K
operator of PEC-MFIE is bounded, rather than compact.

In the case of penetrable bodies the equations arising from the opposite sides of an interface are
combined. This complicates the analysis of the formulations and certain specific choices of the coupling
coefficients leads to cancellations in the combined equations, that has significant effects on the properties
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Figure 5. Eigenvalue condition numbers (ratio of the maximum and minimum magnitudes of the
eigenvalues) of various SIE formulations versus the relative permittivity of a homogeneous dielectric
sphere with (a) kr = 1 and the number of GMRES iterations (without restarts and additional
preconditioning) needed to obtain relative residual error of 10−4 versus the relative permittivity of
a homogeneous dielectric cube with (b) kL = 2. CMP-PMCHWT stands for the Calderon matrix
multiplicative preconditioned PMCHWT formulation and L is the edge length of a cube.
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of the formulations. In the PMCHWT formulation the rotation operators cancel, leading to an integral
equation of the first kind. The mathematical analysis of this formulation is considered, e.g., in [103].
In the NMüller formulation the equations are coupled so that the main singularity of the L operator
cancels [104] and the resulting equation is of the second kind — bounded plus identity. This cancellation,
however, may have a negative effect on the near field accuracy. CTF is a scaled version of PMCHWT
where the diagonal blocks of the system matrix are identical. This significantly improves conditioning
of the matrix, with the cost of non-vanishing rotation operators. CNF is an integral equation of the
second kind that is based on the same JMSIE equations as the NMüller formulation, but without any
additional scaling coefficients nor cancellations.

As illustrated in Figure 5, an additional challenge in the SIE formulations for penetrable objects is
that the conditioning of the matrix tends to increase as the material contrast is increased. As can be
deduced from (27) and (28), the reason for this is that the matrix blocks (in PMCHWT the diagonal
ones and in CNF the off-diagonal ones) become more and more ill-balanced as the material contrast
is increased. Thus, additional scaling of the equations, and/or normalization of the unknowns [106],
may still be needed to avoid growth of the condition number with respect to the material parameters.
As shown also in Figure 5, for certain specific material parameters the integral equations can become
singular, or fail to give correct results [61, 105]. Particularly problematic cases seem to be material
parameter values of zero or minus one.

4.2.4. Low Frequency Stability of Surface Formulations

Surface formulations suffer also from the low frequency breakdown — a consequence of decoupling of
the electric and magnetic fields at zero frequency [42]. To illustrate this problem, decompose operator
L, multiplied with a coefficient as, e.g., in the PEC-EFIE (29), in two parts as

−1
iωε

L = Lh + Ls (80)

with (
Lh F

)
=

−1
iωε

∇S[Div F] and (LsF) = iωμS[F]. (81)

Clearly operators Lh and Ls have different frequency scaling. As ω goes to zero, Lh becomes dominant
and the system becomes unbalanced and numerically unstable, because the contribution from Ls is
lost and the current can not be accurately determined from its divergence. This results in a nearly
singular matrix at low frequencies and a singular matrix at zero frequency [107–109]. The low frequency
breakdown appears in all SIEs containing the L operator. Particularly problematic are the PEC-EFIE,
PMCHWT and CTF formulations, where the L operator has a dominant role in the sense that it
is “well-tested”. Due to the cancellation of the hyper-singular part of the L operator, the NMüller
formulation is a low frequency stable formulation [110]. CNF suffers from the low-frequency problem,
but the problem is not as severe, since the problematic L operator is weakly tested [48].

The usual method to regularize SIEs at low frequencies is based on the incomplete surface Helmholtz
decomposition of the currents [42, 111]. With proper frequency scaling this decomposition leads to
a solvable matrix equation at low frequencies. The challenge, however, still is that the resulting
matrix is typically very poorly conditioned due to unbounded form of the Helmholtz decomposed
operator [42, 112].

Another way to avoid the low-frequency breakdown is to consider charges as independent unknowns.
This formulation, giving current and charge integral equations (CCIE), is based on representations [49]

ΘE = Ep + iωμS[J] − K[M] − 1
ε
∇S[ρ], (82)

ΘH = Hp + iωεS[M] + K[J] +
1
μ
∇S[ζ], (83)

where ρ = n · D and ζ = n ·B are the electric and magnetic surface charge densities. Charge densities
are related to the current densities via the continuity equations

iωρ = DivJ and iωζ = DivM. (84)
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Study next the static limit of representations (82) and (83). As ω → 0 we get

ΘE = Ep − K0[M] − 1
ε
∇S0[ρ], (85)

ΘH = Hp + K0[J] +
1
μ
∇S[ζ], (86)

where K0 and S0 are the K and S operators with the static Green’s function G0 = 1/(4π|r − r′|). At
zero frequency currents J and M are purely solenoidal [42] and can be expressed as

M = −n× E = n ×∇sφ and J = n× H = n×∇sψ. (87)
Using this, and identity [113],

K0 [n ×∇sφ] = −∇D0[φ], (88)
representation for the electric field (85) at zero frequency reduces to

ΘE = Ep + ∇D0[φ] − 1
ε
∇S0[ρ]. (89)

Here D0 is the double layer potential operator with the static kernel, defined with Green’s function G
as

D[u](r) :=
∫
S

∂G(r, r′)
∂n(r′)

u(r′)dS′. (90)

Equation (89) agrees with the representation of the static electric field derived from the representation
of the Laplace equation for the electrostatic potential φ and its normal derivative ∂φ/∂n = ρ/ε. This
shows that the static limit of the surface integral representation given in terms of the currents and
charges is correct, provided that (87) is satisfied. To ensure that, however, requires explicit use of the
surface Helmholtz decomposition.

Next we introduce a modified version of the CCIE formulation [114]. First, write incomplete
Helmholtz decompositions of the currents as [111]

M = n×∇sφ+ Mnsol and J = n×∇sψ + Jnsol, (91)
where φ and ψ are potential functions [111], Jnsol and Mnsol are non-solenoidal (surface divergence is
non-zero). Since divergence of a solenoidal component is zero, we have

Div M = Div Mnsol = iωζ and Div J = Div Jnsol = iωρ. (92)
Then define a non-solenoidal to charge transformation operator W [42, 111], and express the non-
solenoidal currents in terms of the charges

J = n×∇sψ + iωWρ and M = n×∇sφ+ iωWζ. (93)
Substituting (93) into field representations (15) and (16), and using identities [115]

S [n×∇sφ] = −K[nφ] and K [n ×∇sφ] = −T [nφ], (94)
gives the EM surface integral representations given in terms of four scalar functions, potentials φ, ψ,
and charges ρ, ζ,

ΘE = Ep − 1
ε
T [Wρ] + iωμK[nψ] + T [nφ] − iωμK[Wζ], (95)

ΘH = Hp +
1
μ

T [Wζ] − iωεK[nφ] − T [nψ] + iωεK[Wρ]. (96)

Further, with identities [115]
T [Wρ] = ∇S[ρ] + k2S[Wρ] and T [nφ] = −∇D[φ] + k2S[nφ], (97)

Equations (95) and (96) at the static limit reduce to

ΘE = Ep − 1
ε
∇S0[ρ] + ∇D0[φ], (98)

ΘH = Hp +
1
μ
∇S0[ζ] −∇D0[ψ]. (99)

Since these equations agree exactly with the representations of the static fields given in terms of the
scalar potentials and their normal derivatives, the SIEs, called as potential and charge integral equations,
derived from representations (95) and (96) have correct static limit without any additional techniques.
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Figure 6. The number of GMRES iterations (without restarts and additional preconditioning) versus
the mesh density for a PEC cube with edge length (a) L = λ and for a homogeneous dielectric sphere
with (b) r = λ/2. Here CMP-EFIE and CMP-PMCHWT stand for the Calderon matrix multiplicative
preconditioned PEC-EFIE and PMCHWT formulations, respectively.

4.2.5. Dense-Mesh Breakdown of Surface Formulations

Another problem of the SIE formulations is the dense-mesh breakdown. The matrix equation becomes
more and more ill-conditioned as the mesh density is increased, making iterative solutions ineffective
in cases that require discretizations with small elements or elements with varying sizes. The dense-
mesh breakdown is associated to the hypersingular part of the operator L — the gradient of the single
layer operator ∇S[u]. In fact, since L contains two parts, a hypersingular one Lh and a compact one
Ls, if discretized with the RWG functions, the eigenvalue spectrum of the matrix due to L scales like
O(1/h2) [112], where h is the mesh parameter. Figure 6 illustrates the dense-mesh breakdown of various
SIE formulations. It is important to note that the low frequency and the dense-mesh breakdowns are not
the same phenomenon [112] and that the low frequency stable formulations considered in the previous
section may still suffer from the dense-mesh breakdown.

Recently, a very elegant technique has been introduced to avoid the dense-mesh breakdown [45].
This technique, called Calderon preconditioning [43, 45, 95, 96], is based on the Calderon integral
identity [80] (−1

ik
γr L

)2

= (γrK)2 − 1
4
I. (100)

This indicates that by multiplying the problematic operator γrL with itself results to another operator
— the right hand side of (100) — that on smooth surfaces is of the form compact plus identity and
on non-smooth surfaces of the form bounded plus identity. By building the preconditioner based on
this identity leads to a matrix with bounded spectrum independently on the mesh density. Calderon
preconditioner removes also the low frequency breakdown, possibly excluding very low frequencies [116].

The challenge in Calderon preconditioning is to find a discretization strategy that satisfies the nice
properties of the continuous equation. With improper discretizations the preconditioned matrix can be
even more ill-conditioned than the original one. The crucial requirement for the needed FE spaces is
that the square of the hyper-singular part of the L operator should vanish. We note that using only
the familiar RWG space does not satisfy this property, and another dual FE space is required [45, 96].
Another challenge in the discretization of the Calderon preconditioner is that with the RWG and
BC Helmholtz decompositions, required at low frequencies [116], the Gram matrix becomes very ill-
conditioned [47].

Calderon preconditioning has been successfully applied to regularize ill-conditioned PEC-EFIE
formulation and to solve many challenging EM problems [45]. By combining Calderon preconditioned
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PEC-EFIE properly with PEC-MFIE, a Calderon preconditioned PEC-CFIE can be obtained [117].
This formulation is both well-conditioned and free of internal resonances. Calderon preconditioning has
also been used to regularize PMCHWT formulation in the case of homogeneous isotropic and chiral
objects [118, 119].

4.3. Scalability

Still another fundamental problem appears in the IEMs. Namely the CPU time and the computer
memory required to solve the matrix equation increase very rapidly as the number of dof is increased.
This is due to the fact that discretization of an integral equation leads to a dense matrix equation.
The solution time of direct integral equation solvers scales as O(N3) and the memory consumption as
O(N2), where N is the number of dof required to obtain sufficiently accurate solution. With iterative
Krylov subspace methods the CPU time can be reduced to NiterO(N2), where Nniter is the number of
iterations required for the matrix equation to convergence. Still, these numbers are prohibitively high
for problems with high number of dof and special acceleration techniques are required to solve large-
scale problems with integral equation-based solvers. Next we discuss an error-controllable and efficient
broadband MLFMA based on global interpolators and multipole expansions [120].

4.3.1. Broadband MLFMA

MLFMA [37–39] is a versatile and powerful technique to reduce the high computational cost of integral
equation-based solvers. Traditionally MLFMA has separate algorithms for the static (low frequency)
and dynamic (high frequency) cases. The high frequency version is routinely applied for computing
scattering by electrically large structures [29], such as an aircraft, but its application to complex
antenna geometries, or other structures with a lot of geometrical details that are small compared with
the wavelength, is much more challenging. The low frequency version based on for example multipole
expansions of the field components [121], on the other hand, becomes inefficient at higher frequencies
since the number of terms required in the expansions increases rapidly as the frequency is increased.
Further in such implementation the out-to-in -translation is not diagonal, which makes this operation
relatively costly. So the fundamental problem is that neither of these two versions of MLFMA does
work efficiently simultaneously in the low and high frequency regimes, or in the cases when the structure
contains a lot of electrically small details.

The standard high frequency MLFMA usually works relatively well for both SIEs and VIEs, if the
element size of the mesh is not smaller than λ/10. However, the relevant difference between SIEs and
VIEs is that for VIEs the mesh density inside the object should follow the wavelength, whereas as in
SIEs one only needs to model surface fields, rather than interior fields. When the contrast of the object
is increased the wavelength inside the object becomes shorter, and therefore more elements are required
to model the unknown field quantities. This in turn means that the element size inside the body may
be significantly below the λ/10 limit, where λ is the wavelength of the background medium [122].

Next we briefly discuss a broadband version of MLFMA that can be applied on arbitrary mesh
densities and frequencies. This algorithm is based on a hybrid multipole expansion-plane wave expansion
approach. The idea is to use traditional MLFMA for division cubes larger or equal one lambda (“super-
wavelength levels”). In these levels the translation is performed with the standard Rokhlin translator [36]

TL

(
k̂,D

)
=

ik

(4π)2

L∑
n=0

in(2n + 1)h(1)
n (kD)Pn

(
D̂ · k̂

)
, (101)

and the Green’s function can be represented with a plane-wave expansion

G(D + d) =
∫
S

TL(k̂,D)eikk̂·ddS(k̂), (102)

where S is a unit sphere. For division cubes smaller than λ (“sub-wavelength levels”) we use a low
frequency stable plane wave expansion translator [123, 124]

T
(
k̂,D

)
=

ik

8π2
eikk̂·D, (103)
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and the Green’s function is expressed using the spectral representation (for +z direction only, i.e., for
ez · (D + d) > 0, the other directions are obtained by rotation [125])

G(D + d) =

π∫
−π

∫
Γ

T
(
k̂,D

)
eikk̂·D sin θ dϕdθ. (104)

The path Γ consists of two parts on the complex θ-plane, namely the propagating part from 0 to π/2
along the positive real axis and the evanescent part from π/2 to π/2 − i∞. In the propagating part
the direction dependency can be embedded directly into the translator. This makes the switch from
the spectral translator to the Rokhlin translator straightforward on the super-wavelength levels, since
both can utilize exactly the same planewave expansion of the field components. However, for the
evanescent part the radiation and receiving field patterns are expressed in our implementation with
multipole expansions to avoid storing six separate planewave expansions, and converted into planewave
representation for application of the evanescent part of spectral translator, see (103).

4.3.2. MLFMA with Global Interpolators

Of all the various parts of MLFMA, interpolation is one of the most vital step in the actual
implementation of the algorithm. It is of utmost importance that the accuracy can be maintained,
and that the method remains efficient while the data is aggregated and disaggregated from an level to
another. The available interpolators can be classified as belonging to either local or global type.

Local interpolators are typically based on Lagrange interpolating polynomials [6, 37, 38]. They
allow system matrix-vector multiplication to take place with the asymptotically favourable O(N logN)
CPU-time cost, but unfortunately also require oversampling of the radiation pattern. The fact that
these patterns exist on the surface of a unit sphere has not been fully taken advantage of in the existing
implementations, and therefore the sample point distribution, especially on the polar regions, is not
optimal. Also in practice the obtainable accuracy can be rather limited [126, 127].

One alternative for local interpolators is the global interpolator based on trigonometric polynomial
expansions [120, 128, 129]. Such presentations have several useful properties: Conversion between sample
values and coefficients of the expansion can be performed effectively and accurately with fast Fourier
transform (FFT). Interpolation of a function sampled in a certain set of points can be performed with
relative simple zero-padding operation for the corresponding coefficients. Polar regions that complicate
implementation of the local interpolation schemes, can be considered trivially by extending functions
to 2π-periodic also terms of θ-coordinate. The orthogonality property of the trigonometric polynomial
terms guarantees that the accuracy and stability of the process can be maintained even during high
number of successive interpolations.

The considered global interpolator also allows the storage of the sampled radiation pattern
components to take place in significantly reduced size compared to other alternatives. The version
presented in [120] reduced the number of sample points to roughly half compared to the original
version [128] by simply reducing the sample rate in the polar regions in ϕ-direction. Numerical
experiments have demonstrated excellent achievable accuracy considering the whole chain: aggregation,
out-to-in translation and disaggregation, including the numerical integration over the surface of the
unit sphere. Figure 7 illustrates solutions (acoustic surface pressure) of broadband MLFMA (scalar
Helmholtz SIE solver) utilizing global interpolators at two frequencies 2.5 Hz and 2.5 kHz corresponding
to 22 MHz and 2.2 GHz in EM with the same wavelength as in acoustics. The major challenges of the
discussed global interpolator, along with the higher asymptotic cost O(N log2N) [129], are that the
construction of the translators is a heavy process and implementation in distributed computing system
is challenging.

To avoid the above mentioned drawbacks of the global interpolator without sacrificing its main
benefits, in [130] a new version of MLFMA that combines Lagrange interpolating polynomial based
local interpolator and the global interpolator utilizing trigonometric polynomial expansions in the same
algorithm was proposed. This algorithm combines the best of both approaches: It allows storage of
components of radiation patterns with a small number of samples, and should also make it possible
to develop an efficient version for distributed computing systems. The key innovation is the developed
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(a) (b)

Figure 7. Acoustic surface pressure at (a) 2.5 Hz and (b) 2.5 kHz computed with the broadband
MLFMA utilizing global interpolators. The model includes 1 889 812 planar triangles.

anterpolation process for the global interpolator, which is the standard process in disaggregation with
MLFMA utilizing local interpolator based on Lagrange interpolating polynomials.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

During the last three decades there has been an enormous effort in the electrical engineering community
to simulate a large variety of EM phenomena using numerical methods. Advanced and sophisticated
algorithms and software have been developed to solve complex and challenging problems. In IEMs
the discovery of the RWG functions [25] made it possible to developed general solvers for arbitrarily
shaped 3D geometries. Fast solvers, like FMM and MLFMA [6, 36], extended significantly the size of
the problem that can be solved with the IEMs. Distributed memory parallel implementations further
enlarged the size of the problem [131, 132].

Despite of the developments in numerical algorithms and the enormous growth of the computational
power there still remain many challenging EM problems whose simulations are inefficient or may even be
impossible with existing methods. Matrix equations rising from discretizations can be extremely large
and ill-conditioned, and thus difficult to solve even with the most efficient and advanced fast solvers,
preconditioners, parallel algorithms and supercomputers. Particularly arduous are the simulations of
large and complex multi-domain structures containing small details. An approach, that has already been
applied with great success, also in the context of IEMs [133–135], is the domain decomposition method
(DDM). This method essentially isolates the solution of one region from another. It may significantly
improve the matrix conditioning, and provides an inherent aptitude for parallelization and hybridization
of IEMs with other more approximate methods, like physical and geometrical optics, that are required
to solve high frequency problems. DDM also provides a natural interface for multi-physics modeling.

There is still a pressing need to develop better formulations, discretization strategies and
preconditioning techniques that lead to well-conditioned systems and error-controllable solutions on a
wide range of frequencies, materials, geometries and applications [61]. There is both theoretical [91, 92]
and numerical [57, 100] evidence that the VIEs, in particular the one written in terms of the volume
currents, JMVIE, when discretized correctly, gives stable and accurate solutions on a wide range
of material parameters and frequencies, and is also free of the dense-mesh breakdown. Additional
regularization, e.g., with Helmholtz decomposition [100], may still be needed to reduce the number
of iterations for high contrast materials. Poor conditioning of the system matrix is a particularly
serious problem with the SIEs. Many of the present SIE formulations suffer from low frequency and
dense-mesh breakdowns, making iterative solutions with Krylov subspace methods ineffective. Calderon
preconditioning [45, 96] is one of the most elegant and promising techniques to avoid these problems.
So far Calderon preconditioning is available only for PEC and homogeneous dielectric objects modelled
with specific integral equation formulations and its generalization for other formulations and boundary
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conditions is still an open question. Physical resonances, strongly resonating structures and interior
problems pose additional challenges for the preconditioners.

Most often the EM simulators are still used as verification tools, rather than early stage design tools,
or their usage is based on simple trial-and-error type simulations, rather than on advanced optimization
algorithms. With the growth of computational power and advanced EM simulation tools, it would
be beneficial to extend the trial-and-error type simulations of individual parameters to optimizing
the comprehensive performance of a device. This requires combination of mathematical optimization
techniques with 3D EM full-wave solvers [136, 137], such as IEMs [138, 139] or MLFMA [140]. It would
also be beneficial, not only have a solution for a particular problem, but also to have an estimate how
accurate the solution is. The user should be able define an error threshold of the solution.

Novel and forthcoming technologies and applications do not only offer grand opportunities, but
also pose major challenges for numerical and computational methods. The ever increasing complexity
of radio frequency, wireless, microwave and other electronic devices has and will significantly increase
requirements for the numerical simulations tools. Numerical methods should be extremely flexible
and robust with adjustable accuracy. By utilizing them one should be able to solve complex multi-
scale, multi-domain and multi-physics problems on a broad frequency range in near real time. It is
not sufficient just to solve one type of problem once, at one frequency, but one needs to be able to
solve several different kinds of complex problems several times over wide frequency bands. The present
methods need to be generalized, extended for new application areas, and completely new solutions
needs to be found. In conclusion, a lot of research and methodology development is still needed until
the ultimate goal of fully error-controllable and near real-time automatic EM design on a broad range
of materials and frequencies is achieved.
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117. Baǧci, H., F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen, “A Caldern multiplicative
preconditioner for the combined field integral equation,” IEEE Trans. Antennas Propag., Vol. 57,
No. 10, 3387–3392, 2009.

118. Cools, K., F. P. Andriulli, and E. Michielssen, “A Calderon multiplicative preconditioner for the
PMCHWT integral equation,” IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4579–4587, 2011.

119. Begheim, Y., K. Cools, F. P. Andriulli, D. De Zutter, and E. Michielssen, “A Caldern
multiplicative preconditioner for the PMCHWT equation for scattering by chiral objects,” IEEE
Trans. Antennas Propag., Vol. 60, No. 9, 4239–4248, 2012.
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sensitivity analysis and shape optimization using method of moments and automatic
differentiation,” IEEE Trans. Antennas Propag., Vol. 57, No. 1, 168–175, 2009.

139. Kataja, J. and J. I. Toivanen, “On shape differentiation of discretized electric field integral
equation,” Eng. Anal. Boundary Elem., Vo. 37, No. 9, 1197–1203, 2013.
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