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Azimuthally Non-Symmetric Surface Waves Propagating in Metal
Waveguides Filled with Isotropic Plasma
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Abstract—The paper is devoted to the theory of eigen electromagnetic waves propagating across
the axis of symmetry in waveguides with a non-circular cross-section. The case of waveguides filled
with isotropic cold plasma is studied theoretically. Plasma particles motion is described in fluid
approximation; expressions for the waves’ fields are derived from Maxwell equations. Cross-section
of the studied waveguide is modeled by Fourier series with coefficients, which values are less than unity.
This allows one to apply method of successive approximations for analytical research of this problem.
Boundary conditions, which are formulated in non-linear form over the small parameters of the problem
have been applied for derivation the dispersion equations, which determine frequency spectrum of these
surface waves for waveguides of different constructions. Studied eigen electromagnetic waves propagate
in the form of wave packets, which are approximately described by the main azimuthal harmonic and
two nearest satellite spatial harmonics. Represented results have been obtained both analytically and
numerically. Possible spheres of the studied eigen waves are discussed.

1. INTRODUCTION

The most effective way to excite waveguide structures (including such of them, which are either
corrugated or contain someone slowing-down elements like corrugated walls, disks, etc.) can be realized
in the range of their eigen frequencies [1]. This circumstance supports the interest to studying frequency
spectra of multi-component plasma filled waveguides supplied with different type slowing-down elements.
Multi-component waveguide structures are widely used [2, 3] in modern devices of plasma electronics.
Presence of different semiconductor, dielectric and/or plasma insertions in a metal waveguide increases
the number of their eigen modes and power of electromagnetic emission that can be obtained from
generators built up on the basis of these type waveguides. It also leads to appearance of some specific
features in frequency spectra of the waves propagating in such waveguides, in spatial distribution of
their fields as compared with the case of uniform waveguides application. In particular, different types
of surface waves (SWs) can propagate there [4]. Properties of the SW, which propagate along a planar
boundary between two different media, and properties of the SW propagating along a boundary, which
has a finite value of curvature radius, differ substantially. For instance, in the case of the planar form of
the plasma boundary, most of SWs are slow waves and are either potential or at least can be considered
in the potential approach, see, e.g., [5, 6] unlike the case of SW propagating along the plasma boundary
with finite value of curvature radius. The frequency ranges wherein they can exist are different in these
two cases [7]. Thus studying of SW propagating across axis of symmetry of the plasma filled waveguides
with non-circular cross-section satisfies request of novelty and actuality.

One of the main branches for application of the theoretical result presented here is plasma radio-
physics and electronics. It is known, for example, that a metal bar with a non-circular cross-section
that is disposed into plasma can be utilized for excitation of electromagnetic waves. In this case the bar
plays the role of a metal antenna with plasma coating. Utilization of antenna with plasma coating is
known [8, 9] for a long time. It has some advantages as compared with utilization of antennas without
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such coating. For instance, such application of plasma allows one to increase the electromagnetic power
radiation, to control the frequency spectrum of this radiation by the way of corrugating the surface
of the metal antenna. Experiments performed by the authors of [10] have confirmed that propagation
of the SW, which sustains a plasma column, can replace a metal bar as the guiding element in RF
antennas. Moreover, such a plasma-antenna system is characterized by low radar detectability and
negligible mutual coupling in the switched-off state. Their experiments confirm that this plasma-antenna
system has high efficiency and that its noise level is approximately the same as for a corresponding
metal antenna. These results are obtained for plasma-antennas, which operate in pulsed regimes and
can transmit and receive signals in noncurrent-carrying plasmas. Thus, the investigation of the SWs’
properties is very prospective for plasma electronics.

Using an expansion into Fourier series one can simulate any real shape of the waveguide’s cross-
section. If coefficients in this series are small values then one can apply the method of successive
approximations for studying the problem on the SW propagation in such corrugated waveguides. The
theory of azimuthal surface waves (ASW) can be applied as zero approximation while carrying out this
investigation. Spatial periodical non-uniformity of the considered waveguides is the reason that waves
propagate in the form of wave packets there. Existence of the small parameter of the problem allows
one: first, to assume that considered wave packets can be represented in the form of superposition of
the main harmonic and two nearest satellite harmonics; second, to formulate non-linear (over the small
parameter of the considered problem) boundary conditions for the considered SW fields in the form of
Taylor series over this parameter. So the carried out investigation allows one: to calculate the correction
to ASW frequency, to analyze spatial distribution of the transverse SWs fields in the cases of waveguides
of different construction.

The paper is organized as follows. Section 2 is devoted to the formulation of the problem, description
of geometry of the studied waveguides and boundary conditions applied to derivation of the dispersion
relations. Influence of the waveguide’s wall corrugation on the SW properties is under the consideration
in Section 3. Problems of the resonant influence of the waveguide’s wall corrugation on the SW dispersion
properties are studied in Section 4. Section 5 is devoted to the investigation of the SWs propagating
along azimuthally corrugated plasma column immersed into cylindrical metal waveguide of circular
cross-section. Section 6 summaries the obtained results.

2. FORMULATION OF THE PROBLEM

In cylindrical metal waveguides with non-circular cross-section, which is partially filled by cold isotropic
plasma SWs with zero axial wave number, propagate both along the azimuthal and radial directions.
Problem of these transverse surface waves (TSWs) propagation in corrugated waveguides is solved here
by the method of successive approximations, applying the theory of azimuthal surface waves (ASWs)
as a zero approximation. Let’s start our consideration from description of general geometrical features
of the waveguides, where the TSWs can propagate, and formulation of the boundary conditions, which
are applied to solving the problem.

In general case, radius of the waveguide’s metal chamber with arbitrary smooth shape of its cross-
section can be determined by the following Fourier series:

R2 = b ·
[
1 +

∞∑
n=1

hn sin (nϕ − ϕ2n)

]
, (1)

here b is a mean value of radius of the considered waveguide’s metal chamber and hn � 1 a relative
depth of azimuthal corrugation of the chamber wall. Expression (1) is a sample of Fourier series that
can describe any shape of waveguide’s cross-section. Such a corrugated waveguide, generally speaking,
can be filled by cylindrical plasma column with radius R1, whose value is also described by Fourier
series as expression (1):

R1 = a ·
[
1 +

∞∑
n=1

δn cos(nϕ + ϕ1n)

]
, (2)

here a is a mean value of the radius of the plasma column; ϕ1n,2n are the phases of corrugation of the
inner surface of the metal wall and plasma interface, correspondingly; δn � 1 characterizes maximum
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dimensionless deviation of the plasma columns’ surface from its mean value a. Term smooth is applied
in expressions (1) and (2) in the sense of limiting values of both the goffers (or in other words corrugation
parameters δn and hn) as compared with averaged dimensionless thickness of the dielectric gap, which
separates plasma column and waveguide’s metal wall, so that the inequality |δn|+ |hn| < (b/a − 1) < 1
is satisfied.

Let’s assume that plasma, which is located in this waveguide, has a uniform density profile,
and it is also non-magnetized and cold. It is assumed that plasma column is separated by thin
(Δ = R2R

−1
1 − 1 < 1) dielectric layer with permittivity constant εd from the wall of the waveguide’s

chamber. Permittivity of the plasma is as follows: ε = ε0−
∑
α

Ω2
αω−2, where ε0 is the dielectric constant

of a meta-material or crystal lattice of semiconductor (in the case of semiconductor plasma), ε0 = 1 in
the case of gaseous plasma, Ωα the plasma frequency, and subscript α specifies the type of particles:
ions, electrons, holes, etc. [4]. In general case, scheme of the studied plasma waveguide is presented in
Fig. 1 where one can see both corrugated interfaces of plasma column and inner wall of the waveguide,
as well as possible axial slot in the metal screen of the waveguide, which could be utilized for emission
of the TSW power from the waveguide.

Figure 1. Scheme of the studied corrugated waveguide with possible narrow axial slot.

To derive the dispersion relation for TSWs propagating in such waveguide, one can apply the
followings non-linear (over the small parameters δn and hn, which determine the waveguide corrugation)
boundary conditions:

Er,ϕ (r = 0) < ∞, Hz (r = 0) < ∞, (3)

(these conditions mean that the TSW fields are of finite values in the volume of plasma column);

Eτ (R1 + 0) = Eτ (R1 − 0) , Eτ (R1) ∝ R1 (ϕ) Eϕ (R1) + Er (R1)
dR1

dϕ
,

Hz (R1 + 0) = Hz (R1 − 0) ,

(4)

(these conditions mean continuity of the waves’ tangential electric and magnetic fields on the plasma-
dielectric interface);

Eτ (R2) ∝ R2 (ϕ) Eϕ (R2) + Er (R2)
dR2

dϕ
= 0, (5)

(this condition means equality to the zero of the tangential electric field on the inner metal wall of the
waveguide chamber).

3. INFLUENCE OF WAVEGUIDE’S WALL CROSS-SECTION NON-CIRCULARITY
ON THE TSW PROPAGATION

In this section a corrugated waveguide, which is partially filled by cylindrical plasma column with radius
a is under consideration. Surface of the waveguide’s metal wall is assumed to be described by expression
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(1), and plasma column with circular cross-section is located co-axially in the metal waveguide and
separated from it by a dielectric layer, whose permittivity is εd. The frequency range, within which
ASW can propagate in a metal waveguide with circular cross-section filled with uniform cold plasma, is
determined by the following inequality: ε0ω

2 < Ω2
e +Ω2

i [11]. Solving the Maxwell set of equations allows
one to obtain the expressions, which describe the spatial distribution of the waves’ fields in the plasma
column region and dielectric region, correspondingly. TSW magnetic field in plasma region is described
by modified Bessel equation, thus it is determined by superposition of modified Bessel functions In(z)
and MacDonald functions Kn(z) [12]:

Hz =
∑
m

H(m)
z (r) exp(imϕ − iωt), H(m)

z = C
(m)
1 Im(rκp) + C

(m)
2 Km(rκp), (6)

here κp = k
√|ε|, kc = ω. Electric components of the waves can be derived using expressions (6) in the

following way:

Er =
−ik

κ2
p r

∂

∂ϕ
Hz, Eϕ =

−ik

κ2
p

∂

∂r
Hz. (7)

In the dielectric region (a ≤ r ≤ R2), the TSW magnetic field is described by Neumann functions
Nn(z) and Bessel functions of the first kind Jn(z) [12]:

H(m)
z = C

(m)
3 Jm(rκd) + C

(m)
4 Nm(rκd), (8)

here κd = k
√

εd, C
(m)
1,2,3,4 in expressions (6) and (8) are integration constants, electric fields are expressed

by the aid of expression (8) in the form, which is similar to expressions (7), where one can change κp by k.
Application of expressions to tangential components of TSW fields allows one to calculate impedances of
plasma and dielectric on the plasma-dielectric interface r = R1. Then by the aid of boundary conditions
(3)–(5) in zero approximation over corrugation parameters, i.e., assuming hn = δn = 0, one can derive
the following dispersion equation for TSW propagating in the plasma filled waveguide with circular
cross-sections of the both screen and plasma column:

J ′
m (R1κd)N ′

m (R2κd) − J ′
m (R2κd)N ′

m (R1κd)
J ′

m (R2κd) Nm (R1κd) − Jm (R1κd ) N ′
m (R2κd)

=
√

ε0

|εp|
I ′m (R1κp)
Im (R1κp)

. (9)

In the limiting case of a narrow dielectric layer Δ < 1 one can find following analytical solutions of the
dispersion Equation (9):

ω ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ωem

√
Δ

ζ
√

ε0
, ζ � m, Δζ < 1,

Ωe

(
1 + ζ2 ε0

m2
+

ζ
√

ε0

Δm2

)−1/2

, m � 1,

(10)

here ζ = R1Ωe/c is dimensionless radius of the plasma column. It should be underlined that the upper
limiting value of the TSW frequency is Langmuir frequency Ωe, unlike the commonly known [13] cut-off
frequency Ωe/

√
2 obtained for surface waves propagating along flat plasma boundary.

Let’s consider now the case of the waveguide with the cross-section, whose shape is described
by expression (1), where instead sum over n we shall apply only one term with n = N . After that
the obtained result can be generalized for the case of arbitrary cross-section (1). This choice of the
cross-section shape has a self-contained sense as well. For instance, the case N = 1 describes the case
of violating the coaxiality between plasma column and waveguide’s metal chamber; the case N = 2
describes the ellipsoid shape of the chamber; cases with N ≥ 3 describe slowing-down waveguide
structures with the angular period 2π/N . Application of the boundary conditions (3)–(5) allows one to
derive the dispersion relation for TSW in a metal waveguide with arbitrary non-circular cross-section.

In the zero approximation (hN = 0) the TSWs with different azimuthal mode numbers m propagate
independently from each other. Magnetic field of the waves in dielectric region can be found in this
approximation in the following form:

H(m)
z = 0, 5πκdaC1Lm (κdr) , (11)
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here
Lm (κd r) = G1Jm (κd r) − G2Nm (κd r) , (12)

G1 =
√

εd/ |ε|I ′m (κpa) Nm (κda) + Im (κpa) N ′
m (κda) , (13)

G2 =
√

εd/ |ε|I ′m (κpa) Jm (κda) + Im (κpa) J ′
m (κda) . (14)

Here and in the following expressions, superscribe “prime” denotes the derivative of the corresponding
cylindrical function with respect to its argument.

In the first approximation over the small parameter of a waveguide corrugation hN , the TSW
magnetic field in the dielectric region can be written as the following sum:

Hz = 0, 5πκdaC1 {Lm (κdr) exp (imϕ) + H+hNLm+N (κdr) exp [i (m + N)ϕ]
+H−hNLm−N (κdr) exp [i (m − N)ϕ]} exp (−iωt) . (15)

To satisfy the boundary condition (4), the expression for the TSW magnetic field in the form (15) should
contain the factors H± multiplied by the hN , which are determined by the following expressions:

H± = ± iLm (κda)
(
m2 ± mN − κ2

da
2
)

2κd aL′
m±N (κda)

. (16)

The results of numerical analysis of the radial distribution of the TSW fields in the corrugated waveguide
are represented in Fig. 2 for the following values of the waveguide parameters: hN = 0.1, m = 2, εd = 1.
The TSW fields’ amplitudes are calculated in relative units, and radial co-ordinate is normalized by
the plasma column radius. The spatial distribution of the TSW magnetic field along azimuthal angle
is presented in Fig. 3. There one can see that parameter of the corrugation was assumed to be equal
to N = 3, and influence of the corrugation on TSW with wavenumbers m = 2 and m = 4 was studied
numerically. Unfortunately increasing azimuthal mode number leads to strong decreasing of the field
amplitude, so amplitude of TSW with m = 4 is shown as multiplied on 50 as compared with the case
m = 2. Thus one can clearly see three perturbations connected with the plasma column corrugation
on the background of the sinusoid corresponding to the case m = 2. These disturbances are located
nearby azimuthal angle ϕ = 2πj/3, here integer number j = 1, 2, 3. Thus in the case m = 2, one can
see a broadening of the region of maximum value of the angular distribution of the STW magnetic field
Hz(ϕ) nearby ϕ ≈ 2, narrow disturbance of the distribution nearby ϕ ≈ 4 and constriction of the region
of minimum value of the Hz(ϕ) nearby ϕ ≈ 6, as it is predicted by presented analytical studying. And
in the case m = 4 one can see influence of the corrugation as slight modulation of the quasi-regular
sinusoid.

Solving the dispersion relation in the second approximation over the hN one can find the TSW
frequency as a sum of ASW eigen frequency ω0 (it is calculated in [11] for the case of hN = 0) and
frequency correction ΔωN caused by the non-circularity of the waveguide cross-section. The expression
for the ΔωN has the following relatively complex form:

ΔωN =
h2

N

(
m2 + a2κ2

d

)
4κda

Lm (κda)
dL′

m (κda)
dω0

[
1 +

Lm+N (κda)
L′

m+N (κda)

(
m2 + mN − κ2

da
2
)2

m2 + κ2
da

2

+
Lm−N (κda)
L′

m−N (κda)

(
m2 − mN − κ2

da
2
)2

m2 + κ2
da

2

]
. (17)

Analysis of expression (17) allows one to make the conclusion that frequency correction does not
depend on the sign of azimuthal wave number m, which is generally typical for SW propagating in
isotropic plasma waveguides [4]. Using the asymptotic expressions and recurrent correlations for Bessel
functions [12], it is possible to find the approximate formulas for the frequency corrections in the limiting
cases of wide κd,pa � |m| and narrow κd,pa � 1 waveguides.

In the case of narrow waveguides: ΔωN ∝ −h2
NΔ/(κda)2+N . The analysis of expression (17) testifies

that in the case of wide waveguides, taking into account the value of derivative (dL′
m(κda)/dω0), there
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can be an effect of changing the sign of the frequency correction ΔωN . It takes place if the following
inequality is valid:

bΩec
−1Δ > 1 > kbεd(|ε|)−1/2Δ. (18)

If inequality (18) is not valid (in the case of waveguides with large radii: 1 < kεd bΔ/
√|ε|, ka � 1),

then one can write the following expression for ΔωN :

ΔωN ≈ −0.25ω0h
2
Nεd(1 + Δ)κ2

da
2. (19)

It should be emphasized the substantial difference between the cases of TSWs propagation in wide
and narrow waveguides. In narrow waveguides, absolute value of the correction ΔωN diminishes with
increasing εd and angular period of the corrugation 2π/N . In the case of wide waveguides, one can
observe that the rate of the TSWs deceleration does not depend on the parameters m and N , but their
frequency correction value is strongly depended on the value of dielectric constant: |ΔωN | ∝ ω0ε

2
d.

One can see that in this approximation value of the frequency correction |ΔωN | does not depend
on the presence of other small terms ∝ sin(nϕ), here n 
= N in the expression for the waveguide’s
surface (1). Therefore, in the case of arbitrary shape of the waveguide chamber cross-section, the TSW
eigen frequency can be found within accuracy up to small terms ∝ h2

n as the following sum:

ω = ω0 +
∑

n �=2m

Δωn. (20)

But it should be underlined here that influence of the terms ∝ bh2m sin(2mϕ − ϕ2m) in expression (1)
on the TSW frequency is not described by the formula (17). This case needs additional research (see
the next section).

The results of numerical research of the Δωn/Ωe magnitude versus the effective dimensionless wave
number kef = mδ/a are presented in Fig. 4 and Fig. 5 in the cases N = 1 and N = 4, correspondingly
(δ = c/Ωe is the plasma skin-depth). Numerals in these figures indicate the meanings of azimuthal
mode numbers m, and the parameters of corrugation are chosen as follows: h1 = 0.7 and h4 = 0.25.
Numerical analysis proves that the main influence on the Δωn/Ωe magnitude is affected by the thickness
of dielectric layer, parameter Δ. Increasing dielectric constant εd value from 1 to 5, ceteris paribus,
leads to approximately twice diminishing both ω0 and Δωn. Let’s underline as well that the point,
where Δωn = 0, moves toward the greater values of effective wave-number kef under these conditions.
Diminishing the value of Δ from 0.3 to 0.1, ceteris paribus, leads to insufficiently decreasing the TSW

Figure 2. Radial distribution of TSW with m =
2 in corrugated metal waveguide, where a = 2δ,
b = 1.3 · a, εd = 1. Normal electric field has
discontinuity on the plasma interface.

Figure 3. Angular distribution of the TSW
magnetic field in the case of N = 3. Solid
and dashed lines relate to the TSW with
azimuthal mode numbers m = 2 and m = 4,
correspondingly.
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Figure 4. Correction to the TSW eigen
frequency versus effective wave number, N =
1. Azimuthal mode numbers is indicated by
numerals 1, 2 and 3.

Figure 5. Correction to the TSW eigen
frequency versus effective wave number, N =
4. Azimuthal mode numbers is indicated by
numerals 1 and 3.

eigen frequency, and at the same time it increases Δωn approximately sevenfold for TSW with m = 1,
and twice for TSW with m = 2.

4. RESONANT INFLUENCE OF THE DEVIATION OF A METAL CHAMBER
CROSS-SECTION SHAPE FROM CIRCULAR ONE ON THE TSW PROPAGATION

Let’s study here that special case, which is not described by the formula (17). It is known [11] that
ASW frequency in waveguides with circular cross-section filled by isotropic plasma does not depend on
sign of azimuthal mode number m, and consequently their frequency spectrum in such waveguides is
degenerated in the respect of the m sign. Therefore, the case when angular period of variation of the
dielectric layers’ thickness is twice less than the azimuthal period of the TSW can be studied separately
by special method of the general theory of perturbations [14].

As far as ASW with different azimuthal mode numbers m propagate independently in waveguides
with circular cross-section, then let’s consider zero approximation that there are only two waves with
azimuthal wave numbers ±M . It should be emphasized that both the harmonics propagate at identical
frequencies ω

(0)
M , which are the solutions of the ASW dispersion relation that describes the case of

isotropic waveguide [11]. For this approximation, the ASW dispersion curves are presented in Fig. 6
and Fig. 7 by solid lines.

In the waveguides with non-circular cross-section, frequencies of TSWs with the angular period
2π/M split if the equation of metal chamber surface (1) contains the small term with n = 2M . In
the case of degenerated spectrum, according to the special case of general theory of perturbations [14],
one can find the solutions to the Maxwell equations for the magnetic field of the TSWs in the region
of dielectric layer in the form of standing waves, taking into account the terms of the first order of
smallness:

Hz(r, ϕ, t) = κda exp(−iωt){C11LM (κdr)[exp(iMϕ) ± exp(−iMϕ)]

+CrL3M (κdr)[exp(i3Mϕ) ± exp(−i3Mϕ)]}π/2. (21)

Here Ln(kdr) is determined by expressions (12); constant C11 determines the amplitude value of the
TSW main harmonic; small coefficient Cr can be expressed as follows [15]:

Cr =
−ih2MLM(κda)
2κdaL′

3M (κda)
(
κ2

da
2 − 3M2

)
C11. (22)
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Figure 6. TSW eigen frequency with M = 1
(solid line) and values of its splitting caused by
the deviation from the circular shape of the cross-
section of a metal wall (short dashed line) and
that of a plasma column (long dashed line).

Figure 7. The same as in the Fig. 4, but for
TSW with azimuthal mode number of the main
harmonic M = 2.

Expression (22) is obtained as the result of application of the boundary condition (5), i.e., by equating
the amplitudes of satellite harmonics ∝ exp(±i3Mϕ) of the tangential component of the TSW electric
field to zero on the metal surface.

Boundary condition that means equality of amplitudes of main harmonics of the TSW tangential
electric field to zero on the metal surface of the waveguide allows one to derive the dispersion relation. It
has a form of secular equation: (D(0)

M )2 − (D(1)
M )2 = 0, where D

(0)
M (ω(0)

M ) = 0 is dispersion relation of the
ASW (zero approximation) and D

(1)
M the correction of the first order of smallness (see for details [15]).

One can find the solution of this secular equation in the form ω = ω
(0)
M ± Δωb,M , where the frequency

correction is equal to:

Δωb,M = D
(1)
M /

∂D
(0)
M

∂ω

∣∣∣
ω=ω

(0)
M

=
h2MLM (κda)

2κda
(M2 + κ2

da
2)

(
∂L′

M (κda)
∂ω

)−1

ω=ω
(0)
M

. (23)

Expression (23) can be simplified in the case of wide plasma cylinder (κpa � 1):

Δωb,M = −h2MM
(
1 + Λa

√
εdδ

−1
) √

δ/(aΛ) · ω(0)
M /(4 4

√
εd). (24)

It should be indicated that TSW frequency correction in this case is proportional to the first power of
the small parameter (Δωb,M ∝ h2M ), while presence in equation for the metal surface (1) of small terms
with n 
= 2M leads to weaker (∝ h2

n) changes in the value of TSW frequency. In this case, curves, which
illustrate the dependence of TSW frequency corrections on effective wave number kef , are represented
in Fig. 6 and Fig. 7 by short dashed lines. Value of the corrugation parameter is chosen as follows:
h2M = 1 in order to make plots more demonstrable ones for readers.

Concerning practical application of the TSWs considered in Sections 3 and 4, one can indicate
the following: they can be utilized as operating modes for antenna system. Antenna systems based on
propagation of surface waves are actively developed now due to a lot of their advances as compared with
conventional metal antennas [16]. Let’s make brief analysis of possibility to radiate their power from
corrugated metal waveguide into outer space. To radiate TSWs power one can apply narrow slot in the
metal wall of the waveguide, and its angular sizes ϕ0/π � 1 (see Fig. 1). If the inequality hn � ϕ0 is
valid then one can neglect the influence of corrugation of the waveguide’s wall on the SW frequency. In
this case, application of the indicated above boundary conditions (in approach hn = 0) can be added
by the condition that there is no wave propagating from outer space into the waveguide in the angular
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range −ϕ0 < ϕ < +ϕ0. With the accuracy up to terms of first order smallness over the parameter ϕ0

one can derive the equation, which describes radiation of the TSW power through the narrow axial slot
in the waveguide’s wall. It has the following form:

I ′m(κpa)
Im(κpa)

√|ε| +
k2a2 − m2

ka
Δ + D1 = 0, (25)

here the value of D1 is a small quantity of first order smallness over the parameter ϕ0 and describes
influence of a narrow slot in the waveguide’s wall on the SW propagation. Its expression is as follows:

D1 =
ϕ0[iN ′

m (kR2) + J ′
m (kR2)]Nm(ka)/π

Jm (ka) N ′
m (kR2) − J ′

m (kR2) Nm (ka)

[
kI ′m (κpa)
κpIm (κpa)

+
N ′

m (ka)
Nm (ka)

]
. (26)

Then in the limiting case of a narrow vacuum layer Δ � 1, for TSWs with large values of azimuthal
mode numbers propagating in wide plasma waveguides 1 � |m| � κpa, it is easy to derive an expression
of their damping rate γrad caused by radiation of their power from the waveguide into the outer space:

γrad ≈ Ωeϕ0 (m!)2
(
4δ/

(
m2aΔ

))
m+0.5/(4π2). (27)

Numerical analysis of Equation (26) proves that damping rate of the TSWs connected with radiation of
their power through narrow axial slot increases with increasing plasma density, size of the slot and kef .
It should be underlined that one cannot decrease thickness of the dielectric layer Δ sufficiently, because
it leads to decreasing both values of the TSWs frequency and their field in such waveguides. Thus
applying plasma with density npl ≥ 1014 cm−3 allows one to obtain radiation in millimeter range, because
wavelength of the radiation is approximately determined by the following relation: λ ≈ 6·106/

√
npl (cm).

Antenna system based on emission of these SWs will be controlled smoothly by changing plasma density
(it will allow one to change frequency of the radiation) and by changing value of the slot ϕ0 (it will allow
one to change power of the radiation). A similar task, but for the case of magnetoactive plasma column
located in a metal waveguide, has been considered in monograph [17]. Dependence of the damping rate
caused by radiation of the eigen modes power upon the plasma density, radius of the plasma column
and width of the slot is the same in both cases, namely magnetized and non-magnetized plasmas. So it
confirms correctness of the obtained results.

5. INFLUENCE OF A PLASMA COLUMN CROSS-SECTION’S NON-CIRCULARITY
ON THE TSW PROPAGATION

Now let’s investigate the propagation of TSW along isotropic plasma column with noncircular cross-
section, whose shape is determined by expression (2) and which is located in cylindrical metal waveguide
with circular cross-section of radius b. Splitting of the frequency of the TSW propagating with an angular
period (2π/M) takes place in this case as it was in the previous case under the condition of presence of
the small term with n = 2M in expression (2) for plasma column radius R1(ϕ).

In this case, one can find the solution of Maxwell equations in the form of superposition of the main
and satellite harmonics, which are proportional to exp(±iMϕ) and exp(±i3Mϕ), correspondingly. It
is convenient to write the TSW axial magnetic field for the plasma region (r ≤ R1(ϕ)) in the following
form (taking into account the terms of the first order of smallness [15]):

H(p)
z (r, ϕ, t) = exp(−iω t)

{
IM (κpr)

[
A

(+)
0 exp(iMϕ) + A

(−)
0 exp(−iMϕ)

]
+I3M (κpr)

[
A

(+)
1 exp(i3Mϕ) + A

(−)
1 exp(−i3Mϕ)

]}
, (28)

here A
(±)
0,1 are the constants of integration.

In the first approximation, spatial distribution of the TSW axial magnetic field in the dielectric
layer, which satisfies the boundary condition (5) on the circular metal surface (r = b), can be represented
in the following form:

H(d)
z = exp(−iω t)

{
LM (κdr)

[
F

(+)
0 exp(iMϕ) + F

(−)
0 exp(−iMϕ)

]
+L3M (κdr)

[
F

(+)
1 exp(i3Mϕ) + F

(−)
1 exp(−i3Mϕ)

]}
, (29)
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here F
(±)
0,1 are constants of integration, and functions LM (κdr) are determined by expression (12), in

which one has to apply the following notations to the present case instead of expressions (13) and (14):

G1 = N ′
M (κdb), G2 = J ′

M (κdb). (30)

The boundary conditions (4), which mean the continuity of amplitudes of satellite harmonics of the
TSW tangential fields Hz and Eτ on the plasma-dielectric interface R1(ϕ), allow one to determine the
constants of integration A

(±)
1 and F

(±)
1 , which determine the amplitudes of the indicated above satellite

harmonics in the different regions of the waveguide:

A
(±)
1 =

−δ2MA
(±)
0

2D(0)
3M

κ2
p + κ2

d

κpκd
[I ′M (κpa)L′

3M (κda)a2 + 3M2IM (κpa)L3M (κda)], (31)

F
(±)
1 =

δ2MA
(±)
0

2D(0)
3M

κ2
p + κ2

d

κpκd

[
I ′M (κpa)L′

3M (κda) a2 − 3M2IM (κpa)L3M (κda)
]
. (32)

These boundary conditions applied to the main harmonics of the TSW allow one to determine the
relation between amplitudes of the main harmonics in the plasma and the dielectric regions:

F
(±)
0 = A

(±)
0 Im (κpa) /LM (κga) . (33)

Then in its turn, application of relation (33) makes it possible to derive the secular dispersion
relation for TSW, which takes into account spatial non-uniformity (or in other words, corrugation) of
plasma-dielectric interface (see expression (2)). From mathematical point of view this equation is similar
to the one considered in the previous section. Thus the correction Δωa,M to TSW frequency in the
present case can be calculated in the same way as it has been done in the previous case of corrugated
metal wall of the waveguide. Explicit expression for the Δωa,M can be written in the following form:

Δωa,M =
δ2M

(
κ2

p + κ2
d

)
2κ2

pκ
2
d

(
∂D

(0)
M /∂ω

(0)
M

) [
IM (κpa) L3M (κda) − a2κpκdI

′
M (κpa)L′

M (κda)
]
. (34)

Expression (34) can be simplified in the limiting case of wide waveguides (kef � 1):

Δωa,M ≈ 0.25Mδ2M Ωe

√
δ/(aΔ)ε−1/4

d , (35)

and in the limiting case of narrow waveguides (kef � 1):

Δωa,M ≈ 0.25δ2M Ωe

√
M/Δ. (36)

If an angular period of the considered plasma column corrugation is twice less than angular period
of basic harmonic of the TSWs propagating in it, then such electromagnetic waves exist in the form of
standing waves (A(−)

0 = ±A
(+)
0 ), whose frequencies ω = ω

(0)
M ± Δωa,M are approximately equal to each

other. The curves of dependence of the TSWs frequency correction on the kef value are represented in
Fig. 6 and Fig. 7 by dashed lines with long strokes. To make the comparison of these results with those
obtained in the case of noncircular cross-section of the waveguide metal wall more easy-to-use, a small
parameter of corrugation is put here as equal to unit, δ2M = 1.

Numerical analysis confirms that value of TSW frequency correction increases with diminishing of
thickness of dielectric layer or/and permittivity of the dielectric layer. Correction Δωa,M caused by
the deviation of the plasma-dielectric interfaces’ cross-section shape from circular one is larger than the
correction Δωb,M caused by the deviation of the waveguide metal walls’ cross-section, ceteris paribus.
This is explained by the peculiarity of the spatial distribution of TSW energy, see Fig. 2. One can see that
most part of the TSW energy is concentrated just near the plasma-dielectric interface. Consequently,
their dispersion properties are more perceptible to spatial non-uniformity (corrugation) just of this
surface.

If the waveguide structure under the consideration is immersed into an external axial magnetic
field 
B0‖
z, then splitting of the studied SWs spectrum takes place [11] (in other words, waves with
different sign of azimuthal mode number will propagate with different frequencies in this case). Let’s
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compare values of the frequency corrections determined by corrugation of the waveguide where these
waves can propagate without utilization of an external magnetic field and in the case of magnetized
waveguides with circular cross-sections. Correction to the ASW frequency propagating in the waveguide
with circular cross-section caused by a small value of the applied external axial magnetic field is of the
following order:

ΔωB ∼ −0.5m |ωe|
(
m2 + a2δ−2

)−0.5
. (37)

Comparison of expressions (34) and (37) allows one to conclude that influence of the weak axial magnetic
field on the dispersion properties of ASW as compared with influence of longitudinal corrugation of
plasma surface on the TSW propagating with an angular period that is twice larger than the angular
period of the plasma column surface non-uniformity (corrugation) can be neglected, if electron cyclotron
frequency |ωe| is sufficiently small:

|ωe|Ω−1
e � 0.5δ2M

√
M/Δ

[
1 +

√
a/(Mδ)ε−1/4

d (1 + aΔ/δ)
]
. (38)

As far as condition (38) is fulfilled for the majority of tokamaks quite well, splitting of the TSW
eigen frequency, studied in this section, can be observed in such type of fusion devices, where it is
caused by D-shape of the poloidal cross-sections of the both tokamak’s metal chamber and plasma
column confined in the device, for the waves with poloidal mode number of the main harmonic M = 1.
It should be added that influence of the plasma column cross-section shape on sawtooth oscillations
experimentally observed in DIII-D tokamak plasma has been studied in [18].

Another wide branch of application of SW propagation is gas discharges intended for production
of uniform and high density plasma. Concerning that we should like to refer the paper [19]. It is one
of the first reviewing articles devoted to the development of large-size, high-density ne ≥ 1011 cm−3

microwave plasma production, which can be performed at the regime of gas low pressures (less than
20 mTorr), without utilization of an external magnetic field. The authors can produce a large-diameter
plasma column sustained by azimuthally non-symmetric SWs. They are sure that after improvement of
the utilized antenna system this technique will be commercially available for processing of large scale
flat panel displays and solar cells with diameter larger than one meter.

6. CONCLUSIONS

The paper is devoted to the theory of transverse surface waves propagating in waveguides with non-
circular cross-section, which are partially filled by cold isotropic plasma. Periodic change of curvature
of plasma column interface with a dielectric layer and/or a metal chamber along the azimuth angle is
shown to cause the propagation of these electromagnetic surface waves in the form of the wave packet.
In general case (arbitrary shape of the cross-section is modeled by Fourier series), this packet contains
infinite number of spatial harmonics, whose mode numbers depend on the mode number of the main
harmonic and angular period of the waveguide non-uniformity. In the most practically applicable cases,
it is enough to take into account in this packet along with the main harmonic only two nearest satellite
harmonics, whose amplitudes are found to be the values of the first order in the respect of small
parameter that characterizes the deviation of the waveguide cross-section from circular shape (small
parameter of the problem).

As a rule, the TSW eigen frequency correction caused by the deviation of a waveguide cross-section
from circular shape is found to be a small value of the second order over a small parameter of the
problem. In the special (resonant) cases associated with degeneration of the frequency spectrum of
surface waves, value of the frequency correction can be proportional to the small parameter of the
problem. Correction to surface waves eigen frequency, caused by non-circularity of the waveguide cross-
section, is more sensitive to the corrugation of just plasma-dielectric layer interface than that of a metal
chamber. Utilization of corrugated waveguides allows one to choose suitable operating mode, to supply
stable regime of generation of electromagnetic radiation.

Since studied TSWs can radiate their power through a narrow slot into outer space, they can be
used as operating modes in plasma-antenna systems. Designing the waveguide with special shape of
the cross-section can be used for the control over the eigen frequency and spectral contents of the eigen
electromagnetic waves propagating in it. Thus application of TSWs seems prospective for development
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of plasma-antenna systems, which are widely used at present time for various civil purposes [16]. It is
also shown that the phenomenon of splitting TSW frequency spectrum can be observed experimentally
in modern fusion devices, which have non-circular cross-section and confine plasma with a high density
Ω2

e > ω2
e . TSWs propagation can be applied to sustaining gas discharges, which will be able to produce

uniform plasma with large diameter. Taking into account conclusions of [19] it is a very prospective
branch of their possible application.
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