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Elimination of Current Crowding Problem in Flat Conductors Bent
at Arbitrary Angles

Tatiana Gerasimenko*, Petr Polyakov, and Igor Frolov

Abstract—This work is devoted to a theoretical investigation of the current crowding problem in flat
conductors bent at arbitrary angles. Using conformal mapping techniques, we succeed in obtaining an
analytical expression for current density distributions in such conductors. It is shown that the current
density increases in a small vicinity of the corner and approaches to infinity at its top. In order to
eliminate the infinity, the vertex is replaced by an arc of a circle with a small radius. The method has
been developed for an arbitrary angle; several specific examples are considered.

1. INTRODUCTION

The current crowding effect is a current density increase in a conductor. As a rule, it takes place at the
vicinity of contacts or various inhomogeneities. Being localized in a small area, this increase may lead
to overheating of a conductor and acceleration of electromigration processes [1–3]. It in turn may cause
a failure in a chip.

Obtaining measurable parameters of conductors, whether a resistance, magnetic field, or
temperature, requires calculating the current density distributions. However, a calculation method
applied to conductors with angles leads to the emergence of infinite current density values at angles’
vertices [2, 4, 5]. Being non-physical, the emergent singularities cause significant difficulties in further
calculations. On the one hand, a numerical algorithm cannot deal with the infinity, on the other hand,
one doesn’t know what value of the current density should be used instead of an infinite one. One way
to cope with this problem is to average the current density over a finite volume near the singularity [3].
This method is very useful yet approximate; and it requires complex numerical investigations.

In this paper, we only deal with conductors whose linear dimensions are much greater than their
thickness. It is possible to describe this widespread type of conductors as if they were two-dimensional.
We consider conductors with a simple shape, namely, strips of variable width bent at arbitrary angles
(Figure 1). The conductors are supposed to be infinite on both sides with a current strength applied at
the infinity. On the one hand, such form of conductors allows the application of analytical methods, on
the other, it may be used as a part of more complex constructions adopting the technique described in
our previous work [6].

An attempt to solve the current density problem for the described type of conductors using a
powerful electromagnetic solver (ANSYS Maxwell 2D) was unsuccessful. We have determined that
there is no current density convergence at the inner corner with the mesh density increase. The same
result was demonstrated in paper [3] for a more complex conductor geometry. This numerical non-
convergence doesn’t allow us to rely upon the results of the finite element method and requires an
analytical analysis of the problem.
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2. CONFORMAL MAPPING FOR A STRIP BENT AT AN ARBITRARY ANGLE

The geometry of the conductor considered is depicted in Figure 1. α is an arbitrary angle. Only the
case of h > k has been investigated (the opposite one may be examined in a similar way). For a direct
current, one can reduce Maxwell’s equations to the Laplace equation for a scalar potential

∆ϕ = 0 (1)

Figure 1. The points of conformity (plane z1) and the original geometry of the conductor (plane z).

This equation was solved for a complex potential W (z) = U(z)+ iV (z) using a conformal mapping
method [5, 7, 8]; V (z) is the scalar potential and U(z) is the stream function. These two functions are
related with the Cauchy-Riemann equations, therefore, boundary conditions may be written only for one
of them. The boundary conditions require the absence of the current flow through lateral boundaries
of the conductor; so the resulting boundary value problem is as follows [6]:





∂2W

∂x2
+

∂2W

∂y2
= 0

U(x, y)|(x,y)∈Ω1
= U1 = const

U(x, y)|(x,y)∈Ω2
= U2 = const

(2)

Ω1 and Ω2 are the upper and lower boundaries of the conductor respectively.
The solution of this problem can be found by mapping a complex potential of a two-dimensional

charge placed at the origin of an upper complex half-plane

W (z1) ∼ ln(z1) (3)

onto the considered area [7].
Thus, the problem is to find the required mapping. It is well known that the mapping of an upper

complex half-plane onto a polygon is implemented with the Schwarz-Cristoffel transformation. For the
area considered, this transformation is as follows:

z = C

∫
1
z1

(
z1 − 1
z1 + a

)1−β

dz1 (4)

β = α/π. The points of conformity are presented in Figure 1. Undefined constants C and a are
determined by the conditions of boundary conformity and have the following form:

C =
h

π
(sinα− i cos α), a =

(
h

k

) 1
1−β

(5)

Expression (4) is representable in terms of elementary functions if 1− β = P/Q where 0 < P < Q,
P and Q are integers [9]. From a physical point of view, this condition doesn’t impose any restrictions
on the angle because any irrational number can be approximated by a rational one with an arbitrary
high precision. Thus, (4) can be reduced to

z = −(1 + a)QC

∫
tQ−1

tP (tQ + a)(tQ − 1)
dt (6)
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where

t =
(

z1 + a

z1 − 1

) 1
Q

(7)

We have integrated expression (6) for some angles.
For the angle of 30◦:

z = C

{
i

b5
ln

(
t + ib

−t + ib

)
+
√

3
2b5

ln

(
t2 +

√
3bt + b2

t2 −√3bt + b2

)

+
i
√

3
2

ln

(
2t + 1 + i

√
3

−2t− 1 + i
√

3

)
+

i
√

3
2

ln

(
2t− 1 + i

√
3

−2t + 1 + i
√

3

)

+
i

2b5
ln

(
2t+

√
3b+ib

−2t−√3b+ib

)
+

i

2b5
ln

(
2t−√3b+ib

−2t+
√

3b+ib

)
+ ln

(
t + 1
t− 1

)
+

1
2

ln
(

t2 + t + 1
t2 − t + 1

)}
+ C1 (8)

where

C =
h

2π
(1− i

√
3), C1 = k − h

√
3

2
− i

(
h

2
+ k

√
3
)

, (9)

t =
(

z1 + b6

z1 − 1

)1
6

, b =
(

h

k

)1
5

(10)

For the angle of 120◦

z = C

{
−1

b
ln(t + b)− ln(t− 1) +

1
2b

ln(t2 − bt + b2) +
1
2

ln(t2 + t + 1)

− i
√

3
2b

ln

(
2t− b− i

√
3b

−2t + b− i
√

3b

)
+

i
√

3
2

ln

(
2t + 1− i

√
3

−2t− 1− i
√

3

)}
+ C1 (11)

where

C =
h

2π
(
√

3 + i), C1 =
h− k

4
+ i

√
3

12
(7k + h), (12)

t =
(

z1 + b3

z1 − 1

)1
3

, b =
h

k
(13)

The streamlines of the current density calculated for these angles are shown in Figure 2.

Figure 2. The streamlines of the current density.
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3. CURRENT DENSITY CALCULATION

The current density is proportional to the derivative of the complex potential W (z):
dW

dz
=

∂U

∂x
− i

∂U

∂y
∼ jx − i · jy (14)

On the other hand, due to (3),
dW

dz
=

dW

dz1

dz1

dz
∼ 1

z1

dz1

dz
(15)

So one can obtain an expression for the current density in terms of the implicit function z1(z):
jx = ARe [J(z1(z))] , jy = −AIm [J(z1(z))] , j = A |J(z1(z))| (16)

where A is a proportionality factor and

J(z1) ≡ 1
z1

dz1

dz
=

(
z1 + a

z1 − 1

)1−β

[see (4)] (17)

The dependence z1(z) is given by Expression (6) in an implicit form and has to be calculated numerically.
The current strength J applied to the conductor is assumed to be specified. The current distribution

for y → −∞ is uniform (Figure 2), therefore, one can assume that the current density at an infinite
distance is j−∞ = J/k. The line y → −∞, x = const placed at the infinite distance is a mapping of the
half-circle r1 → 0, θ1 ∈ [0, π] where r1 and θ1 are the absolute value and the argument of z1 respectively.
The substitution of these values into (16) yields

j−∞ = A
∣∣∣π
h

ib
∣∣∣ = A

π

k
(18)

whence it follows that
A =

J

π
(19)

The top of the angle on the complex plane z corresponds to z1 = 1 + i · 0. Substituting this value
into (16), one obtains

j(z1 = 1) =
J

π

(
1 + a

0

)1−β

→∞ (20)

The infinity emerges as a result of the division by zero at the angle’s vertex. It should be noted that
there are no points of zero size in reality, therefore, there are no point-like vertices. The assumption of
vertices having zero sizes doesn’t normally cause any trouble. But it is inappropriate for problems of
current distributions.

An obvious way to eliminate the infinity is to replace the point-like vertex by a slight arc of a circle.
There have been some attempts to do it; but an analytical solution was only found for the angle of 90◦
with rounding [10]. A technique exists for the Schwarz–Cristoffel mapping that provides a possibility
to introduce a small arc rounding to the inner angles of the area considered [11]. Unfortunately, this
technique only works well for arcs with a very small radius of curvature. Otherwise an arc turns to be
highly asymmetrical.

4. CURRENT DISTRIBUTIONS IN FLAT CONDUCTORS WITH ROUNDED
ANGLES

In order to avoid the difficulty described above, we have introduced one more parameter with no
smallness restrictions imposed. Thus, the transformation that maps the upper complex half-plain onto
the bent strip with a rounded corner (Figure 3) is as follows:

zR = C̃

∫
1
z1

(
z1−1
z1+ã

)1−β

dz1+C̃γ

∫
1
z1

(
z1−1+δ1

z1 + ã

)1−β

dz1 + C̃γ

∫
1
z1

(
z1 − 1− δ2

z1 + ã

)1−β

dz1 (21)

C̃ =
h

π(1 + 2γ)
(sinα− i cos α) (22)



Elimination of current crowding problem 5

Figure 3. The points of conformity for a conductor with a rounded angle and the schematic diagram
of the arc.

ã =
(

h

k

) 1
1−β

{
1 + γ(1− δ1)1−β + γ(1− δ2)1−β

1 + 2γ

} 1
1−β

(23)

Here δ1, δ2, and γ are positive parameters that determine the shape of the arc and its radius of
curvature. If they tend to zero, Expression (21) turns into (4). We introduce the following symbol
(assuming again that 1− β = P/Q):

I(m) ≡ C̃

∫
1
z1

(
z1 −m

z1 + ã

)P
Q

dz1 (24)

so that Expression (21) turns into
zR = I(1) + γI(1− δ1) + γI(1 + δ2) (25)

Utilizing the following change of variables:

tm =
(

z1 + ã

z1 −m

) 1
Q

, bm =
(

ã

m

) 1
Q

(26)

we reduce integral (24) to a rational one:

I(m) = −(1 + bQ
m)QC̃

∫
tQ−1
m

tPm(tQm + bQ
m)(tQm − 1)

dt (27)

It in turn is formally equivalent to (6), therefore, all expressions obtained for strips with no rounding
can be used here.

By simply varying the values of δ1, δ2, and γ, one can obtain various rounding arcs in a relatively
wide range of shapes. In practice, however, the curvature radius is important. In order to associate it
with the rounding parameters, we use simple geometrical considerations. The first two equations are
obtained by expressing the lengths ∆x and ∆y through the curvature radius ρ. The last one represents
the condition of equality between the distances GE′ and E′H (Figure 3).




Re[zR(1)] ∼= k + ρ
(
1− sin

α

2

)

Im[zR(1)] ∼= −h + k cos α

sinα
− ρ

(
1− sin

α

2

)
cot

α

2|zR(1)− zR(1− δ1)|2 = |zR(1)− zR(1 + δ2)|2
(28)

This system has to be solved numerically for each curvature radius value.
The current density for the mapping considered is defined in a similar way to (16) with the following

expression for J(z1):

J(z1) =
∣∣∣∣
1
C

[z1 + a]1−β

[z1 − 1]1−β + γ[z1 − 1 + δ1]1−β + γ[z1 − 1− δ2]1−β

∣∣∣∣ (29)

where z1 = z1(zR).
It is easy to prove that Expression (29) takes finite values all over the conductor.
The streamlines of the current density for conductors with the angles of 30◦ and 120◦ are presented

in Figure 4.
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Figure 4. The streamlines of the current density in strips with rounded angles. A region near the
corner is depicted with a larger scale to show the rounding more clearly.

5. CONCLUSION

The performed investigation has shown that an infinite current density at the vertex of an angle is
a result of an inappropriate model of a conductor. This model assumed a vertex to be a point with
a zero size. Therefore, an obvious way to avoid this problem is to replace the point by an arc of a
circle with a small radius. We have succeeded in obtaining analytical results for flat conductors with
arbitrary angles. The solution has demonstrated that rounding the corner eliminates the emergent
infinity. Moreover, a dependence between the radius of an arc and the current density has been found.
The obtained results may be used in connection with results of work [6] to calculate current density
distributions in flat conductors with complex geometry. The conformal mapping technique utilized in
our paper is applicable to two-dimensional problems but we hope that the presented results will also be
helpful for numerical investigation of three-dimensional conductors.
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