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A Recursive Approach to Improve the Image Quality
in Well-Logging Environments

Yu-Hsin Kuo and Jean-Fu Kiang*

Abstract—A three-stage recursive approach is proposed to improve the recovered distribution of
electric parameters in a well-logging environment. The first stage is executed using the conventional
linear sampling method (LSM) and the contrast source inversion (CSI) method. In the second stage,
the background distribution is updated to better identify the target shape, using the recovered results
in the first stage. In the third stage, the background distribution is made closer to the results in stage
two, which improves the recovered distribution near the target boundary. The effect of noise is also
simulated.

1. INTRODUCTION

The inverse methods based on scattering waves have been widely applied to estimate the electrical
parameters in the medium of interest. The linear sampling method (LSM) has been used to identify
the possible target region immersed in the background medium, which helps reducing the follow-up
computational time in estimating the electrical parameters [1, 2]. The singular-value decomposition
(SVD) technique with Tikhonov regularization and its variant have been applied to solve the equations
derived from the LSM [3].

With the target region roughly identified, a contrast source inversion (CSI) method has been
applied to estimate the permittivity and conductivity, in both the target region and the background
medium. The IE-CSI (integral equation CSI) and the FD-CSI (finite difference CSI) are two typical
implementations of the CSI method. The former is suitable for homogeneous or layered background
media, and the latter is more suitable for inhomogeneous targets embedded in an inhomogeneous
background medium [4–6]. A multiplicative regularized CSI (MR-CSI) method has been claimed to
get a sharper image of the target boundary than the other CSI methods [7, 8].

Well-logging (WL) techniques have been widely used for oil exploration [9, 10]. In [11], a formula is
derived to estimate the maximum separation between two boreholes, based on the operating frequency,
as well as the permittivity and conductivity of the background medium. The operating frequency from
1kHz to 20 MHz have been adopted [11, 12]. Take sedimentary rocks for example, σ � 1mS/m and
εr = 9.8 at 5MHz, the maximum separation between boreholes is 110 m [11].

In [13], a square tunnel of width 3 m is carved in a background medium with εr = 5 and σ = 3mS/m.
Two boreholes, separated by 20 m, are drilled for detecting the tunnel. Multiple transmitters and
receivers, operating from 2 to 402 MHz, are placed in the boreholes to collect the scattering data. The
recovered shape from the permittivity distribution is slightly larger than the real tunnel, but that from
the conductivity is slightly smaller. The permittivity and the conductivity around the tunnel boundary
are over-estimated. Random ripples appear outside the tunnel and near the tunnel boundary.

In [14], a cylindrical target of radius 0.5 m, with εr = 5 and σ = 0.1 mS/m, is embedded in a rock
background with εr = 4 and σ = 0.1 mS/m. Two boreholes, separated by 10 m, are used to detect
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the target at 160 MHz, with 21 transmitters in the left borehole and 21 receivers in the right borehole,
all at a spacing of 0.5 m. Strong random ripples appear in the distributions of permittivity and the
conductivity near the target boundary.

In general, strong ripples appear near the boundary of the recovered distributions, leading to a
difficult decision on the boundary location. In this paper, a recursive approach, based on the LSM and
the CSI method, is proposed to improve the quality of the recovered distributions of permittivity and
conductivity in a well-logging environment. The boundary ripples can be reduced. The LSM and the
CSI method are briefly reviewed in Section 2, simulation results using the proposed recursive approach
are presented in Section 3, and some conclusions are drawn in Section 4.

2. BRIEF REVIEW OF LSM AND CSI METHOD

The linear sampling method (LSM) is used to estimate the shape of the target embedded in the detection
domain, Dd, as shown in Fig. 1. The probes are deployed in two parallel boreholes, C0, outside the
detection domain, Dd. After the target shape is estimated, the contrast source inversion (CSI) method
is applied to estimate the electric parameters in the target domain, D.

Figure 1. A target in a well-logging environment.

The LSM starts with the scattered field at r̄, due to an excitation probe at r̄ ′′:
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where Ēs(r̄, r̄ ′′) is the scattered field, Ēt(r̄ ′, r̄ ′′) is the total field observed at r̄ ′, χ(r̄) = [ε(r̄)− εb]/εb is
the contrast function of the medium, with ε(r) and εb being the complex permittivity of the target and
the background medium, respectively.
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where H
(2)
0 is the zeroth-order Hankel function of the second kind, and kb is the wavenumber of the

background medium.
Define an adjoint field, ξ(r̄), which satisfies an adjoint equation∫∫
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where all possible excitation probes are located in D′
d, which is practically outside of Dd.
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If there are M excitation probes, at r̄pn’s with 1 ≤ n ≤ M , then the integral form in (4) can be
discretized into a matrix equation using the LSM. Then apply the singular-value decomposition (SVD)
technique and the Tikhonov regularization technique to solve the matrix equation for ξ [1].

Next, define an LSM indicator for a cell centered at r̄ ′ as

Iξ(r̄ ′) =
M∑

n=1

ζn

∣∣ξ (
r̄ ′, r̄pn

)∣∣2 (5)

If Iξ(r̄ ′) is smaller than a threshold value, r̄ ′ is claimed to be within the target domain.
In (4), G(r̄, r̄ ′) can be viewed as a scattered field

Ψs

(
r̄, r̄ ′) = − j

4
H

(2)
0

(
kb

∣∣r̄ − r̄ ′∣∣) (6)

which is a linear combination of the observed data, Ēs, weighted by ξ̄. Similarly, define an incident
field, Ψi, associated with Ei, as

Ψi(r̄, r̄ ′) =
∫∫
D′

d

ξ
(
r̄, r̄ ′′)Ei

(
r̄ ′, r̄ ′′) dr̄ ′′ (7)

where r̄ indicates an observation point within the target, and r̄ ′ indicates a point in the detection
domain, Dd. A total field, Ψt, can be defined in a similar manner as
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where the second identity is derived from Et = Ei + Es and the definitions of Ψs and Ψi in (4) and (7),
respectively; The value of Ψt(r̄, r̄ ′) is obtained by adding (6) and (7).

Next, by substituting (1) into (4), an integral equation of χ(r̄ ′′) is derived as

G(r̄, r̄ ′) = k2
b

∫∫
Dd

G(r̄, r̄ ′′)Ψt(r̄ ′, r̄ ′′)χ(r̄ ′′)dr̄ ′′ (9)

which can be transformed into a matrix form to solve for χ(r̄ ′′) in the detection domain, Dd, using the
SVD and the Tikhonov regularization technique.

3. RECURSIVE APPROACH AND SIMULATIONS

Figure 2 shows the flowchart of the proposed method, which is consisted of three stages. In the first
stage, a contour-like pattern is usually observed in the recovered distribution of permittivity inside the
target, while random ripples usually appear outside the target. By guessing different possible target
domains based on the contour of permittivity distribution obtained in the first stage, and adopting a
linear background profile inside the target, the updated permittivity distribution exhibits a magnitude
jump across the boundary of the target domain if the guessed domain is close to the original target
domain. Once the target shape is identified more accurately, the third stage is applied by choosing a
higher-order polynomial of maximally flat type as the background profile. The updated distributions of
permittivity and conductivity is expected to be improved.

Consider a target with rectangular cross section of width w = 3m and height h = 3m, as shown in
Fig. 1. The target mimics a high-yield oil shale with εr = 4 and σ = 1 mS/m [15], embedded in limestone
with εr = 6 and σ = 0.1 mS/m [16, 17]. The operating frequency is 20 MHz. The two boreholes are
separated by s = 20 m, with 21 probes in each borehole, at a spacing of d = 1m. The cell size is
Δx = Δz = 0.2 m.

Figure 3 shows the recovered distributions of relative permittivity and conductivity after stage 1.
It is observed that the equi-εr contours inside the target are roughly conformal to the shape of the
target, while the distribution of εr outside the target exhibits some random ripples. Next, arbitrarily
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Figure 2. Flowchart of recursive approach.

(a) (b)

Figure 3. Recovered distributions of (a) relative permittivity and (b) conductivity, after stage 1, with
a rectangular target of εr = 4 and σ = 1 mS/m embedded in a background of εr = 6 and σ = 0.1 mS/m.

select three equi-εr contours, with εr equal to 4.5, 5 and 5.5, respectively, as a possible target domain,
D′.

In stage 2, the background within D′ is set as

ε′b(r̄) = εer + (εb − εer)
( |r̄ − r̄c|
|r̄e − r̄c|

)α

(10)

σ′
b(r̄) = σer + (σb − σer)

( |r̄ − r̄c|
|r̄e − r̄c|

)α

(11)

which is expected to fit more closely with the distributions of the electric parameters within D′; where
r̄c is the geometrical center of D′; εer is the maximum/minimum value of relative permittivity within
D′; r̄e is the intercept point between the contour and a line extended from r̄c to the point of interest,
r̄; and σer is the maximum value of σ within D′.

Figures 4 and 5 show the recovered permittivity and conductivity profiles, respectively, with α = 1
and different choices of D′. The guessed target domain, D′, bound by the contour of εr = 5, matches
more closely with the original target domain. The corresponding permittivity profile shows a magnitude
jump across the boundary of D′ and less random ripples outside D′. If the guessed domain, D′, is smaller
than the original one, the recovered permittivity profile inside D′ exhibits a strong random pattern.



Progress In Electromagnetics Research B, Vol. 60, 2014 291

(a) (b)

Figure 4. Recovered permittivity profile of the rectangular target described in Fig. 3, (a) at x = 0,
(b) at z = 0; ——– (grey): original, −−−: stage 1, — ◦ — : stage 2 with D′ bound by εr ≤ 4.5, ——–:
stage 2 with D′ bound by εr ≤ 5, −− • − −: stage 2 with D′ bound by εr ≤ 5.5.

(a) (b)

Figure 5. Recovered conductivity profile of the rectangular target described in Fig. 3, (a) at x = 0,
(b) at z = 0; curve legends are the same as in Fig. 4.

With the target shape more accurately identified, stage 3 is applied to better estimate the electric
parameters within D′. Eqs. (10) and (11) are used to update the background distributions of ε and σ
within D′. Different α’s are tried to study their effects on the accuracy of the recovered distributions.

Figures 6 and 7 show the recovered permittivity and conductivity profiles, respectively. The
permittivity profile around the boundary of target domain shows a stronger magnitude jump than
those in stages 1 and 2. The magnitude jumps across the boundary in stage 3, with α = 2 and 4, look
similar; but the profile inside the target becomes flatter and more uniform with α = 4. Fig. 8 shows
the final distributions after stage 3, with α = 4. Compared with Fig. 3, the conductivity profile is more
accurate, and the target boundary appears clearer than that after stage 1.

Next, the permittivity of the target is changed to εr = 8, to model a low-yield oil shale [15]. The
recovered distributions of permittivity and conductivity after stage 1 are shown in Fig. 9. Similar to the
high-yield oil shale, the equi-εr contours inside the target are roughly conformal to the original target
shape, and random ripples are observed in the εr distribution outside the target domain.

Figures 10 and 11 show the recovered permittivity and conductivity profiles, respectively, after
stage 2 and stage 3. The contour of εr = 7.1 is chosen as the boundary of D′, based on the results in
Fig. 9. In stage 2, the background distributions of ε and σ within D′ are updated using (10) and (11),
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(a) (b)

Figure 6. Recovered permittivity profile of the rectangular target described in Fig. 3, (a) at x = 0,
(b) at z = 0; ——– (grey): original, − − −: stage 2 with D′ bound by εr ≤ 5, — ◦ — : stage 3 with
α = 2, ——–: stage 3 with α = 4.

(a) (b)

Figure 7. Recovered conductivity profile of the rectangular target described in Fig. 3, (a) at x = 0,
(b) at z = 0; curve legends are the same as in Fig. 6.

(a) (b)

Figure 8. Recovered distributions, in stage 3 with α = 4, of (a) relative permittivity and
(b) conductivity, of the rectangular target described in Fig. 3.
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(a) (b)

Figure 9. Recovered distributions of (a) relative permittivity and (b) conductivity, after stage 1, with
a rectangular target of εr = 8 and σ = 1 mS/m embedded in a background of εr = 6 and σ = 0.1 mS/m.

(a) (b)

Figure 10. Recovered permittivity profile of the rectangular target described in Fig. 9, (a) at x = 0,
(b) at z = 0; ——– (grey): original, − − −: stage 1, — ◦ — : stage 2 with D′ bound by εr ≤ 7.1,
−− • − − : stage 3 with α = 2, ——–: stage 3 with α = 4.

(a) (b)

Figure 11. Recovered conductivity profile of the rectangular target described in Fig. 9, (a) at x = 0,
(b) at z = 0; curve legends are the same as in Fig. 10.
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with α = 1. The target boundary becomes clearer as compared to stage 1, and the conductivity profile
becomes more accurate.

In stage 3, the background distributions of ε and σ within D′ are updated using (10) and (11),
with α = 2 or 4. Fig. 12 shows the recovered distributions with α = 4. Compared with Fig. 9, the
conductivity profile becomes more accurate, the target boundary becomes clearer than that in stage 1,
the distributions within the target become more uniform, and the ripples outside the target are reduced.

In summary, the target boundary becomes clearer after stage 2 and stage 3. The distributions
within the target domain, after stage 3 with α = 4, become more uniform than those after stage 2. The
recursive approach apparently improves the image quality using the conventional LSM and CSI method.

In a practical well-logging environment for exploring oil shale, a horizontally elongated target is
of interest. Thus, we consider a rectangular target of width w = 10 m, height h = 3m, εr = 4 and
σ = 1mS/m, embedded in limestone with εr = 6 and σ = 0.1 mS/m. Fig. 13 shows the recovered
distributions of permittivity and conductivity, respectively, after stage 1. The equi-εr contours within
the target domain is not as obvious as in the previous two examples, but the equi-εr around the target
boundary are still roughly conformal to the original target shape. Random ripples are also observed in
the distribution of εr outside the target domain, as in the previous examples.

(a) (b)

Figure 12. Recovered distributions, in stage 3 with α = 4, of (a) relative permittivity and
(b) conductivity, of the rectangular target described in Fig. 9.

(a) (b)

Figure 13. Recovered distributions of (a) relative permittivity and (b) conductivity, after stage 1, with
an elongated rectangular target of width w = 10 m, height h = 3 m, εr = 4 and σ = 1mS/m, embedded
in a background of εr = 6 and σ = 0.1 mS/m.
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(a) (b)

Figure 14. Recovered permittivity profile of the elongated rectangular target described in Fig. 13,
(a) at x = 0, (b) at z = 0; ——– (grey): original, −− −: stage 1, — ◦ — : stage 2 with D′ bound by
εr ≤ 5.5, − − • − − : stage 3 using (10) and (11) with α = 4, ——–: stage 3 using (12) and (13) with
α1 = 4 and α2 = 2.

(a) (b)

Figure 15. Recovered conductivity profile of the elongated rectangular target described in Fig. 13,
(a) at x = 0, (b) at z = 0; curve legends are the same as in Fig. 14.

Figures 14 and 15 show the recovered permittivity and conductivity profiles, respectively, after
stage 2 and stage 3. In stage 2, the contour of εr = 5.5, based on the results in stage 1, is adopted as
the target domain, D′. The background distributions of εr and σ within D′ are updated using (10) and
(11), respectively. The target boundary becomes clearer than that after stage 1, but not as clear as in
the previous two examples. The distribution of σ within D′ becomes more accurate, but the distribution
of εr within D′ does not improve to the same extent.

In stage 3, the background distributions of εr and σ within D′ are updated using (10) and (11),
with α = 4. The target boundary turns out to be similar to that after stage 2, but the distribution of
εr within the target domain becomes closer to the original one.

For an elongated target, (10) and (11) are adapted to be

ε′b(r̄) = εer + (εb − εer)
( |x − xc|
|xe − xc|

)α1
( |z − zc|
|ze − zc|

)α2

(12)

σ′
b(r̄) = σer + (σb − σer)

( |x − xc|
|xe − xc|

)α1
( |z − zc|
|ze − zc|

)α2

(13)

By choosing α1 = 4 and α2 = 2, the distribution of εr within D′ is further improved over that using (10)
and (11).
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(a) (b)

Figure 16. Recovered distributions, in stage 3 with α1 = 4 and α2 = 2, of (a) relative permittivity
and (b) conductivity; of the elongated rectangular target described in Fig. 13.

Figure 16 shows the recovered distributions after stage 3, using (12) and (13). Compared with
Fig. 13, the conductivity distribution becomes more accurate, and the target boundary becomes sharper
than that after stage 1.

Next, we analyze the effect of noises on the recovered distributions by assuming Gaussian random
noises with variance δ2, which is related to the mean squared magnitude of the electric field at all the
receiving probes, 〈|Et|2〉, as δ2 = 〈|Et|2〉10−SNR/10, where SNR stands for signal-to-noise ratio. Five
different percentage errors are defined as

εs = 100 × area of mismatch
total target area

% (14)
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εεb = 100 ×
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where εs is the shape error, εεt and εεb are the error of permittivity in the target area and the background,
respectively; εσt and εσb are the error of conductivity in the target area and the background, respectively;
Nt and Nb are the number of cells in the target area and the background, respectively; mismatch in the
shape error means either a target pixel is categorized as a background pixel or vice versa; superscripts
e and r stand for the estimated value and the real value, respectively; and subscript t and b stand for
the target area and the background, respectively.

Figure 17 shows the effect of noise on the recovered distributions related to that in Fig. 16.
Finally, consider a target size closer to that in practical well-logging environment for exploring oil

shale: An elongated rectangular target of width w = 200 m, height h = 60 m, εr = 4 and σ = 0.1 mS/m,
mimicking a high-yield oil shale [15], is embedded in limestone with εr = 6 and σ = 0.01 mS/m [16, 17].
The operating frequency is 1 MHz. The two boreholes are separated by s = 400 m, with 21 probes in
each borehole, at a spacing of d = 20 m. The cell size is Δx = Δz = 4m.
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Figure 17. Effect of noise on the percentage errors related to the distributions in Fig. 16. ——– (grey):
εs, −−−: εεt, − ◦ −: εεb, ——–: εσt, − • −: εσb.

(a) (b)

Figure 18. Recovered distributions, after stage 1, of (a) relative permittivity and (b) conductivity.
A field-size rectangular target of width w = 200 m, height h = 60 m, εr = 4 and σ = 0.1 mS/m, is
embedded in a background of εr = 6 and σ = 0.01 mS/m.

(a) (b)

Figure 19. Recovered permittivity profile of the rectangular target described in Fig. 18, (a) at x = 0,
(b) at z = 0; ——– (grey): original, −−−: stage 1, — ◦ —: stage 2 with D′ bound by εr ≤ 5.4, ——–:
stage 3 using (12) and (13), with α1 = 4 and α2 = 2.
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Figure 18 shows the recovered distributions of permittivity and conductivity after stage 1. The
equi-εr contours within the target domain are not as obvious as in Fig. 13 (at 20 MHz), and more
random ripples appear in the distribution of εr outside the target domain.

Figures 19 and 20 show the recovered permittivity and conductivity profiles, respectively, after
stage 3. In stage 2, the contour of εr = 5.4, based on the results in stage 1, is chosen as the target
domain, D′. The background distributions of εr and σ within D′ are updated using (10) and (11). The
target boundary becomes sharper than that after stage 1, but not as clear as in the previous examples
probed at 20 MHz. The distribution of σ within D′ becomes more accurate, but the distribution of εr

within D′ does not improve as much as in the previous examples probed at 20 MHz.
In stage 3, the background distributions of εr and σ within D′ are updated using (12) and (13),

with α1 = 4 and α2 = 2. The target boundary becomes closer to the original one, but the value of εr

within the target is slightly under-estimated.
Figure 21 shows the recovered distributions after stage 3, using (12) and (13). Compared with

Fig. 18, the conductivity profile becomes more accurate, and the target boundary appears sharper than
that after stage 1.

Figure 22 shows the effect of noise on the distribution related to that in Fig. 21.

(a) (b)

Figure 20. Recovered conductivity profile of the rectangular target described in Fig. 18, (a) at x = 0,
(b) at z = 0; curve legends are the same as in Fig. 19.

(a) (b)

Figure 21. Recovered distributions, in stage 3 with α1 = 4 and α2 = 2, of (a) relative permittivity
and (b) conductivity; of the rectangular target described in Fig. 18.
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Figure 22. Effect of noise on the percentage errors related to the distributions in Fig. 21. ——– (grey):
εs, −−−: εεt, − ◦ −: εεb, ——–: εσt, − • −: εσb.

4. CONCLUSION

A three-stage recursive approach, using the conventional linear sampling method (LSM) and the contrast
source inversion (CSI) method in the first stage, is proposed to enhance the contrast between the
targets and the background. The second stage is proposed to acquire a sharper target shape, and the
third stage is proposed to improve the distributions of permittivity and conductivity more accurately.
By simulations, this recursive approach proves to improve the contrast between the target and the
background, and the random ripples are significantly reduced.

ACKNOWLEDGMENT

This work was sponsored by the National Science Council, Taiwan, under contract NSC 101-2221-E-
002-129; and the Ministry of Education, Taiwan, under Aim for Top University Project 103R3401-1.

REFERENCES

1. Crocco, L., I. Catapano, L. D. Donato, and T. Isernia, “The linear sampling method as a way
to quantitative inverse scattering,” IEEE Trans. Antennas Propagat., Vol. 60, No. 4, 1844–1853,
Apr. 2012.

2. Catapano, I., L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of
3-D buried targets,” IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3265–3273, Oct. 2008.

3. Constable, S. C., R. L. Parker, and C. G. Constable, “The linear sampling method in inverse
electromagnetic scattering theory,” Inverse Problems, Vol. 19, No. 6, S105–137, 2003.

4. Gilmore, C., A. Abubakar, W. Hu, T. M. Habashy, and P. M. van den Berg, “Microwave biomedical
data inversion using the finite-difference contrast source inversion method,” IEEE Trans. Antennas
Propagat., Vol. 57, No. 5, 1528–1538, May 2009.

5. Abubakar, A., W. Hu, P. M. van den Berg, and T. M. Habashy, “A finite-difference contrast source
inversion method,” Inverse Problems, Vol. 24, 065004, 2008.

6. Van den Berg, P. M. and R. E. Kleinman, “A contrast source inversion method,” Inverse Problems,
Vol. 13, No. 6, 1607–1620, 1997.

7. Abubaker, A., P. M. van den Berh, and J. J. Mallorqui, “Imaging of biomedical data using
a multiplicative regularized contrast source inversion method,” IEEE Trans. Microwave Theory
Tech., Vol. 50, No. 7, 1761–1771, Jul. 2002.



300 Kuo and Kiang

8. Gilmore, C., P. Mojabi, and J. LoVetri, “Comparison of an enhanced distorted Born iterative
method and the multiplicative-regularized contrast source inversion method,” IEEE Trans.
Antennas Propagat., Vol. 57, No. 8, 2341–2350, Aug. 2009.

9. Binley, A. and A. Kemna, “DC resistivity and induced polarization methods,” Hydrogeophy.,
Vol. 50, 129–156, 2005.

10. Ernst, J. R., H. Maurer, A. G. Green, and K. Holloger, “Full-waveform inversion of crosshole radar
data based on 2-D finite-difference time-domain solution of Maxwell’s equations,” IEEE Trans.
Geosci. Remote Sens., Vol. 45, No. 9, 2807–2826, Sep. 2007.

11. Pralat, A. and R. Zdunek, “Electromagnetic geotomography-selection of measuring frequency,”
IEEE Sens. J., Vol. 5, No. 2, 242–250, Apr. 2005.

12. Spies, B. R., “Electrical and electromagnetic borehole measurement: A review,” Survey Geophys.,
Vol. 17, 517–556, 1996.

13. Zhou, H., M. Sato, T. Takenaka, and G. Li, “Reconstruction from antenna-transformed radar data
using a time-domain reconstruction method,” IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 9,
689–696, Mar. 2007.

14. Meles, G. A., J. V. der Kruk, S. A. Greenhalgh, J. R. Ernst, H. Murer, and A. G. Green, “A new
vector waveform inversion algorithm for simultaneous updating of conductivity and permittivity
parameters from combination crosshole/borehole-to-surface GPR data,” IEEE Trans. Geosci.
Remote Sens., Vol. 48, No. 9, 3391–3407, Sep. 2010.

15. Jesch, R. L. and R. H. McLaughlin, “Dielectric measurements of oil shale as functions of
temperature and frequency,” IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 12, 2713–2721,
Dec. 2001.

16. Schon, J. H., Physical Properties of Rocks, Elsevier, 2011.
17. Dyni, J. R., “Geology and resources of some world oil-shale deposits,” U.S. Geolog. Survey Sci.

Investig. Rep., 2006.


