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Positional Error Compensation and SLL Control of Miniature Deep
Space Probe Based Antenna Arrays
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Abstract—As the boundary of the universe which is explored by human expanded, antenna used in
deep space exploration (DSE) could become too large to carry and deploy, miniature deep space probe
based antenna arrays (MDSPBAA) provide a novel solution for the problem. This kind of antenna
array may lower the difficulty of sending antenna to the area where is tend to be detected and may also
monitor cost effectively in the work of deep space detect. However, turbulence and positional errors
provide a challenging operational environment when it comes to the implementation of these systems.
Turbulence will deteriorate SLL badly. In some cases, the level could be changed by almost 10 dB.
Therefore, a SLL control algorithm is presented, which could well compensate the SLL which is caused
by positional error.

1. INTRODUCTION

Deep space exploration (DSE) means the detection activities of celestials other than earth such as
planets and their moons, asteroids, comets, etc. Due to the extreme long distance for signal transmit in
the DSE, the signal will become very weak over the distance of dozens millions kilometers [1]. Therefore,
remote telemetry, tracking and communication has become one of the key technologies for DSE. Antenna
is made to achieve the function of receiving weak signal and transmit high-power signal, and it plays
an important role in the deep space communication system.

In the Mars mission, by equipping with high-gain antenna whose diameter is 3m, Mars
Reconnaissance Orbiter (MRO) can transmit signals in the Ka wave band. As the boundary of space
exploration expanded, antennas with higher gain, larger aperture are needed in the DSE in the near
future [2]. However, larger aperture and bigger antenna bring greater difficulty in launch and carry; the
cost will rise as well, and it will become the bottleneck in the DSE [3–5].

In order to solve the problem, we propose a methodology which is to use the miniature deep space
probe antenna array (MDSPAA), then we can replace the expensive, heavy and huge reflector antenna
by using a swam of miniature probe to compose a large-aperture, high-gain antenna array in the DSE
mission [6–8].

However, miniature deep space probes are floating in space, and turbulence and positional errors
will limit the aperture’s ability to transmit signal stably [9–11]. So we have to solve two problems before
using the methodology: first, we have to maintain the direction of the main beam; second, the SLL
should be kept steady to maintain the performance of the antenna.

The expression of the normalized array factor for an arbitrary, N -element antenna array with
arbitrary excitation has been given by [12]. Literature [13–15] help us to better understand the impact
that positional tolerance errors has on an antenna array system. Those papers also work to develop
a methodology that can be used to reduce the impact this positional noise has on the performance of
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this antenna system. The noise models introduced in that paper show that sparse arrays are no more
susceptible to noise than standard arrays as long as the tolerances are electrically similar. In addition,
the papers show that arrays with more elements are more robust to positional errors than smaller
sized arrays. Literature [16–18] have shown that the phase correction algorithm can be applied very
effectively to aperiodic arrays to eliminate the errors around the main beam while still maintaining their
grating lobe suppression and low sidelobe properties. They have also demonstrated that when applied to
periodic arrays, the phase correction algorithm is not effective in eliminating grating lobes. In [19–22],
they have proposed that by combining phase compensation with optimized sparse aircraft formations,
one can achieve high radiation pattern resolution in a micro-UAV based radar imaging application.
However, none of these literatures shows how to maintain SLL to keep the performance of antenna
arrays. Therefore, this article focuses on the compensation algorithm which could well compensate the
changing level of the side lobes caused by positional error while rarely affects the main beam.

2. LOBE EXPRESSION

In this section, we start with the expression of the array factor for an arbitrary, M -element antenna
array with arbitrary excitation to begin the discussion.

S (n) =
M∑

m=1

Im exp j (knnrm + βm) (1)

where rm is the vector pointing from the origin to elements m and n the normal unit vector pointing
from the origin to the far-field observation point at (θ, ϕ). The subscript n in nn means the normal unit
vector pointing to a sidelobe. Im and βm represent the amplitude and phase of the current excitation
on element m, respectively. All illustration of this coordinate system is shown in Figure 1.
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Figure 1. Antenna array coordinate systems.

The radiation pattern which is presented by (1) usually has a main beam in the position in which
θ = 0 and has some sidelobe with the level of εn in the position in which n = nn, n = 1, 2, . . . , N .
If we make ni = (π/2, ϕi), then we will get some sidelobes pointing to the normal direction of Z axis
(θ = π/2). These characters can be presented by the mathematical expression as follow:

∂S (n)
∂n

|n=nn = 0, n = 1, 2, . . . , N − i (2)

S (nn) = εn, n = 1, 2, . . . , N (3)

Since the derivative of S (n) is generally not equal to zero in the normal direction of Z axis. In
(2), we know that n �= N . Apparently, (2) and (3) contain 2N − i equations with M + N − i unknown
parameters, such as r1, r2, . . . , rM ; n1, n2, . . . nN−i.
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3. ERROR ESTIMATION

In this section, we derive a closed-form estimate of the radiation pattern error Δεn resulting from
the positional turbulence of individual antenna elements of an arbitrary array. We chose rm = r0

m to
calculate the radiation pattern S0 (n); the position of sidelobes can be worked out from the equation:

M∑

m=1

jkr0
mI0

m exp jkn0
nr0

m = 0, n = 1, 2, . . . , N − i (4)

With the sidelobes n0
i in the position where ni = (π/2, ϕi), all of the SLL εn can be worked out.

ε0
n =

M∑

m=1

Im exp jkn0
nr0

m, n = 1, 2, . . . , N (5)

To the antenna array that has been disposed, r0
m, n0

n, ε0
n in (4) and (5) are known.

Assuming that the array elements receive a slight disturbance or have a slight displacement Δrm,
the new position vector r1

m is:
r1
m = r0

m + Δrm (6)

As a result, the new positions n1
n and the new levels of the sidelobes ε1

n become (maybe there is an
exception in the position where ni = (π/2, ϕi)):

n1
n = n0

n + Δn1
n (7)

ε1
n = ε0

n + Δεn (8)

Since the new r1
m and ε1

n should meet (2) and (3),

ε1
n =

M∑

m=1

Im exp jk
(
n0

n + Δn1
n

) (
r0
m + Δrm

)
=

M∑

m=1

Im exp jkn0
nr0

m exp jkϑ (9)

In the expression
ϑ = n0

nΔrm + Δn1
nr0

m + Δn1
nΔrm (10)

If Δrm is very small, we can take approximate such as:

exp jkϑ ≈ 1 + jkϑ (11)

Ignore second-order small term ΔnnΔrm, consider (4) and (5), then (9) will turn into:

Δεn = ε1
n − ε0

n = n0
n

M∑

m=1

ImΔrm exp jkn0
nr0

m (12)

4. LOBE LEVEL COMPENSATION

In this section, we analyze the method which could compensate the error Δεn by controlling the
amplitude of the current in each array element. The expressions of position and level of lobes are
similar to what is presented in Section 3, except that the initial lobe level should be ε1

n, and the final
lobe level should be ε0

n, by considering (2), (3)
M∑

m=1

jkr1
mI0

m exp jkn1
nr1

m = 0, n = 1, 2, . . . , N − i (13)

ε1
n =

M∑

m=1

I0
m exp jkn1

nr1
m, n = 1, 2, . . . , N (14)

The excitation amplitude Im should be considered as change parameter, so

I1
m = I0

m + ΔIm, m = 1, 2, . . . ,M (15)
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In this expression, each I0
m is the initial current excitation amplitude when the compensation process

begins. If we assume that the new displacement variations of the sidelobes are Δn2
n, by putting (15)

into (3), we will have:

ε0
n =

M∑

m=1

(
I0
m + ΔIm

)
exp jk

(
n1

n + Δn2
n

)
r1
m =

M∑

m=1

(
I0
m + ΔIm

)
exp jkn1

nr1
m exp jkΔn2

nr1
m (16)

If Δn2
n → 0

exp jkΔn2
nr1

m ≈ 1 + jkΔn2
nr1

m (17)
Put (17) into (16)

ε0
n =

M∑

m=1

exp jkn1
nr1

m

(
I0
m + ρ

)
(18)

In the expression
ρ = I0

mjkΔn2
nr1

m + ΔIn + ΔImΔn2
njkr1

m (19)
Ignoring second-order small term ΔImΔn2

n and considering expression (13) and (14), the governing
equation of each ΔIm can be presented as:

Δεc
n = ε0

n − ε1
n =

M∑

m=1

ΔIm exp jkn1
nr1

m (20)

Δεc
n is the compensated SLL, apparently:

Δεn = −Δεc
n (21)

Put (12) and (20) into (21):

n0
n

M∑

m=1

ImΔrm exp jkn0
nr0

m +
M∑

m=1

ΔIm exp jkn1
nr1

m = 0 (22)

Put (6), (7) into (22), then simplify the expression as (11), then we will get the control equation
of current for compensate the positional error:

M∑

m=1

exp jkn0
nr0

m

(
Imn0

nΔrm + ΔIm

)
= 0 (23)

When the array elements are under disturbance, we can use satellite positioning technology, INS,
Star Light Navigation and so on to redefine the new location r1

m of the elements, which means that
Δrm in (23) can be worked out. Then by changing the circuit excitation amplitude of each element by
ΔIm which could be worked out by (23), lobe level can be controlled.

5. SIMULATED ANALYSIS

In this section, two antenna arrays are discussed, which produce array configurations suitable for
MDSPAA formations. While part A focuses on the linear array, part B focuses on the rectangular
planar array. We compensate both arrays with the algorithm which is presented in this article.

To begin the discussion, we propose a useful model for the positional noise which a swarm of
MDSPAA is likely to encounter. Positional error Δrm can be described by a multivariate normal
random variable that varies equally in all directions. Hence, the term describing the error can be
represented by:

nΔrm ∼ N (0, δ) (24)
Here we choose Gaussian positional noise as the turbulence model. The reasons are as follows.

First, this noise model describes a characteristic: the larger the turbulence is, the less likely it is to
happen, and it can well depict the suspended state of the probe with dynamic balance in different
direction, while [6] used Gaussian positional noise model to describe the 3-D turbulence which the UAV
is likely to encounter. Second, there are a lot of unknown variables to affect the position of a suspended
probe, and under these circumstances, using Gaussian positional noise in the preliminary analysis could
be an effective solution.
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5.1. Unequally Spaced Symmetry Linear Array

We present an unequally spaced symmetry linear array with 2M elements (Figure 3), and the radiation
pattern factor is:

S (x) = 2
M∑

m=1

Im cos (bmx) (25)

In the expression bm = 2dm
λ , x = π cos θ.

Assuming bm = b0
m in the linear array, positions x0

m of each lobe can be worked out by Equation (26):

2
M∑

m=1

I0
mb0

m sin
(
b0
mx0

n

)
= 0 (26)

By the above theory:

Δεn = −2x0
n

M∑

m=1

I0
mΔbm sin

(
b0
mx0

n

)
(27)

The corresponding governing equation of current can be presented as:

Δεc
n = 2

M∑

m=1

ΔIm cos
(
bmx1

n

)
(28)

We propose a linear array with 8 elements, which means M = 4. The interval is as in Table 1, and
the initial lobe level is shown in Table 2.

Table 1. The intervals of linear array while M = 4.

Factor Element M d1 d2 d3 d4

Value 8 4 0.247λ 0.752λ 1.243λ 1.749λ

Table 2. The initial lobe level.

Factor MainBeam LobeLevel 1 LobeLevel 2 LobeLevel 3 LobeLevel 4
Value 0 −12.91 dB −16.72 dB −18.75 dB −35.25 dB

We simulate different 3-D positional turbulence by adding Gaussian positional noise model with
different variances to antenna array, as shown in Figure 2. The x-axis shows the value of variance while
the y-axis shows the change of the lobe level. While the positional error is increasing, the level of main
beam remains the same basically, but the magnitude of the SLL fluctuation is increasing. When the
variance of Gaussian positional noise is close to 0.1, some side-lobe level even changes by more than
6dB, which will deteriorate the performance of the antenna badly.

The change scope between the lobe levels adopting the compensation algorithm and the initial lobe
level is illustrated in Figure 3. In order to decrease the effect of the current to the level of the main
beam maximally, we add the level control equation of the main beam to the equation set. Thus, we get
an overdetermined equation set with five equations to solve the change level of the current in each four
array elements. We obtain the value of control current by using Least Squares (LS) and keep the main
beam stable by adding proper weight to the level control equation of the main beam when we solve the
equation set. We can work out the value of the lobe level which adopts the compensation algorithm by
putting the value of the control current into Equation (16), and the difference between the values solved
by Equation (16) and the initial lobe levels in the corresponding positions is illustrated in Figure 3. We
can see that the algorithm has well compensated the changing level caused by positional error while
rarely affects the main beam. Otherwise, if necessary, in order to meet the requirement of the control of
SLL, we can use methods other than LS or add different weights to each equation to design the current
compensation mode.
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Figure 2. The level variation due to Gauss positional noise model.

Figure 3. The level variation which is adopted the compensation algorithm.

Figure 4 and Figure 5 illustrate the degree of SLL compensation and the adjustment rate of
current in each array element corresponding to different variances. It is shown that the algorithm can
compensate the variation of SLL approximately 7 dB in some position in Figure 4. As the positional
error is increasing, the effect of the compensation becomes even more remarkable, but the difference
between the SLL with compensation algorithm and the initial SLL becomes greater. That is because
we used lots of approximation in the algorithm for the reason that the assumed positional error is very
small. Figure 5 shows the relationship between positional error and the adjustment rate of current.
The value of the initial current is unit current I, and the x-axis shows the value of variance while the
y-axis shows the adjustment rate of current. We can see that, as the positional error becomes bigger,
the adjustment rate of current also needs to be increased.

In conclusion, because of the positional error, the SLL of the antenna array changes a lot, and
some side lobe deteriorates badly. By using the compensation algorithm proposed in this article, we
can control the SLL effectively while rarely affect the main beam.

5.2. Rectangular Planar Array

The radiation pattern factor of rectangular planar array is:

S (θ, ϕ) =
M∑

m=−M

N∑

n=−N

Imn exp [jk sin θ (mdx cos ϕ + ndy sin ϕ) + jαmn] (29)
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Figure 4. The level of compensation.

Figure 5. The adjustment rate of current.

To know the positions of the lobes, we need to work out the maximum value of the function,
assuming that the phases of the current are equal and take partial of θ, ϕ respect to x:

∂S

∂θ
=

M∑

m=−M

N∑

n=−N

Imnjk (mdx cos ϕ + ndy sin ϕ) cos θ exp [jk sin θ (mdx cos ϕ + ndy sin ϕ)] (30)

∂S

∂ϕ
=

M∑

m=−M

N∑

n=−N

Imnjk (ndy cos ϕ − mdx sin ϕ) sin θ exp [jk sin θ (mdx cos ϕ + ndy sin ϕ)] (31)

By letting (30), (31) equal to 0 and simulating the equations, we can find all the arrest points of
the radiation pattern function S(θ, ϕ).

The formation of the 11 ∗ 11 rectangular planar array is illustrated in Figure 6. We also have ideal
radiation pattern, radiation pattern with positional errors and radiation pattern with compensation
algorithm, shown in Figure 7, Figure 8, and Figure 9, respectively.

In all the radiation pattern plots throughout the paper, the elevation angle (θ) is measured radially
along the x and y axes whereas the azimuthal (ϕ) angle is measured azimuthally in the xy-plane.
When the formation is corrupted by a random zero-mean Gaussian positional noise, the SLL will be
changed a lot, and the position of side lobes will also be affected (see Figure 8), in some position the
SLL even changes approximately by 10 dB. However, Figure 9 illustrates that when the positional error
compensation algorithm is applied to the array, the SLL will be fixed effectively. Nevertheless, the
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Figure 6. Rectangular planar array formation. Figure 7. Ideal radiation pattern.

Figure 8. Pattern with positional errors. Figure 9. Pattern with compensation algorithm.

position of side lobes will still have some error, because this algorithm is insufficient for the correct of
the position of side lobes. Therefore, if we combine this algorithm with the one proposed in [4], we
could control the SLL effectively while maintain the stability of the main beam.

6. CONCLUSION

An error compensation algorithm has been developed to restore the SLL when the array elements of a
swarm based antenna array are subject to positional noise. Moreover, the error correction algorithm
has been applied to both linear array and rectangle array with positional noise errors. In some cases,
the algorithm can compensate the SLL for approximately 10 dB, which can be exploited for creating
robust MDSPAA. However, the Gaussian positional noise we use here is just for preliminary analysis,
and we will try to get measured data instead of structured positional noise to test and improve this
algorithm in the further research.
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