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Analysis of Planar Circuits Using an Efficient
Laguerre-Based FDTD Method

Yan-Tao Duan*, Bin Chen, Li-Hua Shi, and Cheng Gao

Abstract—In this paper, an efficient three-dimensional Laguerre-based finite-difference time-domain
(FDTD) method is used to analyze planar circuits. An iterative procedure is introduced to improve
the accuracy. Both the time-domain waveforms and the S-parameters are presented. The numerical
results show that at the comparable accuracy, the efficiency of the Laguerre-based FDTD method with
an iterative procedure is superior to the FDTD method and alternating-direction implicit (ADI) FDTD
method.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method has been successfully applied in simulating various
modern microwave and millimeter-wave planar circuits [1–8]. It possesses the advantages of simple and
accurate implementation for relatively complex problems. However, one of the major disadvantages
of this method is that the time step is constrained by the Courant-Friedrich-Levy condition [9]. To
overcome the Courant limitation, an unconditionally stable scheme with weighted Laguerre polynomials
for the FDTD method was introduced [10]. This marching-on-in-order scheme uses the weighted
Laguerre polynomials as the temporal basis functions and the Galerkin’s method as the temporal testing
procedure to eliminate the time variable. In this way, the stability condition is no longer affected by the
time step. The update equations [10] are the Laguerre-domain difference equations, and each update
equation involves the expansion coefficients of the field components from order 0 to q. At present, the
marching-on-in-order scheme has been widely used by many researchers [11–14].

The Laguerre-based FDTD method produces a huge sparse matrix equation for the 3-D cases,
which is very challenging to solve. In [15, 16], an efficient algorithm for implementing the Laguerre-
based FDTD method was introduced. The huge sparse matrix equation is solved with a factorization-
splitting scheme. This paper furthers the work of [15, 16] by applying an iterative procedure to the
efficient 3-D Laguerre-based FDTD method to analyze the 3-D planar circuits. It leads to an accuracy-
improved unconditionally stable Laguerre-based FDTD method. In this paper, in terms of accuracy and
computational efficiency, the numerical performances of different numbers of iterations were given in the
numerical examples. The numerical simulations demonstrate the validity of this Laguerre-based FDTD
method. The timedomain and frequencydomain simulation results indicate that, at the comparable
accuracy, the efficiency of the proposed method with an iterative procedure is superior to the FDTD
method and the alternating-direction implicit (ADI) FDTD method [17–20].
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2. FORMULATIONS

For simplicity, a simple and lossless medium is considered. The 3-D differential Maxwell’s equations are
stated by
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= (DyHz − DzHy) − Jx (1)
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where Dx, Dy, and Dz are the first-order central difference operators along x, y, and z axes, respectively.
Using a set of orthogonal basis functions ϕp(s, t) = e−st/2Lp(st) [10], we can expand the electric and
magnetic fields in (1)–(6) as
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where Lp(st) is the Laguerre polynomials of order p, s > 0 is a time-scale factor, and Ep
x, Ep

y , Ep
z ,

Hp
x, Hp

y , and Hp
z are the coefficients of the Laguerre basis functions for Ex, Ey, Ez, Hx, Hy, and Hz,

respectively.
The first derivative of field components, taking Ex for example, with respect to t is [10]
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Inserting (7)–(8) into (1)–(6) and using a temporal Galerkin’s testing procedure to eliminate the
time variable, we get
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With some manipulations, we can write (9)–(14) in the following matrix forms:
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where a = 2/(sε), b = 2/(sμ), and a set of auxiliary matrices are defined as
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Inserting (17) into (16), we have

(I − abDHDE) W q
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E (19)

Here we decompose abDHDE into two triangular matrices A and B, A is a lower triangular matrix,
and B is an upper triangular matrix, and we have
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Adding a perturbation term AB(W q
E−V q−1

E ) to (20), Equation (20) can be solved into two sub-steps
with the following splitting scheme [15, 16]:
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matrices A and B as [16]:
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where D2x, D2y, and D2z are the difference operators for the second derivatives. Using (18) and (22)
to expand (21), and applying the central-difference scheme introduced by Yee, we can obtain discrete
space equations for the efficient Laguerre-based FDTD method [16]. The equations are six tri-diagonal
matrix equations which can be solved efficiently.
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In order to reduce the error introduced by the perturbation term AB(W q
E − V q−1

E ), we present
an iterative procedure, like the iterative ADI-FDTD method [21–23] and the iterative LOD-FDTD
method [24] to improved the accuracy. Because the weighted Laguerre polynomials tend to zero as
time t → ∞, the expanded quantities of the fields will converge to zero as time progresses. When an
iteration procedure is applied to the 3-D Laguerre-based FDTD method, the obtained solutions are
therefore stable. We suppose that W q

0 is the solution of (21), we can replace AB(W q
E − V q−1

E ) with
AB(W q

E − W q
0 ) and add it to (20). Thus, the factorized form of (20) can be written as
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By using the values calculated by (23) repeatedly, we can obtain an iterative procedure as follows:
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where the subscript r denotes the rth iteration. Thus, we can use the initial Equation (21) and the
iterative Equation (24) to simulate the numerical examples. Using the same splitting scheme to solve (24)
leads to
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Using (18) and (22) to expand (25), and applying the central-difference scheme introduced by Yee,
we can obtain discrete space equations for the iterative procedure. Taking E∗q

z and Eq
z as example, the
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3. NUMERICAL RESULTS

In order to verify the proposed formulations above, numerical examples involving two typical planar
circuits are taken into consideration. The numerical simulations are carried out using the proposed
method, the ADI-FDTD method, and the conventional FDTD method for comparison.

The first example is related to a coplanar stripline structure [25], as shown in Figure 1. This
structure is a class of printed microwave circuits, which can be fabricated in a uniplanar manner. The
microstrip line has a lossless isotropic dielectric substrate with permittivity εr = 10.2 and thickness
d = 762 µm. The cell size is chosen to be dx = 95.25 µm, dy = 25.4 µm, and dz = 45.075 µm. A
baseband Gaussian pulse with τ = 20 ps is used to excite the horizontal electric-field component in the
aperture between the two strips. The Mur’s first-order absorbing boundary condition [26] is implemented
to terminate the outer surfaces including the ground plane on the bottom side. In the Laguerre-based
FDTD method, we choose q = 80, s = 1.6 × 1012 [27, 28].
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Figure 1. The geometry and dimensions of a coplanar stripline structure.

Figure 2. Comparison of time-domain wave-
forms for voltages at observation point 1.

Figure 3. Comparison of time-domain wave-
forms for voltages at observation point 2.

Figure 2 and Figure 3 graph the time-domain voltage waveforms at the observation points 1 and 2.
It is clear that the proposed formalism is more accurate, and lager errors occur for the ADI-FDTD
method. Additionally, S-parameters between the two observation points are calculated, as shown in
Figure 4. The result obtained using the proposed method is compared with those of the conventional
FDTD and good agreement is observed. The comparison of the numerical performance versus the
iteration number is shown in Table 1. The computation time for the ADI-FDTD method is 69 s, while
the proposed formalism used 30 s without iteration. With the increase of the iteration number, the CPU
time is increased.

The second example is related to the microstrip T-junction of [29], as shown in Figure 5. The
substrate is 254-µm-thick and has a relative dielectric constant of 9.9. The microstrip is 230-µm-wide
and is assumed to have zero thickness. The microstrip stub is 510-µm-wide and 1380-µm-long. The
cell size is chosen to be dx = 63.5 µm, dy = 57.5 µm, and dz = 102 µm. A baseband Gaussian pulse
e−((t−tc)/τ )2 with τ = 15 ps and Tc = 3τ is used as the excitation to obtain the S-parameters between
DC and the 30-GHz band. The Mur’s first-order absorbing boundary condition [26] is implemented
to terminate the outer surfaces except for the ground plane on the bottom side. For the conventional
FDTD, we choose the time step ΔtFDTD = 0.2 ps. For the ADI-FDTD method, the time step is
ΔtADI = 10 ΔtFDTD. In the Laguerre-based FDTD method, we choose q = 60, s = 1.2 × 1012 [27, 28],
and we set Δt = 0.4 ps to calculate the Laguerre coefficient of the excitation pulse.
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Table 1. Simulation results for a coplanar stripline structure.

Scheme Δt Marching-on steps CPU time (s)
FDTD 0.15 ps 3000 98

ADI-FDTD 1.5 ps 300 69
Laguerre-based FDTD

(without iteration)
- 81 30

Laguerre-based FDTD
(with one iteration)

- 81 54

Laguerre-based FDTD
(with two iterations)

- 81 78

Figure 4. Comparison of the S-parameters. Figure 5. The geometry and dimensions of the
microstrip T-junction.

Figure 6. Comparison of time-domain wave-
forms for voltages at observation point 1.

Figure 7. Comparison of time-domain wave-
forms for voltages at observation point 2.
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Figure 8. Comparison of the S-parameters.

Table 2. Simulation results for the microstrip T-junction.

Scheme Δt
Marching-on

steps
CPU time (s)

Resonant frequency
(GHz)

FDTD 0.2 ps 4000 63 1.686
ADI-FDTD 2ps 400 40 1.541

Laguerre-based FDTD
(without iteration)

- 61 9 1.637

Laguerre-based FDTD
(with one iteration)

- 61 17 1.656

Laguerre-based FDTD
(with two iterations)

- 61 25 1.663

Figure 6 and Figure 7 plot the time-domain voltage waveforms at the observation points 1 and 2.
The S-parameters between the two observation points are also extracted from the time-domain data,
as shown in Figure 8. It can be seen that the agreement between the conventional FDTD and the
Laguerre-based FDTD method is very good. However, the ADI-FDTD method shows large errors when
the time step is ten times larger than that used in the conventional FDTD.

The comparison of the computational efficiency and accuracy versus the iteration number is shown
in Table 2, the resonant frequency is also considered. It can be see that, with the increase of the numbers
of iterations, the accuracy can be improved at the cost of additional CPU time. With two additional
iterations, the Laguerre-based method not only achieves about 1.6 times the saving in CPU time in
comparison with the ADI-FDTD method but also gives better results than the ADI-FDTD method. In
addition, we can see that the simulation takes 63 s for the FDTD method, and 25 s for the proposed
method with two additional iterations. The CPU time for the proposed method is reduced to about
39.7% of the FDTD method.

From both the time-domain and the frequency-domain analysis above, it can be seen that the
Laguerre-based method gives a more accurate result than the ADI-FDTD method in analyzing the
planar circuits. Additionally, the CPU time usage are saved when the present method are used compared
with the other two schemes.
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4. CONCLUSION

An efficient Laguerre-based FDTD method is used in this work for the analysis of the planar circuits.
The accuracy of the proposed method is improved by using an iterative procedure. To verify the validity
of the proposed method, two examples are included. The accuracy of the proposed method has been
proved from the comparison of both time domain and frequency domain results. It is demonstrated that
the Laguerre-based FDTD method is highly efficient while timesaving compared with the ADI-FDTD
method.
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