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Mixed Finite Element Method for 2D Vector Maxwell’s Eigenvalue
Problem in Anisotropic Media

Wei Jiang1, Na Liu1, Yifa Tang2, and Qing Huo Liu3, *

Abstract—It is well known that the conventional edge element method in solving vector Maxwell’s
eigenvalue problem will lead to the presence of nonphysical zero eigenvalues. This paper uses the mixed
finite element method to suppress the presence of these nonphysical zero eigenvalues for 2D vector
Maxwell’s eigenvalue problem in anisotropic media. We introduce a Lagrangian multiplier to deal with
the constraint of divergence-free condition. Our method is based on employing the first-order edge
element basis functions to expand the electric field and linear nodal element basis functions to expand
the Lagrangian multiplier. Our numerical experiments show that this method can successfully remove
all nonphysical zero and nonzero eigenvalues. We verify that when the cavity has a connected perfect
electric boundary, then there is no physical zero eigenvalue. Otherwise, the number of physical zero
eigenvalues is one less than the number of disconnected perfect electric boundaries.

1. INTRODUCTION

Waveguides and resonant cavities have wide applications in microwave engineering. Their design usually
involves the computation of the propagation constants and resonant frequencies in computational
electromagnetics [1]. For example, a very efficient technique for the full-wave analysis and design
of complex passive waveguide filters, including rectangular cavities with metallic cylindrical posts and
coaxial excitation, is presented in [2]. A homogeneous ferrite ring resonator and an inhomogeneous
dielectric-ferrite ring resonator have been analyzed in [3]. However, in spite of their long history, such
eigenvalue problems still require rigorous research in several aspects, especially with respect to the
presence of two kinds of spurious modes, i.e., spurious nonzero eigenvalues and zero eigenvalues.

In 1969, Silvester [4] successfully employed the nodal based finite element method to analyze wave
propagation in a homogeneous waveguide. It has been shown that the nodal based finite element method
has several advantages in solving homogeneous waveguide problems, but when applied to inhomogeneous
waveguide problems it yields nonphysical modes with nonzero eigenvalues. Rahman and Davies [5],
Winkler and Davies [6] and Kobelansky and Webb [7] observed that the reason for the presence of
these first-kind nonphysical modes is that these nonphysical modes do not satisfy the divergence-free
condition required by the Gauss’ law. They suggested a penalty function to enforce the divergence-free
condition. Unfortunately, this method cannot eliminate the spurious modes completely and leaves the
user the task of selecting a suitable penalty function parameter.

In electromagnetics theory [8, 9], we have already known that on the interface between two different
media, the tangential component of electric field E is continuous, but the normal component is
discontinuous. Because the nodal basis functions do not have this property, making use of nodal based
finite element method to solve vector Maxwell’s eigenvalue problem with inhomogeneous medium will
lead to the presence of nonphysical nonzero eigenvalues. In 1980s, Nédélec [10, 11] proposed the edge
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elements, which can preserve this actual physical property of electric field E. Therefore edge elements
are very well suited for approximating electric field E. The review of edge element method has been given
in [12]. For the Maxwell’s eigenvalue problem in isotropic media, with the edge element method there are
no spurious modes with nonzero eigenvalues, but the number of spurious modes with nonphysical zero
eigenvalue is equal to the number of interior nodes inside the computational domain [13, 14]. Therefore,
in order to remove these second-kind spurious modes with nonphysical zero eigenvalues, we must make
the eigenfunction have the property of divergence-free condition. Kikuchi [15] has already turned to
the help of introduction of Lagrangian multiplier to enforce the constraint of divergence-free condition.
Other researchers have also investigated the removal of nonphysical zero eigenvalues [16, 17]. Kikuchi’s
approach [15] is particularly attractive in that the process is rather automatic with little intervention
needed to include Gauss’s law. However, to our knowledge, this method has only been applied to
isotropic media so far; the extension to anisotropic media is not trivial in that it involves the coupling
of all field components in the mass and stiffness matrices.

Fratalocchi et al. [18–20] concern the numerical solution of Maxwell equations in complex
geometries. This paper will focus on numerical solving of 2D vector Maxwell eigenvalue problem with
anisotropic media in complex geometries. Based on the above work by Kikuchi [15], we introduce a
Lagrangian multiplier to constrain the divergence-free condition. Specifically, we employ the first order
edge element basis functions to expand the electric field, and use linear nodal element basis functions
to expand the Lagrangian multiplier so that Gauss’ law is satisfied to remove the second-kind spurious
modes.

The outline of the paper is as follows. In Section 2, we introduce the mixed variational formulation
of the 2D vector Maxwell’s eigenvalue problem in anisotropic media. Linear finite element space, the
first order edge element space, and the forms of corresponding basis functions are given in Section 3.
Finally we carry out some numerical experiments to verify that the mixed finite element method can
effectively exclude all the spurious eigenvalues, including the nonphysical zero eigenvalues.

2. MIXED VARIATIONAL FORMULATION

In this work we consider the 2D electromagnetic eigenvalue problem for an anisotropic medium with
the relative permittivity and relative permeability tensors

¯̄εr =
[
¯̄εrt 0
0 εrz

]
, ¯̄µr =

[
¯̄µrt 0
0 µrz

]
, (1)

where ¯̄εrt and ¯̄µrt are full 2 × 2 tensors for the in-plane relative permittivity and permeability of the
medium. In a 2D problem, all fields and medium properties are only functions of (x, y) and are
independent of z.

Let Ω be a connected, bounded domain of R2 with a Lipschitz-continuous boundary ∂Ω. The
boundary ∂Ω may be disconnected. In a 2D resonant cavity problem, we often need to solve the
following 2D vector Maxwell’s eigenvalue problem: Find k0 ∈ R (eigenvalue) and a vector field E 6= 0
(eigenfunction) such that

∇t ×
(
µ−1

rz ∇t ×E
)

= k2
0
¯̄εrtE in Ω, (2)

∇t ·
(
¯̄εrtE

)
= 0 in Ω, (3)

n̂×E = 0 on ∂Ω, (4)
where n̂ denotes the outward unit normal vector on ∂Ω, ∇t× the curl operator, ∇t· the divergence
operator, E = Exx̂+Eyŷ the electric field in the 2D plane, k2

0 = ω2µ0ε0, and ω the angular frequency. In
this electromagnetic model, we only consider the perfect electric conductor (PEC) boundary condition,
but the method can be extended to other boundary conditions. Moreover, we assume that the medium
in resonant cavity is anisotropic and piecewise homogeneous, and in each region the relative dielectric
permittivity ¯̄εrt is a second order positive tensor, i.e.,

(¯̄εrtξ, ξ) = ξ∗¯̄εrtξ > 0 for ∀ 0 6= ξ ∈ C2, (5)
where ξ∗ is the complex conjugate of ξ, and the relative magnetic permeability µrz > 0 is the zz
component of the relative magnetic permeability tensor.
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Note that when Ω is simply connected, i.e., the boundary ∂Ω is connected, the eigenvalue k0 = 0
is not a solution of problem (2)–(4). In fact, if k0 = 0, then the above problem has the trivial solution
only: from (2) and (4), we can deduce that ∇t × E = 0, so we can write E = −∇tφ. Substituting this
into (3) and (4), we get the equation −∇t · (¯̄εrt∇tφ) = 0 in Ω and φ is a constant on ∂Ω, and using (5),
we conclude that φ is the constant in Ω, thus, E = 0 in Ω. On the other hand, when Ω is multiply
connected, i.e., the boundary ∂Ω is disconnected, we cannot deduce E = −∇tφ from ∇t × E = 0;
therefore, the presence of physical zero eigenvalue is possible. This is the case for a coaxial waveguide
and for multi-conductor connectors. It is well known (and also confirmed by our numerical results) that
the number of physical zero eigenvalue is equal to the genus in Ω. The physical interpretation for this is
that if there are N independent conductors in this cavity, then there are N−1 independent TEM modes
in this cavity. Unfortunately, numerical solution using the traditional finite element method will yield
many spurious zero eigenvalues. Therefore, it is the objective of this work to remove these spurious
modes by employing the mixed finite element method.

In order to use the mixed finite element method to solve this problem, we change the above strong
form PDE to the corresponding weak form. Let L2(Ω) be a Lebesgue space of measurable and square
integrable functions on Ω. Its canonical inner product is defined as (u, v)0 =

∫
Ω uv∗dΩ, where the

complex value function v∗ stands for the complex conjugate function of v. The norm induced from the
above inner product is ‖u‖0 =

√∫
Ω |u|2dΩ. Let L2(Ω)2 be the vector product space over two L2(Ω)

spaces. For any J,F ∈ L2(Ω)2, J = Jxx̂ + Jyŷ, F = Fxx̂ + Fyŷ, the standard inner product and norm
in L2(Ω)2 can be defined as

(J,F) =
∫

Ω
(JxF ∗

x + JyF
∗
y )dΩ, ‖F‖ =

√
(F,F).

In the finite element postprocessing, for the problem (2)–(4) we need to draw field distribution about
the electric field E = x̂(Ereal

x + jEimag
x ) + ŷ(Ereal

y + jEimag
y ). We denote Re(E) = x̂Ereal

x + ŷEreal
y ,

Im(E) = x̂Eimag
x + ŷEimag

y . Next we introduce the following three important Hilbert function spaces:

H1
0 (Ω) =

{
q ∈ L2(Ω) : ∇tq ∈ L2(Ω)2, q = 0 on ∂Ω

}
,

H(curl,Ω) =
{
F = Fxx̂ + Fyŷ ∈ L2(Ω)2:

∂Fy

∂x
− ∂Fx

∂y
∈ L2(Ω)

}
,

H0(curl,Ω) = {F ∈ H(curl,Ω): n̂× F = 0 on ∂Ω} .

By applying the Green’s formula∫

Ω
∇t ×

(
µ−1

rz ∇t ×E
) · FdΩ =

∫

Ω

(
µ−1

rz ∇t ×E
) · ∇t × FdΩ +

∫

∂Ω

(
µ−1

rz ∇t ×E
)× F · dS,

to Equations (2), and∫

Ω
∇t ·

(
¯̄εrtE

)
qdΩ = −

∫

Ω
(¯̄εrtE) · ∇tqdΩ +

∫

∂Ω
q (¯̄εrtE) · dS,

to Equation (3), and taking F ∈ H0(curl, Ω), q ∈ H1
0 (Ω), we arrive at the following variational

formulation of Maxwell’s eigenvalue problem (2)–(4): Find k2
0 = λ ∈ R, 0 6= E ∈ H0(curl, Ω) such

that (
µ−1

rz ∇t ×E,∇t × F
)

= λ
(
¯̄εrtE,F

) ∀ F ∈ H0(curl, Ω), (6)

(¯̄εrtE,∇tq) = 0 ∀ q ∈ H1
0 (Ω). (7)

It is clear that Equation (6) can be solved independently as in the conventional edge element method,
but in this case the divergence-free condition (3) may be not satisfied. Therefore, the problem (6) is not
equivalent to the original problem (2)–(4). This is the reason that (6) has nonphysical zero eigenvalues,
and the eigenfunction space corresponding to these nonphysical zero eigenvalues is ∇tH

1
0 (Ω), which is

an infinite dimensional space. When Maxwell’s eigenvalue problem (2)–(4) does have several actual
physical zero or very close to zero eigenvalues, it is very difficult to distinguish the actual physical zero
eigenvalues from all the numerical eigenvalues to approximate these actual zero eigenvalues [21].
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In order to exclude all the nonphysical zero eigenvalues, we need to consider the divergence-free
condition (3). That is to say that we must simultaneously solve variational forms (6) and (7). We
couple variational form (6) with that of (7) according to the introduction of Lagrangian multiplier and
give the following mixed finite variational formulation: Seek λ ∈ R, 0 6= E ∈ H0(curl, Ω), p ∈ H1

0 (Ω)
such that

(µ−1
rz ∇t ×E,∇t × F) + (¯̄εrtF,∇tp) = λ(¯̄εrtE,F) ∀ F ∈ H0 (curl, Ω), (8)

(¯̄εrtE,∇tq) = 0 ∀ q ∈ H1
0 (Ω), (9)

where p is a Lagrangian multiplier. This is a saddle point problem in finite element analysis.
Now we prove the equivalence between the problem (6)–(7) and the problem (8)–(9). Obviously,

any eigenpair of (6)–(7) with p = 0 satisfies (8)–(9). Conversely, by taking F = ∇tp in (8), we get
(¯̄εrt∇tp,∇tp) = λ(¯̄εrtE,∇tp). Then making use of (9) and (5), we deduce that ∇tp = 0. By means of
the property of Hilbert space H1

0 (Ω) [22], we can deduce p = 0 in Ω, which shows that any eigenpair
of (8)–(9) satisfies Equations (6)–(7) as well. Next we use the mixed finite element method to discretize
the mixed variational problem (8)–(9).

3. MIXED FINITE ELEMENT DISCRETIZATION

In this section, we will describe two important finite element spaces: one is the nodal-based scalar linear
element space Sh, which is a scalar function space; the other is the first order edge-based vector element
space Wh.

Let πh be a regular triangulation [22] of Ω with the mesh parameter h, where h stands for the
length of the longest edge in triangular mesh πh. The usual definition of a linear element space Sh is

Sh =
{
φ ∈ H1

0 (Ω): φ|K ∈ P1(K), ∀ K ∈ πh

}
,

where P1(K) is the first order polynomial space on K, and the local basis functions in Sh are called nodal
basis functions because the degree of freedom is defined on the nodes of the mesh. Let ϕK

i (1 ≤ i ≤ 3)
be these three local nodal basis functions on the element K.

Here we only consider the first order edge element space Wh on a plane triangular mesh πh.
Definition: The first order edge element is a triple (K, P, N ) having the following properties:
(i) K is a triangle (element shape);
(ii) P = {F : F = x̂(a + by) + ŷ(c− bx)} (shape function);
(iii) N =

{ ∫
li
F · τids, 1 ≤ i ≤ 3

}
(degree of freedom),

where τi is the tangential unit vector of edge li.
The local edge element basis functions on a triangle can be expressed in terms of the nodal basis

functions. According to the above definition, we can derive the concrete expressions of three local edge
element basis functions, i.e.,

NK
1 = ϕK

2 ∇tϕ
K
3 − ϕK

3 ∇tϕ
K
2 ,

NK
2 = ϕK

1 ∇tϕ
K
3 − ϕK

3 ∇tϕ
K
1 ,

NK
3 = ϕK

1 ∇tϕ
K
2 − ϕK

2 ∇tϕ
K
1 .

Figure 1 presents the local numbering of the nodes and edges of a triangle.
The definition of the first order edge element space Wh is

Wh =
{
F ∈ H0(curl, Ω): F|K ∈ span{NK

1 ,NK
2 ,NK

3 }, ∀ K ∈ πh

}
.

Note that the directivity of the global basis function Ni in Wh associated with the i-th edge should be
same as the reference direction. In our program, the global basis function Ni is directed from the lower
to the higher global node number.

We use the first order edge element space Wh and the linear element space Sh to approximate the
space H0 (curl, Ω) and H1

0 (Ω), respectively. Restricting (8)–(9) on Wh × Sh, we obtain the discrete
mixed variational formulation: Seek λh ∈ R, 0 6= Eh ∈ Wh, ph ∈ Sh such that(

µ−1
rz ∇t ×Eh,∇t × F

)
+ (¯̄εrtF,∇tph) = λh (¯̄εrtEh,F) ∀ F ∈ Wh, (10)

(¯̄εrtEh,∇tq) = 0 ∀ q ∈ Sh. (11)



Progress In Electromagnetics Research, Vol. 148, 2014 163

Figure 1. The local nodal numbering for the element K and the local reference direction for the edge
are chosen by means of local nodal numbering.

Next we change Equations (10)–(11) to a matrix form. Suppose that N1, N2, . . . , Nn are the global
basis functions in Wh, where n = dimWh is the number of interior edges in mesh πh; ψ1, ψ2, . . . , ψm are
the global basis functions in Sh, where m = dimSh is the number of interior nodes in mesh πh. Since
Eh ∈ Wh and ph ∈ Sh, we can write

Eh =
n∑

k=1

ξkNk, ph =
m∑

k=1

ζkψk. (12)

Substituting (12) into (10)–(11), taking F = Nk (k = 1, 2, . . . , n), q = ψk (k = 1, 2, . . . , m), and setting
ξ = [ξ1 , ξ2, . . . , ξn]T , ζ = [ζ1, ζ2, . . . , ζm]T , we obtain the generalized matrix eigenvalue problem:[

A T
T † O

] [
ξ
ζ

]
= λh

[
M O
O O

] [
ξ
ζ

]
, (13)

where T † is conjugate transpose of matrix T ,
A = (aij) ∈ Cn×n, T = (tij) ∈ Cn×m, M = (mij) ∈ Cn×n,

mij = (¯̄εrtNj ,Ni) , tij = (¯̄εrtNi, ∇tψj),

aij =
(
µ−1

rz ∇t ×Nj ,∇t ×Ni

)
.

After solving the generalized algebraic eigenvalue problem (13), we can get the distribution of the electric
field in Ω using an interpolation technique.

Otherwise, we ignore the divergence-free condition (3), finally we get the following generalized
eigenvalue problem:

Aξ = λhMξ. (14)

We see from our numerical results that the numerical eigenvalues of (14) have many zero eigenvalues
(up to machine accuracy). Moreover, the finer the grid is, the more the zero eigenvalues from (14). In
fact, the number of zero eigenvalue is equal to dim(Sh) when Ω is simply connected. In engineering
practice, we often need to know the first few nonzero eigenvalues, if we make use of (14) to compute them
directly, it is clear that this method is very time consuming and inefficient because the large null space
of the curl-curl operator has not been removed, as illustrated in the following numerical experiments.
Therefore the work of excluding these nonphysical zero eigenvalues is significant and important.

4. NUMERICAL EXPERIMENTS

In this section, we carry out several numerical experiments on the mixed finite element method and
discuss the convergence property of numerical eigenvalues. The goals are to support that our method is
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free of all the spurious modes and to compare the efficiency of this method with the conventional edge
element method.

In order to analyze the convergence of the numerical Maxwell’s eigenvalues, a simple method [14] is
to perform computations for a geometric sequence of mesh parameter h such that hi

hi+1
= hi+1

hi+2
. Assuming

that expansion of the eigenvalue is
λh = λ + Chα + . . . . (15)

One can then estimate the order of convergence as

ratio(λh) = α = ln
[

λhi − λhi+1

λhi+1 − λhi+2

]/
ln

[
hi

hi+1

]
, (16)

where the constant C is independent of h, and α is dependent on the regularity of the exact eigenfunction.
In fact, establishing the expansion of the eigenvalue (15) is a significant work, because we can

use extrapolation method to improve the accuracy of numerical eigenvalues based on the asymptotic
expansion (15). Suppose that

λextra
h/2,h =

2αλh/2 − λh

2α − 1
.

We can know that λextra
h/2,h is a numerical eigenvalue of high accuracy.

4.1. A Square Homogeneous Cavity

In order to verify the implementation of Equation (13), we first make a simulation for the easiest cavity.
Suppose that the square cavity is with the length π m and the medium in this cavity is vacuum. We
can solve the problem (2)–(4) analytically. The exact eigenvalues are 0 6= λmn = m2 + n2 (m,n =
0, 1, 2, 3, 4, . . .) [21]. We compute the first five eigenvalues by using the mixed finite element and
present the numerical results in Table 1. The extrapolation results of numerical eigenvalues are listed
in Table 2.

Table 1. Numerical eigenvalues from a square isotropic homogenous cavity.

h
√

2π
8

√
2π

16

√
2π

32

√
2π

64

√
2π

128 exact
λ1h 0.992321 0.998066 0.999516 0.999879 0.999970 1.000000
λ2h 0.999147 0.999795 0.999949 0.999987 0.999997 1.000000
λ3h 2.008234 2.002121 2.000534 2.000134 2.000033 2.000000
λ4h 3.931617 3.982881 3.995717 3.998930 3.999732 4.000000
λ5h 3.932503 3.982939 3.995721 3.998930 3.999732 4.000000

Making use of (16), we can get the following order of the convergence:

ratio(λ1h) ≈ 1.994079, ratio(λ2h) ≈ 2.029439, ratio(λ3h) ≈ 1.976378,
ratio(λ4h) ≈ 1.998730, ratio(λ5h) ≈ 1.991018.

From Table 1, we can observe that nonphysical zero eigenvalues are all removed effectively. The
order of convergence for each numerical eigenvalue is approximately equal to 2. For the simple non-
degenerate eigenvalues, the numerical eigenvalues approximate exact eigenvalues from above; however,
for the multiply degenerate eigenvalues, the numerical eigenvalues approximate exact eigenvalues from
below.
Remark: Note that for the easy model above, if we drop the divergence-free condition (3), then some
nonphysical nonzero modes obtained by the finite element method with node-based element will be
presented in numerical results, for details, please see [23]. However, our method can exclude these
nonphysical nonzero modes effectively.

From Table 2, we can see that after the numerical extrapolation, the accuracy of numerical
eigenvalues is improved dramatically. Here we take α = 2 in the computation.
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Table 2. The extrapolation of numerical eigenvalues from a square isotropic homogenous cavity.

h
√

2π
8 ,

√
2π

16

√
2π

16 ,
√

2π
32

√
2π

32 ,
√

2π
64

√
2π

64 ,
√

2π
128 exact

λextra
1 0.999980764677 0.999998781784 0.999999923601 0.999999995245 1.000000000000

λextra
2 1.000010461905 1.000000640137 1.000000039789 1.000000002516 1.000000000000

λextra
3 2.000083523329 2.000005172764 2.000000322519 2.000000020205 2.000000000000

λextra
4 3.999969167657 3.999996195386 3.999999731153 3.999999982710 4.000000000000

λextra
5 3.999750684919 3.999981781867 3.999998819890 3.999999925609 4.000000000000

Table 3. Numerical eigenvalues from a square anisotropic homogenous cavity.

h
√

2π
8

√
2π

16

√
2π

32

√
2π

64

√
2π

128 trend
λ1h 0.360110 0.361843 0.362324 0.362450 0.362483 ↗
λ2h 0.851986 0.879173 0.886427 0.888271 0.888734 ↗
λ3h 0.901434 0.892018 0.889671 0.889084 0.888938 ↘
λ4h 1.935574 1.907659 1.901324 1.899822 1.899455 ↘
λ5h 2.205845 2.354616 2.397779 2.409096 2.411969 ↗

If we change the medium parameters into an anisotropic ones,

¯̄εrt =
[
2 1
1 2

]
, µrz = 1,

for this resonant cavity, to our knowledge, the expression of the analytic solution is unknown, therefore
we turn to the numerical method.

Making use of (16), we can obtain the following order of the convergence:

ratio(λ1h) ≈ 1.911929, ratio(λ2h) ≈ 1.958429, ratio(λ3h) ≈ 2.001947,
ratio(λ4h) ≈ 2.083227, ratio(λ5h) ≈ 1.898175.

From Table 3, we can observe that nonphysical zero eigenvalues have also been removed effectively.
The order of convergence for each numerical eigenvalue is also approximately equal to 2. The numerical
eigenvalues approximate exact eigenvalues from above for some of the eigenvalues, but from below for
others.

4.2. A Nonconvex Homogeneous Cavity

As we have already calculated the numerical eigenmodes of the cavity on a convex domain, now we
consider Maxwell’s eigenvalue problem for a nonconvex cavity. The geometrical shape of Ω and the
initial mesh are presented in Figure 2(a). The medium parameters in this cavity are

¯̄εrt =
[
1 −j
j 4

]
, µrz = 1.

The numerical solution obtained by the mixed finite element method is as Table 4.
Because of the influence from round-off error in computer, we find that our numerical eigenvalues

are all complex, but their imaginary parts are very small (about 10−12). Here we only list the real parts.
By applying (16), we can get the following order of the convergence:

ratio(λ1h) ≈ 1.313748, ratio(λ2h) ≈ 1.308231, ratio(λ3h) ≈ 1.255196,
ratio(λ4h) ≈ 1.289295, ratio(λ5h) ≈ 1.384481.

As observed from Table 4, all nonphysical zero eigenvalues have been removed effectively and the
order of convergence for each numerical eigenvalue is approximately equal to 1.3, which is less than that
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Figure 2. A homogenous nonconvex cavity. (a) The initial mesh and geometrical shape. (b) The
distribution of function values of the Lagrange multiplier ph corresponding to the first numerical
eigenvalue λ1h = 0.040378 on the first mesh in Table 4.
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Figure 3. The field distribution in the nonconvex cavity corresponding to the first numerical eigenvalue
λ1h = 0.040378 on the first mesh. (a) Magnitude and field distribution of Re(Eh). (b) Magnitude and
field distribution of Im(Eh).

Table 4. Numerical eigenvalues from a nonconvex anisotropic homogenous cavity.

h 0.293524 0.146762 0.073381 0.036690 0.018345 trend
λ1h 0.040378 0.040884 0.041091 0.041173 0.041206 ↗
λ2h 0.388638 0.395901 0.398877 0.400074 0.400552 ↗
λ3h 0.781945 0.784755 0.785987 0.786498 0.786704 ↗
λ4h 0.982714 0.992164 0.996140 0.997754 0.998401 ↗
λ5h 1.606289 1.626574 1.634283 1.637230 1.638369 ↗

in the above two examples. The main reason for this lower convergence speed is the bad smoothness of
the eigenfunction on nonconvex domain due to the singular behavior of the electric field [24–26]. The
distributions of real and imaginary part of electric field corresponding to the first numerical eigenvalue
are presented in Figure 3, where one can find that the electric field distribution in the middle of this
nonconvex cavity is uniform. From Figure 2(b), we can conclude that the function values of the Lagrange
multiplier ph on the nodes of the mesh are very small, this is in accordance with the theory in Section 2.

In summary, from Tables 1–4, resonant cavities are all simply connected (i.e., only one perfect
electric conductor in the problem) and there are no any physical zero eigenvalues, thus confirming
the advantage of the mixed finite element method, whereas there are many spurious nonphysical zero
eigenvalues in the traditional edge element method.
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4.3. A Coaxial Cavity

Next, we consider the Maxwell’s eigenvalue problem for a coaxial cavity, the domain is

Ω =
{
(x, y): a2 < x2 + y2 < b2

}
,

where a and b are inner and outer radii of this PEC coaxial cavity, respectively. We assume that the
medium parameters of this cavity are

¯̄εrt =
[

2 2j
−2j 3

]
, µrz = 3,

we calculate this model with a = 1m and b = 2 m by means of the mixed finite element method. The
first five numerical eigenvalues from the mixed finite element method are listed in Table 5.

Here we only list the real parts of our numerical eigenvalues because their imaginary parts are also
very small. Making use of (16), we can obtain the following order of the convergence:

ratio(λ2h) ≈ 1.965949, ratio(λ3h) ≈ 1.979530,
ratio(λ4h) ≈ 2.000355, ratio(λ5h) ≈ 1.949117.

From Table 5, we observe that all nonphysical zero eigenvalues are also removed effectively, but we
find the existence of one physical numerical zero eigenvalue with algebraic multiplicity one. The order
of convergence for each numerical eigenvalue (exclude zero eigenvalue) is approximately equal to 2. The
field distribution of the eigenfunction corresponding to this zero eigenvalue is shown in Figure 4.

Table 5. Numerical eigenvalues from an anisotropic homogenous coaxial cavity.

h 0.624198 0.312099 0.156050 0.078025 0.039012 trend
λ1h 1.94e-16 −4.16e-17 1.45e-14 −4.14e-15 −9.40e-13
λ2h 0.053059 0.052738 0.052654 0.052632 0.052627 ↘
λ3h 0.071420 0.072896 0.073278 0.073374 0.073399 ↗
λ4h 0.201448 0.198993 0.198380 0.198227 0.198188 ↘
λ5h 0.294931 0.311180 0.315591 0.316716 0.316998 ↗
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Figure 4. The field distribution in the anisotropic coaxial cavity corresponding to numerical zero
eigenvalue on the second mesh. (a) Magnitude and field distribution of Re(Eh). (b) Magnitude and
field distribution of Im(Eh).
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4.4. An Anisotropic Inhomogeneous Cavity

Finally, we consider the resonant PEC cavity with an anisotropic inhomogeneous medium. Suppose
that Ω1 = {(x, y) : (x + 1)2 + y2 < 1

9}, Ω2 = {(x, y) : (x − 1)2 + y2 < 1
9}, Ω3 = [−2, 0] × [−1, 1]\Ω1,

Ω4 = [0, 2]× [−1, 1]\Ω2, and Ω = Ω3
⋃

Ω4. We assume that the medium parameters of this cavity are

¯̄ε(1)
rt =

[
1 0
0 2

]
, µ(1)

rz = 1 in Ω3; ¯̄ε(2)
rt =

[
3 −2j
2j 8

]
, µ(2)

rz = 3 in Ω4,

The numerical results by employing the mixed finite element method are listed in Table 6.
Here we only list real part of our numerical eigenvalues because their imaginary parts are very

small and in fact negligible. We can obtain the following order of the convergence:

ratio(λ3h) ≈ 1.702567, ratio(λ4h) ≈ 1.900009, ratio(λ5h) ≈ 1.646640.

All nonphysical zero eigenvalues are also removed effectively in Table 6; however, we also find the
existence of a numerical physical zero eigenvalue with algebraic multiplicity two due to there are two
PEC bodies in this cavity. The field distributions of the eigenfunction corresponding to the first and
second numerical zero eigenvalue are shown in Figure 5 and Figure 6, respectively. All the numerical
eigenvalues (exclude two zero eigenvalues) approximate the exact eigenvalues from below. For this cavity
with an inhomogeneous medium, the order of convergence for different nonzero numerical eigenvalues
may be different.

In order to compare the computational cost of the method in this paper and the conventional edge
element method, we choose the numerical example above as a testing for CPU-time, and the results are
listed in Table 7. Here t1 and t2 are the CPU times used by the mixed finite element method and by the
conventional edge element method, respectively. In this testing, in order to get the first five smallest
eigenvalues we only need to compute 5 numerical eigenvalues using mixed finite element method, however
using conventional edge element method we need to compute Np + 5 numerical eigenvalues, where Np
is the number of internal nodes in the mesh. When the mesh is fine, Np is very large.

Table 6. Numerical eigenvalues from an anisotropic inhomogeneous cavity.

h 0.500000 0.250000 0.125000 0.062500 0.031250 trend
λ1h 3.47e-17 −1.90e-15 −5.11e-14 1.59e-14 −2.49e-13
λ2h 2.75e-15 −7.94e-15 −5.76e-14 −5.94e-13 −8.49e-12
λ3h 0.051665 0.051786 0.051826 0.051838 0.051841 ↗
λ4h 0.198117 0.203130 0.204541 0.204915 0.205012 ↗
λ5h 0.244447 0.246219 0.246868 0.247068 0.247126 ↗
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Figure 5. The field distribution in the anisotropic inhomogeneous cavity corresponding to the first
numerical zero eigenvalue on the second mesh. (a) Magnitude and field distribution of Re(Eh).
(b) Magnitude and field distribution of Im(Eh).
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Figure 6. The field distribution in the anisotropic inhomogeneous cavity corresponding to the second
numerical zero eigenvalue on the second mesh. (a) Magnitude and field distribution of Re(Eh).
(b) Magnitude and field distribution of Im(Eh).

Table 7. The CPU-time of two methods.

h 0.500000 0.250000 0.125000 0.062500 0.031250
t1 (second) 0.093600 0.296402 0.452403 1.653611 10.14006
t2 (second) 0.421203 10.59247 920.8437 - -

We can also see that the nonzero numerical eigenvalues using the mixed finite element method in
this paper are the same as the ones using conventional edge element method, and the function values
of the Lagrange multiplier ph on the nodes of the mesh are very small, which agrees with the theory in
Section 2. Furthermore, we also use the commercial software COMSOL Multiphysics to stimulate all the
numerical examples above. When the eigenvalue is nonzero, our numerical results are also in excellent
agreement with the ones from COMSOL Multiphysics. Note that COMSOL Multiphysics makes use of
conventional edge element method to solve the vector Maxwell’s eigenvalue problem, so it is clear that
this method leads to the presence of nonphysical zero eigenvalues.

5. CONCLUSION

The 2D electromagnetic eigenvalue problem for a cavity filled with anisotropic media can be solved
using the mixed finite element method. This method can exclude all the nonphysical zero and nonzero
eigenvalues. If only a few eigenvalues are needed as in most engineering applications, this method is
much more efficient than the conventional edge element method. In the future, we will extend the idea
in this paper to 3D Maxwell’s eigenvalue problem.
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