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Analytical Derivation of Induction Motors Inductances
under Eccentricity Conditions
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Abstract—Geometrical modeling of induction machines under eccentricity conditions involves a
significant number of self and mutual inductances. These inductances are functions of rotor angular
position, and calculating them at each time step requires solving computationally-intensive definite
integrals. Conventional techniques use numerical look-up tables, or employ approximated analytical
expressions such as limited-term Fourier series expression of turn functions. The former approach
needs large memory volume given the size of inductance matrix. Moreover, numerical interpolations
are needed upon model execution, which significantly slows down the simulation. The later technique
is computationally tasking for a large set of Fourier series terms, or lacks sufficient accuracy if only a
few terms are used. Alternatively, computationally efficient closed-form solutions for self- and mutual-
inductance expressions are presented here. The step variations of turn functions are considered which
streamlines the model formulation. The experimental results validate the proposed model. In particular,
the frequency spectrum of the stator current illustrates the ability of proposed technique to detect
eccentricity.

1. INTRODUCTION

Fault detection and diagnosis in induction motors is of paramount value, given the economy of scale,
and the cost and time involved in the production halt and maintenance process. Mechanical faults
amount to roughly 50–60% of all faults, and the air-gap eccentricity constitutes 80% of the mechanical
fault [1, 2]. Air-gap eccentricity can be inherent due to the manufacturing imperfection, or appear over
time by mechanical wear or unbalanced loads. The non-uniformity in the air-gap modifies machine
inductances and flux paths, leading to the appearance of harmonic components in the stator current.
Thus, the presence of harmonics in stator current spectrum can be used for eccentricity detection.

Numerical simulation of induction motors is essential to minimize hardware redesign and retrofit.
The model should account for inductance variations due to the changing air-gap length; i.e., the current
harmonics should appear in stator currents spectrum. First principle models, e.g., finite element
methods (FEM), are highly accurate but computationally expensive [3–6]. Geometrical models, e.g.,
winding function methods (WFM) or mutual coupled circuit model (MCCM), are prevalent in the
literature [7–11].

Existing studies calculate the inductance considering the space harmonics of the stator winding
and rotor bars. WFM is used to analyze the transient behavior of IM under internal turn faults [10].
Saturation effects are included by modifying the air-gap length [11]. WFM models the IM under air-
gap eccentricity faults in [12]. However, conventional WFM is not accurate with non-uniform air-gap
in eccentricity conditions.

Received 17 May 2014, Accepted 7 June 2014, Scheduled 15 June 2014
* Corresponding author: Hossein Hooshmandi (h.hoshmandisafa@ec.iut.ac.ir).
1 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran. 2 Department of Electrical
Engineering, University of Texas at Arlington, USA.



96 Hooshmandi et al.

An alternative approach, modified winding function (MWF), is presented to analyze IM
performance under eccentricity conditions [13, 14]. In [15], a linear function is considered for
magneto motive forces (MMF) variation in slot, and then stator-winding and eccentricity faults are
analyzed [16, 17]. IM performance under inclined static eccentricity is studied in [18]. The fluctuation
in stator inductance is used as an eccentricity index in [19]. MWF is used to find the mutual, self, and
leakage inductances for a single-sided linear IM in [20].

Under eccentricity conditions, the variable air-gap leads to inductances that are functions of stator
circumferential angle and rotor angular position. Thus, MWF needs to calculate all inductances at each
time step. This is very time consuming given the large number of inductances considered and definite
integrals involved in model formulation. As an example, an IM with 36 stator slots and 48 rotor bars
requires calculating a total of 1378 self and mutual inductances for the stator and rotor at each time
step.

One can save an inductance value as a numerical function of rotor angular positions in look-
up tables for future use [21, 22]. The memory requirement can be tasking given large inductance
matrices and required resolution on rotor’s movement path. In [7] by a specific definition for the inverse
air gap function, in the eccentric machine, indefinite integrals are determined and inductances are
obtained. An alternative approach includes Fourier series representation of the stator and the rotor
turn-functions [18, 23]; e.g., up to 10th harmonics are considered for a synchronous machine in [14].
Hybrid approaches, which include both Lookup tables and Fourier series of turn functions, are used
in [16]. To properly capture the eccentricity effects in frequency spectrum of stator currents would
require a large number of Fourier series terms, which makes the final model computationally prohibitive.

The objective of this paper is to analytically derive machine inductances under eccentricity
conditions using the MFW method. To do this, the step variations of the turn functions are considered.
The air-gap expression is adopted from [28, 29], and the inverse of air-gap function is considered,
which streamlines the model formulation process. Moreover, a comprehensive step-by-step procedure is
presented to develop self and mutual inductances for both stator and rotor. The model formulation is
general, not limited to a fixed number of pole-pairs or stator slots, and applicable to variety of machine
types. The proposed process is systematic and, hence, automatable.

This paper is organized as follows. Different eccentricity types are presented in Section 2. MWF
is discussed in Section 3. In Section 4, IM inductances are calculated under different eccentricity
conditions. In Section 5 transient model of IM under eccentricity condition is presented. Section 6
shows the capability of the proposed method in reflecting the eccentricity in stator current spectrum
using both the numerical simulation and hardware experiments.

2. ECCENTRICITY TYPES AND THE AIR-GAP LENGTH

In healthy mode of operation, symmetrical axis of the rotor, symmetrical axis of the stator, and rotor
rotation axis coincide and the air-gap is uniform. Under eccentricity conditions, aforementioned axes are
displaced relative to each other, and the air-gap length varies with the rotor rotation and is a function
of time. Figure 1 illustrates three forms of eccentricity: static eccentricity (SE), dynamic eccentricity
(DE), and mixed eccentricity (ME) [24–27]. In SE, rotor symmetrical axis is coincide with its rotation
axis, but is shifted from the stator symmetrical axis (Figure 1(a)). The minimum air-gap length is
constant. In DE, the symmetrical axis of the stator coincides with the rotation axis of rotor, but both
are shifted with respect to the rotor symmetrical axis (Figure 1(b)). The minimum air-gap length,
therefore, varies as a function of rotor position. In ME, both static and dynamic eccentricities exist
simultaneously (Figure 1(c)).

In general eccentricity condition, the air-gap function is given by [28, 29]:

g(ϕ, θr) = g0 (1− es cos(ϕ)− ed cos(ϕ− θr)) (1)

where ϕ is the stator circumferential angle, θr the rotor angle in mechanical degree, g0 the length of the
air-gap in symmetrical condition, and es and ed are static and dynamic eccentricity coefficients.

The inverse of the air-gap length is needed to calculate machine inductances. This inverse can be
approximated as [30]:

g−1(ϕ, θr) = G0 + G1 cos(ϕ− α) + G2 cos(2(ϕ− α)) (2)
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Figure 1. (a) Static, (b) dynamic, and (c) mixed eccentricity.

where coefficients G0, G1, G2 and α are given by

G0 =
1

g0

√
1− e2

(3)

G1 =
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√
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(
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e
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(
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α = tan−1

(
ed sin θr
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)
(6)

Coefficient e is the eccentricity coefficient

e =
√

e2
s + e2

d + 2esed cos θr (7)

3. MODIFIED WINDING FUNCTIONS AND INDUCTANCE CALCULATION

The so-called modified winding function method [14] accounts for the air-gap eccentricity. The modified
winding function of a coil, M(ϕ, θr), can be expressed as [8]

M(ϕ, θr) = n(ϕ, θr)− 〈M(θr)〉 (8)

where n(ϕ, θr) is the turn function. 〈M(θr)〉 is the average-value of the modified winding function given
by [15]

〈M(θr)〉 =
1

2π 〈g−1(ϕ, θr)〉

2π∫

0

n(ϕ, θr)g−1(ϕ, θr)dϕ (9)

〈
g−1(ϕ, θr)

〉
=

1
2π

2π∫

0

g−1(ϕ, θr)dϕ = G0 (10)

〈M(θr)〉 =
1

2πG0

2π∫

0

n(ϕ, θr)g−1(ϕ, θr)dϕ (11)
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One may re-write (11) to find the inductance
2π∫

0

n(ϕ, θr)g−1(ϕ, θr)dϕ = 2πG0 〈M(θr)〉 (12)

The mutual inductance of coil A due to current presence in coil B can be found using the modified
turn function and the inverse of air-gap as in [16]

LAB(θr) = µ0r`

2π∫

0

nA(ϕ)MB(ϕ, θr)g−1(ϕ, θr)dϕ (13)

where µ0 is the permeability of air, r the average radius of the air gap, and ` the stator’s length.
Substituting (8) in (13) provides

LAB(θr) = µ0r`




2π∫

0

nA(ϕ)nB(ϕ)g−1(ϕ, θr)dϕ−
2π∫

0

〈MB(θr)〉nA(ϕ)g−1(ϕ, θr)dϕ


 (14)

Since 〈MB(θr)〉 does not depend on ϕ, it can be brought out of the integral in (14)

LAB(θr) = µ0r`




2π∫

0

nA(ϕ)nB(ϕ)g−1(ϕ, θr)dϕ− 〈MB(θr)〉
2π∫

0

nA(ϕ)g−1(ϕ, θr)dϕ


 (15)

Using (15), self and mutual inductances can be calculated under eccentricity condition. However,
the average of modified winding functions for phase a, b and c is still needed (Equations (9)–(11)).

In the case of uniform air-gap, average of the turn function 〈n(θr)〉 is constant. Under eccentricity
conditions, 〈n(θr)〉 depends on the rotor position. In this condition, 〈n(θr)〉 is represented by〈M(θr)〉.
Thus, 〈M(θr)〉 should be found analytically, and its variation with the rotor position under different
eccentricity conditions examined.

4. INDUCTANCE CALCULATION CONSIDERING ECCENTRICITY CONDITION

4.1. Representing the Turn Functions

The step variation form of the turn function of a concentrated winding is considered. The turn function
of stator phase a, na(ϕ), can be written as a step variation:

na (ϕ)=N




NS
mP

−1∑

i=0

u

(
ϕ−i

2π

NS

)
−

4NS
mP

−1∑

i=
3NS
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u

(
ϕ−i

2π
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)
+
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−1∑
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−π
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−

4NS
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)

 (16)

where u(ϕ) represents an step function. m, P , and NS are number of stator phases, number of pole
pairs, and slot numbers, respectively. Turn functions for stator phases b and c can be readily obtained
by phase shifting

nb (ϕ) = na

(
ϕ− 4π

mP

)
(17)

nc (ϕ) = na

(
ϕ− 8π

mP

)
(18)

A motor with 4 poles, 36 stator slots, and 48 rotor bars is considered in this paper. Figure 2 shows
the turn function for stator phase a. This turn function and associated MWF can be expressed as a
combination of step functions

na (ϕ) = N


 ∑

k=0,1,2,18,19,20

u
(
ϕ− k

π

18

)
−

∑

k=9,10,11,27,28,29

u
(
ϕ− k

π

18

)

 (19)
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Figure 2. Turns function na(ϕ) of stator phase a.

4.2. Average of Modified Winding Function

Average-value of the modified winding function for the stator phase a is given by (11) and written here
for convenience

〈Ma(θr)〉= 1
2πG0

2π∫

0

na(ϕ)g−1(ϕ, θr)dϕ (20)

Substituting the inverse air-gap function (2) in (20) gives

〈Ma(θr)〉 =
1

2πG0




3NπG0−NG1
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2
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(

i
2π
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)
+

2NS
mP

−1∑

i=
3NS
2mP

sin
(

i
2π

NS
−α

)
−NG2

2







(21)
Here, N is the number of series-connected turns in the stator coil. G1, G2 and α depend on the rotor
position. Average-value of the modified winding function for the stator phase b and c can be found by
phase shifting:

〈Mb(θr)〉 = Ma

(
θr − 4π

mP

)
(22)

〈Mc(θr)〉 = Ma

(
θr − 8π

mP

)
(23)

For the motor example in this paper, with the phase-a turn function given in (19), the average-value of
modified turn function is given in (24)

〈Ma(θr)〉 =
1

2πG0


 3NπG0 + NG1




∑

k=0,1,2,18,19,20

sin
(
α− k

π

18

)
−

∑

k=9,10,11,27,28,29

sin
(
α− k

π

18

)




+
NG2

2




∑

k=0,1,2,18,19,20

sin 2
(
α− k

π

18

)

−
∑

k=9,10,11,27,28,29

sin 2
(
α− k

π

18

)


 (24)

Similarly, 〈Mb(θr)〉 and 〈Mc(θr)〉 can be extracted. Using (15) and (24), the inductance values can
be calculated.
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4.3. Stator Inductance

4.3.1. Self Inductance of Stator Phase a

Using (15), the self-inductance of stator phase a is

Ls(aa)(θr) = µ0r`




2π∫

0

na(ϕ)na(ϕ)g−1(ϕ, θr)dϕ− 〈Ma(θr)〉
2π∫

0

na(ϕ)g−1(ϕ, θr)dϕ


 (25)

The first term can be defined as

Ia =

2π∫

0

na(ϕ)na(ϕ)g−1(ϕ, θr)dϕ (26)

It should be noted that Ia is calculated similar to 〈Ma(θr)〉.
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Substituting (12) and (26) in (25), the self-inductance of phase a is

Ls(aa)(θr) = µ0r`
(
Ia − 2πG0 (〈Ma(θr)〉)2

)
(28)

With substitution of 〈Ma(θr)〉 from (24) and Ia from (27) in (28), the self inductance of stator phase a is
found analytically. Lbb and Lcc can also be calculated similarly. Figure 3 illustrates the self-inductance
of the stator phase a under different eccentricity conditions, for the motor parameters summarized in
the appendix.

4.3.2. Mutual Inductance between Stator Phases

Using (15), the mutual inductance between phases a and b of the stator can be written as:

Ls(ab)(θr) = µ0r`




2π∫

0

na(ϕ)nb(ϕ)g−1(ϕ, θr)dϕ− 〈Mb(θr)〉
2π∫

0

na(ϕ)g−1(ϕ, θr)dϕ


 (29)

Ls(ab)(θr) = µ0r` (Iab − 2πG0 〈Ma(θr)〉 〈Mb(θr)〉) (30)
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Figure 3. Self inductance of stator phase a: (a) healthy and different SE condition, (b) 30% DE, and
(c) ME (30% SE and 20% DE).

where, Iab is found using the turn functions of phases a and b

Iab = 3N2πG0 + 3G1N
2


 ∑

k=6,7,8,24,25,26

sin
(
α− k

π

18

)
−

∑

k=9,10,11,27,28,29

sin
(
α− k

π

18

)



+
3G2N

2

2


 ∑

k=6,7,8,24,25,26

sin 2
(
α− k

π

18

)
−

∑

k=9,10,11,27,28,29

sin 2
(
α− k

π

18

)

 (31)

According to (15), this equation is commutative. Therefore
Ls(ba)(θr) = Ls(ab)(θr) (32)

Mutual inductance of other phases can be found similarly. Figure 4 illustrates the mutual
inductance between stator phases a and b in the healthy mode of operation as well as different SE
conditions. Figures 5 and 6 illustrate the mutual inductance between stator phase a and b in 30% DE
and different ME conditions, respectively.

4.4. Rotor Inductance

Using (15), the inductance term between rotor loops i and j can be expressed as

Lr(ij)(θr) = µ0r`




2π∫

0

ni(ϕ, θr)nj(ϕ, θr)g−1dϕ− 〈Mj(θr)〉
2π∫

0

ni(ϕ, θr)g−1dϕ


 (33)

where, ni(ϕ, θr) and nj(ϕ, θr) are turn functions of rotor loops i and j, respectively:
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Figure 7. Turn function of a rotor loop.

Figure 7 illustrates turn function of a rotor loop that is one only in θr + (i− 1) 2π
Nr
≤ ϕ ≤ θr + i 2π

Nr

interval and is zero elsewhere.
If i = j, by setting the rotor turn function value in (33) to 1, (33) is simplified as:

Lr(ii)(θr) = µ0r`




θr+i 2π
Nr∫

θr+(i−1) 2π
Nr

g−1(ϕ, θr)dϕ−〈Mi(θr)〉
θr+i 2π

Nr∫

θr+(i−1) 2π
Nr

g−1(ϕ, θr)dϕ


 (34)

Using (11), the average-value of the modified winding function of the rotor loop i is given by:

〈Mi(θr)〉 =
1

2πG0

θr+i 2π
Nr∫

θr+(i−1) 2π
Nr

g−1(ϕ, θr)dϕ (35)

Or
θr+i 2π

Nr∫

θr+(i−1) 2π
Nr

g−1(ϕ, θr)dϕ = 2πG0 〈Mi(θr)〉 (36)

inserting (36) in (34) will result in

Lr(ii)(θr) = µ0r`
(
2πG0 〈Mi(θr)〉 − 2πG0 (〈Mi(θr)〉)2

)
(37)
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If i 6= j, the two loops of i and j do not have any common points, and the first term in (33) will be zero:

Lr(ij)(θr) = −µ0r` (2πG0) 〈Mi(θr)〉 〈Mj(θr)〉 (38)

The average-value of the modified winding function is needed to find the rotor loop inductance.
First, l and h are defined as

l = θr + (i− 1)
2π

Nr
(39)

h = θr + i
2π

Nr
(40)

〈Mi(θr)〉 =
1

2πG0

θr+i 2π
Nr∫

θr+(i−1) 2π
Nr

g−1(ϕ, θr)dϕ =
1

2πG0

h∫

l

g−1(ϕ, θr)dϕ

=
1

2πG0

(
2πG0

Nr
+ G1 (sin(h− α)− sin(l − α)) +

G2

2
(sin 2(h− α)− sin 2(l − α))

)
(41)

The average-value of the modified winding function is calculated for any rotor loop from (41). By
replacing this value in (37) and (38), self and mutual inductances of rotor loops can be found. Figures 8
and 9 show the self-inductance of rotor loop 1 and mutual inductance between the rotor loops 1 and 2
in different eccentricity conditions, respectively.

4.5. Mutual Inductance between the Stator Phases and Rotor Loops

Using (15), the mutual inductance between stator phase a and rotor loop i is given by:

Lsr(ai)(θr) = µ0r`




2π∫

0

na(ϕ)ni(ϕ)g−1(ϕ, θr)dϕ− 〈Mi(θr)〉
2π∫

0

na(ϕ)g−1(ϕ, θr)dϕ


 (42)

The first term of (42) can be written as:

Iai =

2π∫

0

na(ϕ)ni(ϕ)g−1(ϕ, θr)dϕ (43)

The second term of (33) is expressed as
2π∫

0

na(ϕ)g−1(ϕ, θr)dϕ = 2πG0 〈Ma(θr)〉 (44)

Thus, (42) can be simplified to

Lsr(ai)(θr) = µ0rl (Iai − 2πG0 〈Ma(θr)〉 〈Mi(θr)〉) (45)

In (45), 〈Ma(θr)〉 and 〈Mi(θr)〉 are already found. Thus, it is only necessary to calculate Iai. Since the
turn function of the ith rotor loop, ni(ϕ), is 1 only in θr + (i− 1) 2π

Nr
≤ ϕ ≤ θr + i 2π

Nr
interval and is zero

elsewhere,

Iai =

2π∫

0

na(ϕ)ni(ϕ)g−1(ϕ, θr)dϕ =

θr+i 2π
Nr∫

θr+(i−1) 2π
Nr

na(ϕ)g−1(ϕ, θr)dϕ =

h∫

l

na(ϕ)g−1(ϕ, θr)dϕ (46)
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Since na(ϕ) is the sum of step variations, to find Iai, first an integral must be calculated for a sample
step function:

I =

h∫

l

u (ϕ− ϕ0) g−1(ϕ, θr)dϕ

= G0 (h− ϕ0) u(h− ϕ0) + G1u (h− ϕ0) (sin (h− α) + sin(α− ϕ0))

+
G2

2
u (h− ϕ0) (sin 2 (h− α) + sin 2 (α− ϕ0))−G0 (l − ϕ0) u(l − ϕ0)

−G1u (l − ϕ0) (sin (l − α) + sin(α− ϕ0))− G2

2
u (l − ϕ0) (sin 2 (l − α) + sin 2 (α− ϕ0)) (47)

The turn function, ϕ0, can be written as the coefficients of π
18 :

ϕ0ja = kja
π

18
j = 1, 2 . . . , 12 (48)

where j is the number of steps in the turn function of stator phases. For stator phase a, kj is given by
kja = 0, 1, 2, 9, 10, 11, 18, 19, 20, 27, 28, 29 j = 1, 2 . . . , 12 (49)
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Using (47)–(49), Iai will be obtained:

Ija = I(ϕ = ϕ0ja) (50)

Iai (ϕ, θr) = N


 ∑

j=1,2,3,7,8,9

Ija −
∑

j=4,5,6,10,11,12

Ija


 (51)

With substitution of 〈Ma(θr)〉 from (25), 〈Mi(θr)〉 from (41) and Iai from (51) in (45), mutual inductance
between stator phase and rotor loop can be found. Figure 10 illustrates the mutual inductance between
the stator phase a and rotor loop 1 under different eccentricity conditions.

5. TRANSIENT MODEL OF AN INDUCTION MOTOR UNDER ECCENTRICITY
CONDITION

General dynamic equations of induction motor are given by [12]

Vs = RsIs + Lss
dIs
dt

+ Lsr
dIr

dt
+ ωr

dLsr

dθr
Ir (52)

Vr = RrIr + Lrr
dIr
dt

+ Lrs
dIs
dt

+ ωr
dLrs

dθr
Is (53)
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ωr =
dθr

dt
(54)

Te − TL = J
dωr

dt
(55)

where V, I, R and L are vectors of voltage, current resistance, and inductance matrices, respectively.
θr is the rotor position, ωr the angular speed, J the inertia moment of the rotor, and Te and TL are the
electromagnetic and load torques, respectively.

Electromagnetic torque is obtained from co-energy,

Te =
∂Wco

∂θr
(56)

which, for a linear system, is equal to the energy stored in the air gap

Wco =
1
2

(
ITs LssIs + ITs LsrIr + ITr LrsIs + ITr LrrIr

)
(57)

The Lss is 3× 3 matrix and is obtained from (28) and (30). Lrr is 49× 49 matrix and is obtained from
(37) and (38). Lsr is 3× 49 matrix and is obtained from (45), and Lrs = (Lsr)

T.

6. CASE STUDIES

An experimental test was carried out on a 4-pole 380-V, 2.2 kW induction motor with 48 rotor bars and
0.42mm air gap. The stator winding is Y -connected. To induce eccentricity conditions, the original
sleeves and rotor shaft were replaced. To produce static eccentricity, the sleeves are shifted from the
center point. To produce dynamic eccentricity, the rotor shaft has been shifted from the center. A
combination of both modified sleeve and displaced rotor shaft were used to create mixed eccentricity
coordination. Figure 11 shows different motor parts.

(a) (b)

(c) (d)

Figure 11. Experimental test rig: (a) healthy rotor, (b) rotor shaft has been shifted from the center,
(c) and (d) sleeves have been shift from the center point.

The stator current spectrum is obtained by solving the dynamic model of the induction machine
(52)–(57). The mixed eccentricity fault generates harmonic frequencies [6, 25]:

fecc = fs(1± k(1− s)/P ) k = 1, 2, 3, . . . (58)

where fs is the supplied frequency, s the motor slip, and p the number of pair poles.
Figure 12 illustrates stator current under mixed eccentricity conditions (46% SE and 35% DE).

Figure 12(a) shows stator current where only three terms of the Fourier series are used for the turn
function in inductance formulation. Figures 12(b) and 12(c) show stator current predicted by the
proposed method and experiments, respectively, which clearly show close resemblance.
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Table 1. parameters of simulated motor.

Quantity Value Units
Rated power 2.2 kW
Rated voltage 380 V
Rated frequency 50 Hz
Number of poles 4 —
Number of stator slots 36 —
Number of rotor bars 48 —
Air gap length 0.42 mm

The line current is measured with the sampling frequency of 10 kHz. The amplitude of the sideband
components around the fundamental harmonic can be extracted from the spectrum analysis of stator
current for both healthy and faulty conditions. This will be used as an index for mixed-eccentricity
fault detection. Figure 13 shows the power spectral density (PSD) of the line current in presence of
mixed eccentricity. Figure 13(a) shows the normalized stator current spectra obtained by using the
three terms of the Fourier series in formulating the turn function. Given the approximations involved
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in describing turn functions, the harmonics related to eccentricity fault is not shown in the current
spectra, and the eccentricity fault cannot be detected. On the other hand, as seen in Figure 13(b), the
proposed approach successfully detects the harmonics related to the eccentricity faults. This is verified
by the experimental results in Figure 13(c).

7. CONCLUSION

An analytical approach for inductance formulation of three-phase induction motors, under eccentricity
condition, is presented. The inductance formulation includes infinite integrals of turn functions
and calculation of this integral using numerical methods will be computationally intensive and time
consuming. This paper considers the turn functions as a collection of step functions, which renders the
analytical derivation of machine inductances practical. All inductances are obtained using trigonometric
identities as functions of rotor position. The proposed model is significantly faster than those
implemented via lookup tables and more accurate than those established using limited Fourier series
terms. Experimental measurements and numerical simulation validate the effectiveness of the proposed
methodology.
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APPENDIX A. NOMENCLATURE

θr Rotor angle (in mechanical degree)
ϕ Rotor circumferential angle
` Stack length
r Air gap average radius
Ns Number of slot
m number of phase
P Number of pole
µ0 Air permeability
g0 Air-gap length in symmetrical condition
g(ϕ, θr) Air-gap length in nonsymmetrical condition
es Static eccentricity coefficient
ed Dynamic eccentricity coefficient
e Eccentricity coefficient
ni(ϕ, θr) Turn function of winding i

Ni(ϕ, θr) Winding function of winding i

Mi(ϕ, θr) Modified winding function of winding i

〈ni(ϕ, θr)〉 Average of turn function of winding i

〈Mi(θr)〉 Average of modified winding function of winding i
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