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Magnitude Constraint Minimum Variance Beamformer with
Conjugate Symmetric Constraint and Norm Constraint

Lulu Zhao1, 2 *, Guang Liang1, 2, and Huijie Liu1, 2

Abstract—In this paper, an improved robust minimum variance beamformer against direction of arrival
(DOA) mismatch and finite sample effect is proposed. Multiple inequality magnitude constraints
are imposed to broaden the main lobe of beampattern. The conjugate symmetric structure of the
optimal weight is utilized to transform the non-convex inequality magnitude constraints into convex
ones. A quadratic constraint on the norm of weight is introducing to make further improvement on
robustness against DOA mismatch and finite sample effect. The proposed beamforming problem can be
reformulated in the form of the second order cone programming and solved efficiently by interior point
method. Simulation results show that the proposed beamformer outperforms several other adaptive
beamformers.

1. INTRODUCTION

Adaptive arrays with data-dependent beamformers have been widely utilized in wireless communica-
tions, modern radar, sonar and medical imaging due to the anti-interference capability and superior
resolution [1–3]. Standard Capon beamformer based on minimum variance distortionless response
(MVDR) principle can provide maximum signal-to-interference-and-noise ratio (SINR) in the direc-
tion of arrival (DOA) of signal of interest (SOI) [4]. Therefore, it is the most popular one used in
adaptive beamforming among the data-dependent beamformers. However, the performance of standard
Capon beamformer is well known to be sensitive to DOA mismatch between the actual DOA of SOI and
the presumed one [5]. If the presumed DOA deviates from the actual DOA of SOI, the standard Capon
beamformer tends to suppress the SOI component. This effect is commonly referred to as signal self-
nulling effect [6]. A similar effect occurs in the case that the error between ideal array covariance matrix
and estimated array covariance matrix is too large when the number of snapshots used to estimate the
array covariance matrix is small [7, 8]. Thus, many techniques called robust Capon beamformer (RCB)
have been proposed to improve the robustness of the standard Capon beamformer against the DOA
mismatch and estimation error of the array covariance matrix in the past decades ([9–16], and many
references therein).

One popular and widely used method is the so-called diagonal loading technique, where the array
covariance matrix is diagonally loaded with a scaled identity matrix [17]. However, the main drawback
of this technique is that it is not clear how to choose the diagonal loading level based on information
about the uncertainty of the DOA of SOI. An approach based on the optimization of the worst-case
performance of the robust beamfomer (WCPRB) in the spherical uncertainty set of steering vector
of SOI is developed in [18]. The doubly constrained robust Capon beamformer (DCRCB) which is
introduced in [19] achieves robustness against DOA mismatch by enforcing a double constraint on the
array steering vector, viz. a constant norm constraint and a spherical uncertainty set constraint on
the steering vector of SOI. However, both the two methods require the error bound of steering vector
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which is hard to preset in some practical applications. The linear constraint minimum variance (LCMV)
method uses equality linear constraints to force the responses near the DOA of SOI to be unity, which
broadens the main lobe of the beampattern and improves the robustness of adaptive beamforming
against DOA mismatch [20, 21]. However, the LCMV beamformer could not achieve the best SINR
performance due to the deviation between the optimal array responses and the preset unity-ones in the
constrained directions.

In this paper, we propose an improved robust minimum variance beamformer against DOA
mismatch and finite sample effect. The equality linear constraints of LCMV beamformer are substituted
by the inequality constraints on the magnitude response, which is more applicable to controlling the
main lobe response of beampattern. However, the magnitude constraint with lower bound is non-convex,
and the beamforming problem is not a convex optimization problem and cannot be solved by the well-
established conventional convex optimization techniques directly. It can be proved that the optimum
weight that maximizes output SINR is complex conjugate symmetric over the middle index for the
commonly used centrosymmetric array structure, e.g., uniform linear array (ULA), hexagonal planar
array (HPA) and so on [22]. By enforcing an additional conjugate symmetric constraint on the weight,
the non-convex magnitude constraint can be transformed into a convex one without any relaxation or
approximation when the array elements are symmetrically distributed. An additional norm constraint
on the weight vector could make further improvement on the robustness against DOA mismatch and
finite sample effect. A numerical method based on the quadratic program is provided to calculate the
upper bound value of the norm constraint. It turns out that the original formulation of the proposed
beamforming problem can be converted into second order cone programming (SOCP) form and solved
efficiently in polynomial time via the well-established interior point method [23].

The remaining part of this paper is organized as follows. Both the standard Capon beamformer
and LCMV beamformer are reviewed in Section 2. The improved robust minimum variance beamformer
is proposed in Section 3. To verify the validity of the proposed robust beamformer, simulation results
are presented and discussed in Section 4. The concluding remarks are given in Section 5.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Suppose that there are P + 1 narrowband signals impinging on the array with M elements. Let x(k)
denote the kth sample vector of signal received by the array. The kth sample vector of received signal
x(k) can be represented as

x(k) = s0(k)a(θ0) +
P∑

j=1

ij(k)a(θj) + n(k) (1)

where s0, ij and n are SOI, jth interference and noise, respectively. a(θ) denotes the steering vector of
DOA θ. The output of the beamformer y(k) can be expressed as

y(k) = wHx(k) (2)

where w is the complex weight applied to the received signals at elements of array.
The SINR of an array output is one of the most popular quantities to evaluate the performance of

adaptive beamforming. The variance of output signal in (2) is given by

E
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where |wHa(θ)|2/wHw is the white noise gain (WNG) in direction θ [24], σ2
0/σ2

n the input signal-to-
noise-ratio (SNR) of SOI, and σ2

j /σ2
n the input interference-to-noise-ratio (INR) of jth interference.

The weight of standard Capon beamformer is chosen to minimize the output power of the
beamformer while constraining the response in DOA of SOI to be unity. The standard Capon
beamformer can be formulated as:

min
w

wHRxw subject to aH(θ0)w = 1 (5)

where Rx is the data covariance matrix given by

Rx = E{x(k)xH(k)} = σ2
0a(θ0)aH(θ0) +

P∑

j=1

σ2
ja(θj)aH(θj) + σ2

nI (6)

where I is M × M identity matrix. The optimal weight of the standard Capon beamformer can be
written as [4]

wC =
R−1

x a(θ0)
aH(θ0)R−1

x a(θ0)
(7)

For an array whose elements are symmetrically distributed, the steering vector a(θ) can be expressed
in the form that is complex conjugate symmetric over the middle index as follow [13]

a(θ) = Ja∗(θ) (8)
where ( )∗ denotes the conjugate operation and J is the M ×M exchange matrix defined as

J =




0 . . . 0 1
0 . . . 1 0
... . . .

...
...

1 . . . 0 0


 (9)

Then, it can be proven that optimal weight follows generalized conjugate symmetric structure
wC = Jw∗

C (10)

Proof : let us define the real number µ = (aH(θ0)R−1
x a(θ0))−1, then wC in (7) can be represented as

wC = µR−1
x a(θ0) (11)

Since Rx is the Hermitian Toeplitz matrix in (6), we have

JR∗
xJ = J


σ2

0a
∗(θ0)aT (θ0) +

P∑

j=1

σ2
ja
∗ (θj)aT (θj) + σ2

nI


J

= σ2
0(Ja∗(θ0))

(
aT (θ0)J

)
+

P∑

j=1

σ2
j (Ja∗ (θj))

(
aT (θj)J

)
+ σ2

nI

= σ2
0a(θ0)aH(θ0) +

P∑

j=1

σ2
ja (θj)aH(θj) + σ2

nI = Rx (12)

Note that J−1 = J, then

Jw∗
C = µJ(R−1

x a(θ0))∗ = µJ−1
(
R−1

x

)∗J−1Ja∗ (θ0)

= µ(JR∗
xJ)−1a(θ0) = µR−1

x a(θ0) = wC (13)
The result in (10) can be obtained.

In practical applications, since the actual DOA of SOI θ0 is not always precisely known, a presumed
one θ̂0 is often applied in standard Capon beamformer. On the other hand, the ideal data covariance
matrix Rx is usually estimated by the finite sample vector of received signal as follow

R̂x =
1
K

K∑

k=1

xH(k)x(k) (14)
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K is the number of snapshots. Using the presumed DOA of SOI θ̂0 and estimated data covariance
matrix R̂x, the weight in (7) can be rewritten as

ŵC =
R̂−1

x a(θ̂0)

aH(θ̂0)R̂−1
x a(θ̂0)

(15)

When the presumed DOA θ̂0 is different from the actual DOA of SOI θ0, the standard Capon beamformer
may mistake the SOI for interference and tend to suppress SOI. This effect is commonly referred to as
signal self-nulling. The performance of standard Capon beamformer also can be degraded by the data
covariance matrix error between the ideal one and estimated one, especially K is small.

The LCMV beamformer could improve the robustness against DOA mismatch through imposing
a set of linear unity-response constraints around the presumed DOA of SOI. The LCMV beamforming
problem can be expressed as

min
w

wHRxw subject to CHw = f (16)

where C is the M × l matrix containing l steering vectors in the constrained directions. f = [1, 1, . . . 1]T
is the l × 1 response vector. The optimal weight vector solution for the LCMV beamformer is given
by [21]:

wL = R−1
x C

(
CHR−1

x C
)−1

f (17)

The array responses around the presumed DOA of SOI are set to be unity. However, since array
responses in the constrained directions of the optimal weight wC are usually unequal, the unity-response
constraints are not always the optimal constraints, which are hard to preset in practical application.
The performance of LCMV beamformer could be degraded by the deviation between the optimal array
responses and the preset unity-response in the constrained directions.

3. THE IMPROVED ROBUST MINIMUM VARIANCE BEAMFORMER

3.1. The Proposed Robust Beamformer

A reasonable method to improve the performance of LCMV beamformer is that only the magnitude
responses in constrained directions are set to exceed unity while the output variance is minimized. The
inequality magnitude constraint minimum variance beamformer can be represented as

min
w

wHRxw subject to
∣∣wHa(ϕi)

∣∣ ≥ 1, i = 1, 2, . . . , l (18)

It can be seen that (18) is not a convex optimization problem due to the presence of the non-convex
constraints |wHa(ϕi)| ≥ 1, i = 1, 2, . . . , l. As a result, the well-established conventional convex
programming techniques are not directly applicable. Since it is shown in Section 2 that the optimal
weight is conjugate symmetric for the commonly used centrosymmetric array structure, the conjugate
symmetric constraint on the weight is introduced to the proposed robust beamformer. Then, the
inequality magnitude constraint minimum variance beamformer with conjugate symmetric constraint
can be formulated as follows:

min
w

wHRxw subject to
∣∣wHa(ϕi)

∣∣ ≥ 1, i = 1, 2, . . . , l,

w = Jw∗ (19)

Considering both w and a(ϕi) are conjugate symmetric, we have

wHa(ϕi)=(Jw∗)H(Ja∗(ϕi))=(wH)∗JHJa∗(ϕi) = (wHa(ϕi))∗ (20)

It is proven that the array response wHa(θi) is real number. Without loss of generality, supposing all
the array response around the DOA of SOI to be positive, problem in (19) can be rewritten as:

min
w

wHRxw subject to wHa(ϕi) ≥ 1, i = 1, 2, . . . , l

w = Jw∗ (21)
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To make further improvement on the robustness against DOA mismatch and finite sample effect, an
additional quadratic inequality constraint on the Euclidean norm of the weight vector is imposed [25].
This requires incorporating the quadratic inequality constraint on w of the form:

wHw ≤ η (22)

The inequality magnitude constraint minimum variance beamformer with conjugate symmetric
constraint and norm constraint can be represented as follows:

min
w

wHRxw subject to wHa(ϕi) ≥ 1, i = 1, 2, . . . , l

w = Jw∗

wHw ≤ η

(23)

Let Rx = QHQ, where Q is the Cholesky factorization. Then, the objective function of (23)
becomes:

wHRxw =wHQHQw = |Qw|2 (24)

Introducing |Qw| ≤ τ , the optimization problem in (23) can be converted into the following SOCP
problem [26]

min
τ,w

τ subject to |Qw| ≤ τ

wHa(ϕi) ≥ 1, i = 1, 2, . . . , l

w = Jw∗

|w| ≤ √
η

(25)

The SOCP problem (25) can be easily solved using standard and highly efficient interior point method
software tool, such as SeDuMi convex optimization Matlab toolbox [27].

3.2. Setting the Norm Constraint

Consider the value of the parameter in the norm constraint which plays an important role to the
performance of the proposed RBF. In order to draw the lower bound of η, we consider the problem as
follow:

min
w

wHw subject to wHa(ϕi) ≥ 1, i = 1, 2, . . . , l

w = Jw∗ (26)

The convex optimization problem (26) is a quadratic program (QP), which can be solved by the well-
known active set method [28].

Assume that the minimum value of problem (26) is ηmin. Let S be the set defined by the constraints
in the optimization problem (23), namely

S =
{
w|wHa(ϕi) ≥ 1, i = 1, 2, . . . , l, w = Jw∗, wHw ≤ η

}
(27)

When the parameter η < ηmin, the set S is an empty set. In other words, ηmin is the lowest allowable
value for η to keep the set S nonempty. However, if η is set to be the lowest allowable value ηmin, it can
be seen from (3) and (26) that the w only minimizes the output noise power Pn without considering
the suppression of interference. On the other hand, if the parameter η approaches infinity, the norm
constraint will fail to improve the robustness of the proposed robust beamformer. The choice of the
norm constraint value reflects a design tradeoff between interference suppression and robustness over
system mismatch. So, in the interference presented environment, the norm constraint could be relaxed
as follow

wHw ≤ ηmin + δ (28)

where δ > 0 is a positive number. A reasonable norm constraint value is δ = 0.05ηmin or, equivalently
η = 1.05ηmin.
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4. SIMULATION RESULTS

In this section, simulations of the proposed robust beamformer (RBF) are carried out, and the results
are compared with other beamformers, i.e., standard Capon beamformer, LCMV beamformer, robust
beamformer using worst-case performance optimization (WCPRB), doubly constrained robust Capon
beamformer (DCRCB). Without loss of generality, we assume a ULA with M = 10 elements and half-
wavelength spacing between adjacent elements (i.e., d = λ/2). There are three signals impinging upon
the array, the SOI s0 with actual DOA θ0 and two uncorrelated interferences i1 and i2 with DOAs
θ1 = 30◦ and θ2 = 70◦, respectively. The INRs of i1 and i2 are 40 dB and 20 dB, respectively. All results
are averaged over 100 independent simulations.

4.1. SINR versus SNR

In this example, the actual DOA of SOI θ0 = 43◦ while the presumed DOA θ̂0 = 45◦. Three constraints
on ϕ1 = 42◦, ϕ2 = 45◦ and ϕ3 = 48◦ are applied in both the proposed RBF and LCMV beamformer.
The minimum norm of weight ηmin optimized by (26) is 0.112, and the parameter of the norm constraint
η is set to 0.118 according to (28). The parameter ε of the spherical uncertainty set in DCRCB is set
as recommended in [19]

ε ≥ max
ϕ1≤ϕ≤ϕ3

{
min

α

∥∥a(ϕ)ejα − a(ϕ2)
∥∥
}
≈ 1 (29)

The parameter ε in WCPRB [18] equals the square root of ε, then ε is set to be 1. The output SINRs are
compared for different input SNRs ranging from −15 dB to 25 dB. No finite-sample effect is considered
and all results have been computed using the exact array covariance matrix Rx.

The SINR of standard Capon beamformer without DOA mismatch in the ideal case is also plotted
as an upper bound of performance. The results are shown in Fig. 1. The SINR of the standard Capon
beamformer is seriously degraded with 2◦ DOA mismatch compared with the ideal case, especially in
high SNR region. When the SNR increases, the standard Capon beamformer tends to suppress the
strong SOI to minimize the total output variance of beamformer. The LCMV beamformer has good
performance in the high SNR region compared to standard Capon beamformer, but also inferior to
other robust beamformers. In this example, the SINR performance of proposed RBF is very close to the
upper bound in the ideal case without DOA mismatch. It is obviously demonstrated that the proposed
RBF has better SINR performance than DCRCB and WCPRB as the input SNR increases higher than
10 dB.

The WNG beampatterns of all mentioned beamformers for SNR = 10dB are shown in Fig. 2. The
WNGs in the DOAs θ0, θ1 and θ2 of beampatterns in Fig. 2 and output SINRs for input SNR = 10 dB are
listed in Table 1. The vertical solid line in Fig. 2 shows the DOA of SOI and the vertical dash lines show
the DOAs of two interferers. It can be seen that the standard Capon beamformer forms null near the
DOA of SOI because of the self-nulling effect and the WNG in the DOA θ0 is only −14 dB, which shows
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Table 1. The WNGs in the DOA of SOI and interferences and output SINRs (SNR = 10 dB).

WNG SINR
θ0 (dB) θ1 (dB) θ2 (dB) (dB)

Ideal Case 9.75 −92 −53 19.74
Proposed RBF 9.6 −88 −65 19.6

DCRCB 9.3 −70 −35 19.1
WPRCB 8.5 −74 −44 18.4
LCMV −0.8 −80 −46 9.1
Capon −14 −93 −57 −4.4

the poor noise suppression ability of standard Capon beamformer when DOA mismatch is presented.
The LCMV beamformer forms flat beam around the DOA of SOI to improve robustness against DOA
mismatch. However, it also fails to form the mainlobe around the actual DOA of SOI. The WNGs in
DOA θ0 of LCMV beamformer is −0.8 dB, which results in 10.5 dB SINR performance loss compared
with the proposed RBF. The output SINR of the proposed RBF achieves a better performance with
0.5 dB and 1.2 dB higher than DCRCB and WCPRB, respectively, yet only 0.14 dB lower than the ideal
case. This is because the proposed RBF forms a main lobe closest to the ideal case and the deepest
nullings in the DOAs of interferences among the robust beamformers.

4.2. SINR versus DOA Mismatch

In this example, the presumed DOA θ̂0 = 45◦, and actual DOA θ0 ranges from 41◦ to 49◦. Three
constraints on ϕ1 = 41◦, ϕ2 = 45◦ and ϕ3 = 49◦ are applied in both the proposed RBF and LCMV
beamformer. The minimum norm of weight ηmin optimized by (26) is 0.121 and the parameter of the
norm constraint is set to be 0.127 according (28). the parameter ε of the spherical uncertainty set in
DCRCB is set as follow

ε ≥ max
ϕ1≤ϕ≤ϕ3

{
min

α

∥∥a(ϕ)ejα − a(ϕ2)
∥∥
}
≈ 2 (30)

then ε in WCPRB is set to
√

2. The output SINRs are compared for DOA mismatches ranging from
−4◦ to 4◦. No finite-sample effect is considered and all results have been computed using the exact
array covariance matrix

Rx.
The SINR of standard Capon beamformer without mismatch is also shown as an ideal case in the
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Figure 3. Output SINR versus DOA mismatch
(SNR = 0dB).
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following figures. The results for SNR = 0dB are displayed in Fig. 3 and the results for SNR = 10dB
are displayed in Fig. 4. It can be observed that the standard Capon beamformer is very sensitive to
DOA mismatch. The standard Capon beamformer becomes more sensitive to DOA mismatch when
the SNR is higher. The SINR decreases 30 dB as DOA mismatch range from 0◦ to 4◦ when the SNR
is 10 dB. As a comparison, the SINR only decrease 12 dB when the SNR is 0 dB. The performance of
LCMV beamformer is inferior to other robust beamformer apparently. In this example, the proposed
RBF has the best SINR performance among robust beamformers and the output SINR of proposed RBF
decreases slightly compared to the ideal case. The proposed RBF maintains steady SINRs whereas the
SINRs of DCRCB and WCPRB decrease more than 3 dB with DOA mismatch varying from 0◦ to 4◦
when the input SNR is 10 dB.

4.3. SINR versus Number of Snapshots

The covariance matrices Rx used in the previous examples are assumed to be perfect without considering
the finite-sample effect. In practice, the accuracy of the estimated covariance matrix R̂x affects the
performance of the beamformers. The finite sample effect is considered in this example. Both perfect
covariance matrix Rx and actual steering vector of SOI a(θ0) are applied in the ideal case. The impact
of the finite sample effect on standard Capon beamformer is shown by using the estimated covariance
matrix R̂x and considering no DOA mismatch. The parameters setting of other beamformers are the
same with Subsection 4.1 and the results for SNR = 10dB are shown in Fig. 5. It is shown that the
standard Capon beamformer suffers from the finite-sample effect. The SINR decreases seriously when
the number of the number of snapshots is less than 200. The other beamformers are effective against
the finite-sample effect when the number of snapshots is over 100. The proposed RBF outperforms
other robust beamformers and approaches the ideal case when the DOA mismatch is presented. This
shows that the proposed RBF is robust against both the finite-sample effect and the DOA mismatch.
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Figure 5. Output SINR versus number of snapshots.

4.4. Norm Constraint Parameter Selection Analysis

In this subsection, the relationship between the performance of proposed RBF and the norm constraint
level η is discussed. The other parameters setting of proposed RBF are the same with Subsection 4.1.

The output SINR for input SNR = 10 dB and WNG in DOA of two interferences θ1 and θ2 versus
norm constraint level η varying from ηmin to 2ηmin are shown in Fig. 6. Let wη denote the optimal
weight of proposed RBF with given norm constraint level η. The norm square of wη is denoted by Kη,
i.e., Kη = wH

η wη. Kη and WNG in DOA of SOI θ0 versus η are displayed in Fig. 7. We can see that
if η approaches the lower bound ηmin, the WNGs in θ1 and θ2 are high, hence the two interferences are
not suppressed sufficiently and the output SINR is very low. On the contrary, if η approaches 2ηmin,
the output SINR performance is degraded by the lowest WNG in θ0. Meanwhile, Kη is unequal to the
given norm constraint level η when η is large, which means that the norm constraint is inactive and
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Figure 6. Output SINR and WNG in θ1 and θ2

versus norm constraint level (SNR = 10dB).
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unable to improve the robustness of proposed RBF. The simulation results demonstrate that a proper
norm constraint level (e.g., η = 1.05ηmin) should be selected to make improvement on robustness and
SINR performance of proposed RBF.

5. CONCLUSIONS

In summary, a robust minimum variance beamformer against DOA mismatch and finite sample effect is
proposed for symmetrically distributed arrays in this paper. The magnitude responses at the constrained
directions are set to exceed unity, and these non-convex constraints with lower bound are converted into
convex ones by introducing a conjugate symmetric constraint. A norm constraint on weight is imposed
to make further improvement on the robustness against DOA mismatch and finite sample effect. The
proposed RBF can be optimized by standard interior point method efficiently. The parameter of norm
constraint is selected reasonably by quadratic program. The simulation results demonstrate the excellent
performance of the proposed method.

ACKNOWLEDGMENT

This work was supported by the Innovation Foundation of Chinese Academy of Sciences (grant CXJJ-
11-S107) and Natural Science Foundation of Shanghai (grant 11ZR1435000).

REFERENCES

1. Van Veen, B. D. and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,”
IEEE Acoust., Speech, Signal Process. Mag., Vol. 5, No. 2, 4–24, 1988.

2. Godara, L. C., “Application of antenna arrays to mobile communications, Part II: Beam-forming
and direction-of-arrival considerations,” Proc. IEEE, Vol. 85, No. 8, 1195–1245, 1997.

3. Qu, Y., G. S. Liao, S. Q. Zhu, and X. Y. Liu, “Pattern synthesis of planar antenna array via convex
optimization for airborne forward looking radar,” Progress In Electromagnetics Research, Vol. 84,
1–10, 2008.

4. Capon, J., “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE, Vol. 57, No. 8,
1408–1418, 1969.

5. Wax, M. and Y. Anu, “Performance analysis of the minimum variance beamformer in the presence
of steering vectors errors,” IEEE Trans. Signal Process., Vol. 44, No. 4, 938–947, 1996.

6. Van Trees, H. L., Detection, Estimation and Modulation Theory, Part IV: Optimum Array
Processing, Wiley, New York, 2002.



50 Zhao, Liang, and Liu

7. Carlson, B. D., “Covariance matrix estimation errors and diagonal loading in adaptive arrays,”
IEEE Trans. Aerosp. Electron. Syst., Vol. 24, No. 4, 397–401, 1988.

8. Wax, M. and Y. Anu, “Performance analysis of the minimum variance beamformer,” IEEE Trans.
Signal Process., Vol. 44, No. 4, 928–937, 1996.

9. Stoica, P., Z. Wang, and J. Li, “Robust Capon beamforming,” IEEE Signal Process. Lett., Vol. 10,
No. 6, 172–175, 2003.

10. Lorenz, R. G. and S. P. Boyd, “Robust minimum variance beamforming,” IEEE Trans. Signal
Process., Vol. 53, No. 5, 1684–1696, 2005.

11. Lie, J. P., W. Ser, and C. M. S. See, “Adaptive uncertainty based iterative robust Capon
beamformer using steering vector mismatch estimation,” IEEE Trans. Signal Process., Vol. 59,
No. 9, 4483–4488, 2011.

12. Nai, S. E., W. Ser, Z. L. Yu, and H. Chen, “Iterative robust minimum variance beamforming,”
IEEE Trans. Signal Process., Vol. 59, No. 4, 1601–1611, 2011.

13. Zaharis, Z. D., C. Skeberis, and T. D. Xenos, “Improved antenna array adaptive beamforming
with low side lobe level using a novel adaptive invasive weed optimization method,” Progress In
Electromagnetics Research, Vol. 124, 137–150, 2012.

14. Liu, C. F. and J. Yang, “Robust LCMP beamformer with negative loading,” Progress In
Electromagnetics Research, Vol. 130, 541–561, 2012.

15. Chen, Y. L. and J. H. Lee, “Finite data performance analysis of MVDR antenna array beamformers
with diagonal loading,” Progress In Electromagnetics Research, Vol. 134, 475–507, 2013.

16. Yang, K., Z. Q. Zhao, and Q. H. Liu, “Robust adaptive beamforming against array calibration
errors,” Progress In Electromagnetics Research, Vol. 140, 341–351, 2013.

17. Li, J., P. Stoica, and Z. Wang, “On robust Capon beamforming and diagonal loading,” IEEE Trans.
Signal Process., Vol. 51, No. 7, 1702–1715, 2003.

18. Vorobyov, S. A., A. B. Gershman, and Z. Q. Luo, “Robust adaptive beamforming using worst-
case performance optimization: A solution to the signal mismatch problem,” IEEE Trans. Signal
Process., Vol. 51, No. 2, 313–324, 2003.

19. Li, J., P. Stoica, and Z. Wang, “Doubly constrained robust Capon beamformer,” IEEE Trans.
Signal Process., Vol. 52, No. 7, 2407–2423, 2004.

20. Booker, A. and C. Y. Ong, “Multiple constraint adaptive filtering,” Geophysics, Vol. 36, No. 3,
498–509, 1971.

21. Frost, III, O. L., “An algorithm for linearly constrained adaptive array processing,” Proc. IEEE,
Vol. 60, No. 8, 926–935, 1972.

22. Huarng, K. C. and C. C. Yeh, “Adaptive beamforming with conjugate symmetric weights,” IEEE
Trans. Signal Process., Vol. 39, No. 7, 926–932, 1991.

23. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambrideg University Press, Cambridge,
UK, 2004.

24. Cox, H., R. M. Zeskind, and M. M. Owen, “Robust adaptive beamforming,” IEEE Trans. Acoust.,
Speech, Signal Process., Vol. 35, No. 10, 1365–1376, 1987.

25. Tian, Z., K. L. Bell, and H. L. Van Trees, “A recursive least squares implementation for LCMP
beamforming under quadratic constraint,” IEEE Trans. Signal Process., Vol. 49, No. 6, 1138–1145,
2001.

26. Liu, J., A. B. Gershman, Z. Q. Luo, and K. M. Wong, “Adaptive beamforming with sidelobe
control: A second-order cone programming approach,” IEEE Signal Process. Lett., Vol. 10, No. 11,
331–334, 2003.

27. Strum, J. F., “Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones,”
Optimization Methods and Software, Vol. 11, Nos. 1–4, 625–653, 1999.

28. Luenberger, D. G. and Y. Y. Ye, Linear and Nonlinear Programming, Springer, New York, 2008.


