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Synthesis of Thinned Array with Side Lobe Levels Reduction Using
Improved Binary Invasive Weed Optimization

Chao Liu and Hua-Ning Wu*

Abstract—As a very powerful optimization algorithm, invasive weed optimization has been widely
applied to continuous optimization problems in electromagnetic (EM) field. However, the optimization
of a thinned array can be formulated as a discrete-variable optimization problem with solutions encoded
as binary strings. Therefore, in this paper, an improved binary invasive weed optimization (IBIWO) is
proposed to design a thinned array with minimum side lobe levels. To evaluate the performance of the
proposed algorithm, two examples have been presented and solved. Simulation results of the proposed
thinned arrays obtained by IBIWO are compared with published results to verify the effectiveness of
the proposed method.

1. INTRODUCTION

Thinning an array involves the removal (turning off) of some elements from a periodic or uniformly
spaced array to create a desired pattern. An element connected to the feed network is ‘turned on’,
and an element connected to a matched load is ‘turned off’ [1, 2]. The main motivation to use
thinning is the reduction in cost, weight and power consumption. And thinned arrays present the
advantage of easiness of realization, as different elements usually lie on a regular grid, operate with
equal amplitude, and are directly connected to the amplifiers [3]. Hence, the synthesis of arrays using
thinning is under active research by many groups. Statistical methods were widely used to tackle the
design problem of antenna array [4]. Most of these classical optimization methods (such as Newton
methods, down-hill and conjugate gradient) are not well suited for thinning an array, because they
can only optimize a few continuous problems and often get stuck in local optimal. Therefore, many
stochastic, probabilistic or evolutionary optimization approach, such as simulated annealing [5], genetic
algorithm [1], immune algorithm [6], ant colony optimization [7], different evolutions [8], particle swarm
optimization algorithm [9] were used and shown to be effective for the synthesis of thinned arrays. Some
other approaches [10, 11] have also been proposed.

In 2006, a derivative-free, metaheuristic algorithm proposed by Mehrbian and Lucas in [12], known
as the Invasive Weed Optimization, mimicking the ecological behavior of colonizing weeds. Since its
inception, IWO has found successful application in many electromagnetic problems like design of Printed
Yagi Antenna [13], E-shaped MIMO antenna [14], multi-feed reflector antennas [15], Broadband Patch
Antenna [16], Conformal Phased Arrays [17], Circular Antenna Arrays [18] etc.. Results obtained using
IWO for these problems are encouraging. However, the nature of reproduction operators in classical
IWO limits its application. In fact, the optimization of a thinned array can be formulated as a discrete-
variable optimization problem with solution encoded as binary strings. In [19, 20], binary invasive weed
optimization (BIWO) has been proposed and applied to search best solutions of typical benchmark
functions. To the best of our knowledge, the application of the binary version of IWO for antenna
design has not yet been reported. The main contribution of this paper is to employ an improved binary
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IWO to synthesize thinned arrays with lower SLL. The adaptive dispersion mechanism is adapted to
improve the search ability of binary IWO.

The rest of the paper is organized as follows. A formulation of the thinned array pattern synthesis
as an optimization task is discussed in Section 2. Section 3 gives a comprehensive overview of the
proposed IBIWO algorithm. Section 4 presents the simulation results, and in Section 5 conclusions are
presented.

2. THINNED ARRAY

According to the structure shown in Figure 1, where there are 2M isotropic elements placed
symmetrically along the x-axis, and array factor AF at θ angle in XZ plane for a linear antenna
array can be expressed as [7, 9]:

AF =
m=M∑

m=−M

Am exp
(

j ∗
(

2π

λ
xm ∗ sin θ + ϕm

))
(1)

where xm, Im and ϕm are the position, excitation amplitude and phase of the mth element, respectively.
In thinned array, Im is 0 if the state of the mth element is ‘off’, and Im is 1 if it is ‘on’. In our case,
the distance between elements is 0.5λ, and there is no element located at the axis origin. All elements
have a uniform excitation phase (ϕm = 0). Thus, Equation (1) can be rewritten as [7, 9]

AF = 2
M∑

m=1

Im cos(π ∗ (m− 0.5) sin θ) (2)

Figure 1. Geometry of a symmetric linear array
with 2M element.

Figure 2. Geometry of a symmetric planar array
with 2M × 2N element.

Figure 2 shows a planar array with 2M × 2N elements. Assuming the same considerations as in
the linear array, the array factor in this structure is given by [7, 9]:

AF = 4
M∑

m=1

N∑

n=1

Amn cos [π (m− 0.5) sin θ cosφ] · cos [π (n− 0.5) sin θ sinφ] (3)

where φ is the azimuth angle with respect to x-axis and θ the elevation angle with respect to the Z-axis.
The amplitude of excitation Amn and the spacing between elements are both symmetrical about the X
and Y axes. The spacing is fixed equal to 0.5λ. Thus, the array factor can be simplified by computing
a quarter of the rectangular array.

In order to control the array pattern as desired, different parameters of the far field pattern must be
considered in the fitness function. The first and most important parameter is the normalized maximum
side lobe level (MSL) which is desired to be as low as possible. The normalized maximum side lobe
level of the antenna array can be given by Equation (4).

FMSL(I) = max
∀θ∈R

{
20 log

∣∣∣∣
AF (I, θ)
AFmax

∣∣∣∣
}

(4)
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where R represents the side lobe region excluding the main beam. In this paper, Equation (5) is used
as the objective function to suppress SLL.

f(I) = FMSL(I) (5)

For the planar array, the fitness function is the sum of the maximum MSL in Φ = 0◦ and Φ = 90◦
planes, which can be expressed as:

f(I) = FMSL(I, Φ = 0◦) + FMSL(I, Φ = 90◦) (6)

We need to find which array elements should be enabled or disable (Amn = 1 or Amn = 0) to
get the desired radiation pattern characteristics. Hence, the thinned array synthesis problem can be
formulated as the following 0–1 integer optimization problem:

min(f(I)) s.t Inm ∈ {0, 1} , m = 1, 2, 3 . . . M, n = 1, 2, 3 . . . N

3. INVASIVE WEED OPTIMIZATION ALGORITHM

3.1. Continuous IWO

Invasive Weed Optimization (IWO) is a meta-heuristic algorithm that mimics the colonizing behavior
of weeds. The IWO algorithm may be summarized as four steps, and more details can be found in [12]:
(I) Initialization: In this step, the solutions are randomly initialized and dispersed in the given d-

dimensional search space.
(II) Reproduction: In this step the parent weed produces seeds depending on its own fitness as well

as the colony’s lowest and highest fitness. So if the weed is better fitted then it will have more
offspring and if less fitted then less offspring

(III) Spatial distribution: the generated seeds are randomly scattered over the d-dimensional search
space by perturbing them with normally distributed random numbers with zero mean and a variable
variance. The standard deviation for a particular iteration can be given as in Equation (7):

δcur =
(itermax − iter)n

itern
max

(δinitial − δfinal) + δfinal (7)

where δinitial and δfinal are initial value and final value of standard deviation, δcur is the standard
deviation of current iteration, n is the nonlinear index, itermax is the maximum iteration, iter is
current iteration. The position of the new seed can be given as in Equation (8):

xson = xparent + sd = xparent + randn(0, 1) ∗ δcur (8)

(IV) Competitive Exclusion: The new seeds produced grow to flowering weeds and are placed together
with parent weeds in the colony. Some kind of competition between plants is needed for limiting
maximum number of plants in a colony. Weeds with worst fitness are eliminated until the maximum
number of weeds Pmax in the colony is reached The steps 1 to 4 are repeated until the maximum
number of iterations has reached

3.2. BIWO

The presentation used in IWO is a real-valued vector. To be able to use IWO for discrete problems,
two aspects need to be changed. Firstly, adopt the appropriate coding method for characterizing
the actual problem. In general, the weed in BIWO will be replaced by the binary coding sequence
(x1, x2 . . . xn−1, xn), each xi takes value of 1 or 0. Secondly, binary space spread should be employed.
In IWO algorithm, the generated seeds are randomly scattered over the d-dimensional search space by
perturbing them with normally distributed random numbers with zero mean and a variable standard
deviation. But this continuous spread method will not make sense in the binary coding sequence. We
take a mutation mechanism to create seed in the BIWO. Each bit in the parent weed will be mutated
with a probability pk

i which is calculated by the following sigmoid function.

pk
i =

1

1 + e−dk
i +6

+
1

1 + edk
i +6

(9)
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where, dk
i is the spread distance generated by the normally distributed function N (0, σcur). When the

mutation probability of each bit in a weed is calculated, then a uniformly distributed random numbers
in the range [0, 1] will be generated to specify the mutation bits through following equations

dk
i =

{
1 if

(
ρ < f(dk

i )
)

0 else (10)

xk+1
i = mod

(
xk

i + dk
i , 2

)
(11)

In literature [20], the recommended value of δinitial and δfinal of BIWO is 3 and 15.

3.3. IBIWO

As mentioned in Section 3.1, we know that the function of δcur defines the exploration ability and
exploitation ability of the algorithm, acts as both diversification and intensification components of
BIWO, and has a great effect on final solutions. In early iterations, the bigger δcur will help the
algorithm to explore the solution space as much as it can. A good diversification will make the final
solution near global optimum. The algorithm will use this component to identify most potential spaces
where the global optimum may lie in. A good intensification will help the algorithm to exploit the
potential areas and find the global optimum. It will increase the convergence speed of the algorithm
and search a better final solution. Hence, it is very important to keep an efficient balance between
diversification and intensification of the algorithm. But, BIWO algorithm uses a fix δcur to produce
seeds related to each weed and suffers from the lack of fine balance between exploration and exploitation.

In order to overcome the drawbacks of BIWO, adaptive dispersion mechanism is integrated in
the BIWO algorithm. The adaptive dispersion mechanism is that the δcur of the current generation
distribute linearly among the weeds as weed with the highest fitness achieves the lowest δcur, and the
lowest fitness achieves the highest δcur, which can be represented by Equation (12). j is the index of
weeds in the colony sorted according to their fitness, and σcur can be calculated by Equation (1). psum

is the sum number of weeds in the current generation and σj the δcur of j-th weeds to produce seeds.
Hence, the plant with lower fitness will have the chance to produce good seeds in current generation.
In addition, this process will increase the diversification of algorithm and improve the search ability of
the colony so that the algorithm will explore the search space effectively.

σj = (σcur)×
(

j

psum

)
(12)

The pseudo-code of the novel binary IBIWO is given as follows:

1: Randomly produce weeds P0 in binary coding sequence;
2: For each iter < itermax do
3: Calculate each weed’s fitness value by Equations (5) or (6);
4: Sort all fitness values;
5: Record maximum and minimum value;
6: Calculate the number of seeds by Equation (1);
7: Calculate each seed’s standard variance by Equations (7) and (12);
8: Produce seeds by Equations (9)–(11);

10: Add the seed to population;
11: If ((Num = |X|) > Pmax) then;
12: Sort the population X of their fitness;
13: Save population of weed with best fitness until Num = Pmax;
14: End if
15: End for
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4. SIMULATION RESULTS

In this section, we use two thinned array cases to evaluate the search ability of the proposed algorithm.
In both cases, the array with all elements ‘on’ is used as initial solutions. All simulations are conducted
in a Windows 7 Professional OS environment using 12-core processors with Intel Xeon (R), 3.33 GHz,
72GB RAM, and the codes are implemented in Matlab 7.10.

The first case discussed here is to thin a linear array with 100 elements symmetrically spaced
0.5λ apart along the x-axis with its center at the origin in order to generate a broadside symmetric
pattern [1, 7, 9]. In [7], Quevedo-Teruel and Rajo-Iglesias utilize the ACO algorithm to the pattern
synthesis of linear thinned array. In [1], Haupt designs the same array using GA. Wang et al. use
chaotic binary PSO algorithm in the linear thinned array design and obtain a better result than the
other algorithms [9]. In this work, IBIWO is utilized to design the thinned array with lower MSL. For
comparison, BIWO is also applied to optimize the same problem. The values of parameters of IBIWO
and BIWO are listed in Table 1. Because of the randomness nature, all the experiments have been
run 100 times with 300 iterations independently. The stopping criterion of each run is to complete the
number of iterations. The best and average results are presented in this section.

Table 1. Parameters of IBIWO and BIWO.

Parameter Value Parameter Value
initial size of colony 20 maximum number of seed 5

maximum size of colony 50 minimum number of seed 0
δinitial 15 dimensional 50
δfinal 3 itermax 300

According to the symmetrical structure shown in Figure 1, only 50 elements are to be optimized.
In this case, fitness function shown as Equation (5) is minimized using the IBIWO. Figure 3 shows the
best pattern obtained by the IBIWO, and the result is compared with the initial value with all elements
turned on. From Figure 3, we notice that the MSL with the full 100-element linear array (all elements
are turned on) is −13.73 dB, and the MSL is lowered to −22.12 dB after thinning by IBIWO.

Figure 3. Radiation pattern compared with the initial value.

Figure 4 gives the element status of the best thinned array with minimum MSL obtained by IBIWO
algorithm. As shown in Figure 4, the number of turned off elements is 22.

To further verify the performance of the IBIWO, it is compared with the GA [1], ACO [7], BDE [8],
BPSO [9], CBPSO [9] and BIWO [19]. The obtained array patterns using ACO, BIWO and IBIWO are
presented in Figure 5. Figure 6 represents a comparison of the results obtained by the IBIWO algorithm



26 Liu and Wu

 

Figure 4. The elements status obtained by IBIWO.

Figure 5. Comparisons of 100-elements thinned linear array pattern obtained by IBIWO and other
algorithms.

(a) Percentage of thinning (b) Absolute value of MSL (dB)

Figure 6. The best results obtained by IBIWO and other algorithms.

and the other six algorithms. The results used for comparison are given by [7, 9]. From Figure 6(a) we
can clearly know that the percentage of thinning obtained by the IBIWO is 22%, which is more than
that of 20% in [7, 9, 19] and 22% in [1, 8] and with lower MSL, except that of 24% obtained by CBPSO
in [9]. As shown in Figure 6(b), the absolution value of MSL obtained by IBIWO is larger than that of
other algorithms.

To evaluate the efficiency and reliability of the proposed algorithms, the IBIWO algorithm is
further compared with the algorithms mentioned before in terms of average convergence speed. For
each iteration step, the average fitness value is calculated from 100 fitness values derived at the certain
step [9]. Figure 7 shows the variation of the average SLL value as a function of number of iterations.
As shown in Figure 7, the IBIWO obtains the best average MSL, and the value is 22.04 dB. And the
average convergence iterations up to the best average MSL is 200, which is smaller than that of the
ACO, BPSO and BIWO, except for the GA, BDE and CBPSO. The details are listed in Table 2.

The second case discussed here is to design a thinned planar array with 20 × 10 elements, which
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Figure 7. Convergence of the average |MSL|
values versus the number of iterations.

Figure 8. Radiation pattern of 20 × 10 thinned
planar array achieved by the IBIWO in the planes
Φ = 0◦ and Φ = 90◦.

Table 2. Comparisons of the simulation results.

Simulation
results

GA
In [1]

ACO
In [7]

BDE
In [8]

BPSO
In [9]

CBPSO
In [9]

BIWO
In [19]

IBIWO

Average
maximum
|MSL|

19.2 19.1 18.5 17.6 20 21.31 22.04

Average
convergence
iterations

164 203 193 236 181 242 20

was optimized in [1, 7–9]. In [1], Haupt utilized GA algorithm to a 20× 10 planar array. In [7], ACO
algorithm was applied to the same problem by Quevodo-Teruel and Rajo-Iglesias. Zhang et al. designed
the planar array using the Boolean Differential Evolution (BDE) in [8], and Wang et al. applied the
Chaotic Binary Particle Swarm Optimization (CBPSO) for the synthesis of thinned arrays [9]. In this
case, IBIWO and BIWO are also utilized to design the thinned array with lower MSL. The values of
parameters are the same as the first case.

In this case, the MSLL is suppressed in the planes Φ = 0◦ and Φ = 90◦. Hence, Equation (6)
is selected as the fitness function optimized by IBIWO. The best radiation pattern of the optimized
array obtained by the proposed algorithm is plotted in Figure 8. The best fitness obtained by IBIWO
is −54.9 dB (MSL = −26.58 dB in Φ = 0◦ plane and MSL = −28.32 dB in Φ = 90◦ plane, as shown in
Figure 8).

The configuration of the best array is given for a quadrant of the array elements plotted in Figure 9.
The number of elements turned off is 24 in the quarter of the rectangular array.

To further verify the performance of the IBIWO, it is compared with the GA [1], ACO [7], BDE [8],
BPSO [9], CBPSO [9] and BIWO [19]. The radiation pattern obtained by the IBIWO, ACO, BIWO in
Φ = 0◦ and Φ = 90◦ plane are shown in Figure 10. Figure 11 gives the |MSL| values of comparisons of
various algorithms. The comparisons in Figure 11 demonstrate that the IBIWO can achieve the best
MSL in Φ = 0◦ and Φ = 90◦ plane. Figure 12 illustrates that the percentage of thinning obtained by
the IBIWO outperforms that of the other six algorithms.

Details of comparative results in terms of the convergence characteristic are carried out and shown
in Figure 13 and Table 3. Table 3 shows that the BIWO algorithm can obtain the best average MSLL,
and the value is 24.97. The number of iterations up to the best average MSLL of BIWO is 212, which
is smaller than BPSO and BIWO, except for that of GA, ACO, CPSO and BDE. From Figure 13, we
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Figure 9. The best element status of 20× 10 planar array obtained by IBIWO.

(a) (b)

Figure 10. Comparisons of 20 × 10 thinned planar array pattern: (a) Φ = 0◦ plane; (b) Φ = 90◦
plane.

(a) Φ=0 (b) Φ=90
o o

Figure 11. Comparisons of |MSL| values obtained by different algorithms: (a) Φ = 0◦ plane;
(b) Φ = 90◦ plane.

know that the convergence speed of IBIWO is faster than the other algorithms in the whole iterations.
From the above results, in the synthesis of thinned linear and planar arrays, it can be clearly

observed that the proposed algorithm with adaptive dispersion mechanism can take a good balance
between the local search ability and global exploration. Numerical results demonstrate that the IBIWO
algorithm is an effective technique for thinned array designs.
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Table 3. Comparison of the simulation results.

Simulation results
GA

In [1]
ACO
In [7]

BDE
In [8]

BPSO
In [9]

CBPSO
In [9]

BIWO
In [19]

IBIWO

Average MSLL 20.5 23.1 23.8 19.6 24.3 23.49 24.97
Average

convergence
iterations

210 184 162 257 206 287 212
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Figure 12. Comparisons of percentage of
thinning values obtained by different algorithms.

Figure 13. Convergence of the average |MSL|
values versus the number of iterations.

5. CONCLUSIONS

This paper introduces the use of a improved binary invasive weed optimization algorithm for thinning
periodic linear and planar array to obtain the lowest possible peak side lobe level. An adaptive dispersion
mechanism has been adopted to balance between the local search ability and global exploration. A
comparison with published results for similar thinned array designs proved that the proposed algorithm
achieved the lowest peak side lobe for all considered cases.
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