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Overview of Ionospheric Modification by High Frequency (HF)
Heaters-Theory

Spencer P. Kuo*

Abstract—The scenarios of achieving effective ionospheric modification are summarized and the likely
physical processes engaging linear and nonlinear mode conversions through plasma inhomogeneity and
nonlinearity are revealed. Parametric instabilities, which are the directly relevant processes to achieve
effective heating of the ionospheric F region, are formulated and analyzed. The threshold fields and
growth rates of instabilities are obtained. The nonlinear Schrodinger equation governing the nonlinear
evolution of Langmuir waves is derived and analyzed. The nonlinear periodic and solitary solutions of
the equation are obtained. The analyses illustrate the conditions for the generation of Langmuir soliton
and nonlinear periodic Langmuir waves.

1. INTRODUCTION

Observations of ionospheric HF heating experiments in the past four decades have demonstrated that the
HF heater can significantly modify the bottomside of the ionospheric F-region. It occurs when the HF
transmitter is operated with frequency less than foF2 and the HF heater is transmitted at RH circular
polarization so that it is converted to the O-mode in the region near the HF reflection height. Because
the collision (electron-electron and electron-ion) processes cannot efficiently absorb the electromagnetic
(EM) wave energy delivered to the F region of the ionosphere, these requirements on the transmitted
HF heater in the experiments are necessary in order to effectively trap the wave energy there and thus
to optimize the HF modification effects on the ionosphere. However, the HF heater can be reflected
back to the ground. To avoid this to occur, a fast conversion of the EM heating wave into electrostatic
(ES) waves of the plasma is necessary. This is because ES waves are supported by the plasma and
only stay in the plasma. Thus, linear and nonlinear mode conversions are essential processes acting to
achieve effective ionospheric heating and modification [1].

The present work is aimed at providing theoretical foundation for the understanding of experimental
observations and the underlying plasma processes. The responsible physical processes of the observations
evidence that the excitation of parametric instabilities is essential to all observations.

2. MODE CONVERSION

An EM wave can be converted into ES waves in plasma through linear or nonlinear mode conversion.
Before a discussion on mode conversion, a comment on the mode types is in order. In general, wave is
characterized by its frequency and wavelength. In plasma, wave is also characterized by the direction of
the wave electric field (i.e., the polarization direction) with respect to the wave propagation direction,
which divides the plasma waves into three categories representing three mode types: transverse (EM),
longitudinal (ES), and hybrid. Transverse means that the wave electric field is transverse (perpendicular)
to the wave propagation direction; hence, transverse wave is an EM wave that also carries a magnetic
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field. Longitudinal means that the wave electric field is parallel to the propagation direction; in essence,
it is an ES wave because no magnetic field accompanies the wave electric field. Plasma is anisotropic
when a dc magnetic field is imposed; the wave electric field may have an angle other than 0◦ or 90◦ with
respect to the propagation direction (i.e., a combination of EM and ES polarization). In this situation,
the wave is a hybrid mode.

A mode of a linear system is an oscillation that can self-sustain in the system. For example, apply
an impulse to a (lossless) system; oscillations at all frequencies will be excited. However, not all of the
oscillations can persist in time; in fact, most of the oscillations will damp away via phase mixing (among
themselves or caused by the boundary effects). In the steady state, only a few oscillations remain, and
these lasting oscillations are the “modes” of the system. In a lossless system, modes are not damped and
termed “eigen-modes”. In practice, system has losses and supports only “quasi-modes”, which damp
slowly in time. In the mathematical analysis, modes represent the source-free space-time harmonic
solutions of the system’s linearized governing equations. Therefore, (ω-k) relations are determined by
the condition that the space-time harmonic solutions of the source-free equations are nontrivial (i.e.,
nonzero solutions). Each relation ω = ω(k) is called a dispersion relation, which can be plotted on
a k-ω plane as the dispersion curve of a branch of mode. Each point (k, ω) on the curve defines the
wavenumber and frequency of a mode in that branch.

Linear mode conversion may occur in the ionosphere because it is inhomogeneous magneto plasma.
Magneto plasma supports various branches of plasma modes, which are EM, ES, or hybrid mode
type depending on the frequency regime, the polarization direction, and the propagation angle with
respective to the geomagnetic field. As explained in the preceding paragraph, a dispersion relation
represents a branch of plasma mode and is a functional dependence of the wave frequency ω on the
propagation constant k. Magneto plasma is an anisotropic (uniaxial) medium, ω is a function of k||
and k⊥, where the subscripts || and ⊥ stand for components parallel and perpendicular to the magnetic
field; the dispersion curves ω (k||, k⊥) of magneto plasma are presented in three-dimensional spectral
space (k||, k⊥, ω). However, a conventional way, which makes easy to describe the physical processes of
wave propagation in inhomogeneous magneto plasma, is to plot the dispersion curves of the 0◦ and 90◦
propagation angles only; in these special cases, ω are functions of |k| (= k). Thus these curves can be
combined together in a single two-dimensional diagram on the k-ω plane, such as the one exemplified
in Fig. 1(a) (upward propagating waves in cold plasma embedded in a downward magnetic field). In
this figure, only high frequency branches relevant to the following discussion are plotted and the cutoff
frequencies ω1 [for the left-hand (LH) circularly polarized (L) and extraordinary (X) branches] and
ω2 [for the right-hand (RH) circularly polarized (R) branch] and upper hybrid resonance frequency ωu

are given. Hence, a branch for an arbitrary propagation angle can be located in the region between a
pair of 0◦ and 90◦ branches.

(a) (b)

Figure 1. (a) Dispersion curves of high frequency EM waves propagating along (0◦) and perpendicular
(90◦) to the geomagnetic field and (b) dispersion curves for a RH circularly polarized incident wave.
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Among the curves in Fig. 1(a), L and X is a pair to confine the X-mode branches having the
propagation angle between 0◦ and 90◦ because in the case of propagating anti-parallel to the magnetic
field, the wave fields of the L mode rotate in the same direction as the electron gyration. Likewise,
R and O pair confine the ordinary (O-mode) branches. The polarization of the incident heating wave
determines the branch of mode it belongs to. Left-hand (LH) circularly polarized heater falls into
the X-mode branches, and right-hand (RH) circularly polarized heater follows the O-mode branches in
the propagation. It is noted that Fig. 1(a) is plotted for uniform plasma, i.e., in the case of constant
plasma frequency ωp and electron cyclotron frequency Ωe. However, the ionosphere is not uniform;
although Ωe may be considered to be a constant at each heating site, ωp increases with the altitude in
the bottom-side of the ionosphere. As a HF heater of a fixed frequency ω0 propagates upward, ωp in
Fig. 1(a) moves upward along the vertical (ω) axis. Consequently, all the dispersion curves will also
move upward accordingly. This will be inconvenient in describing wave propagation because Fig. 1(a)
has to be modified constantly. However, there is a way to fix ωp on the vertical axis of Fig. 1(a); it is by
constantly rescaling the ω axis during the wave propagation. For example, as wave propagates upward,
the scale of the ω axis is increased accordingly to keep ωp at the same point on the axis. Consequently,
the initial point (k0, ω0) of the wave has to move downward, but confined in the region between a pair
of 0◦ and 90◦ branches. The arrows in Fig. 1(a) indicate the trajectories, in the k-ω plane, of vertically
incident LH (X-mode) and RH (O-mode) circularly polarized waves. The two incident waves start with
the same propagation angle equal to the conjugate α of the magnetic dip angle θd, where θd is defined
to be the angle between the horizontal axis and the geomagnetic field that is inclined downward in the
northern hemisphere. As shown the point of LH circularly polarized incident wave moves downward and
its trajectory gradually merges to the L (0◦) curve; the wave is reflected at ωp = [ω0(ω0−Ωe)]1/2 = ωpL.
On the other hand, the trajectory of the point representing the RH circularly polarized incident wave
gradually merges to the O (90◦) curve and the wave is reflected at ωp = ω0, higher than the reflection
height of the LH circularly polarized incident wave.

2.1. Linear Mode Conversion

Linear mode conversion may occur at the intersecting point of two branches of modes. As shown in
Fig. 1(a) only the O-mode branch intersects with the branches of plasma modes. Thus the HF heater
has to be transmitted at RH circular polarization and Fig. 1(b) will be used in the discussion of linear
mode conversion. In the figure, only the dispersion curves of the R and O pair are plotted and k|| in
the plot represents the parallel (to the geomagnetic field) component of the wavevector.

The arrows in Fig. 1(b) signify the transmission of a RH circularly polarized HF heater, with an
oblique incident angle θ0, into the ionosphere; the vertical component of the wavevector, with the initial
value k0 cos θ0, decreases continuously as the heater propagates upward to experience the increase of
the plasma density, where k0 = ω0/c and ω0 is the wave frequency. Consequently, the inclined angle of
the propagation, with respective to the geomagnetic field, also changes continuously. When the wave
approaches the O-mode reflection height indicated by the horizontal line ω = ωp, the propagation turns
toward either 1) the O-curve or 2) the R-curve, depending on the initial inclined angle (related to the
incident angle). In either cases, the wave will reach an intersecting point on the ω = ωp line. In the first
situation, for example, for a vertically incident wave (θ0 = 0), the propagation turns toward the direction
perpendicular to the geomagnetic field (with the wavevector k → 0). The intersecting point located
at (k = 0, ω0 = ωp) is a turning point (cutoff), where the wave is reflected. Because the propagation
direction of the wave in the nearby region is drastically different from that of the electron plasma wave
(i.e., Langmuir wave), which has a preferred propagation direction parallel to the geomagnetic field;
therefore, a mode conversion of the heater to the Langmuir wave is not feasible.

The second situation that the propagation turns to follow the R-curve as shown by the arrows
requires a proper incident angle of the heater. In this case, the wave at the intersecting point (k = k||,
ω0 = ωp) does not experience cutoff from propagation. Because the ionospheric plasma density is
horizontally stratified, the horizontal component, k0 sin θs in Fig. 2, of the initial wave vector k0 is
conserved in the propagation. Thus the horizontal component, k|| sinα in Fig. 2, of the wavevector k||
at the intersecting point equals to k0 sin θs, i.e., k0 sin θs = k|| sinα. If the wave propagates continuously
upward along the geomagnetic field, then (k||, ω0) have to satisfy the R-wave dispersion relation:
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Figure 2. Phase matching condition for mode conversion.

1− ω2
p/ω(ω + Ωe) = (kc/ω)2, under the condition ω0 = ωp.

Therefore the required incident (Spitze) angle is derived by the phase matching condition k0 sin θs =
k|| sinα, subject to that (k||, ω0 = ωp) satisfy the R-wave dispersion relation. From the dispersion
relation, we obtain k|| = k0[Ωe/(ω0 + Ωe)]1/2, and the Spitze angle is determined to be

θs = sin−1
{

[Ωe/ (ω0 + Ωe)]
1/2 sinα

}
(1)

After passing the ωp = ω0 layer, wave continuously propagates upward along the geomagnetic field
to a cutoff layer at ωp = [ω0(ω0 + Ωe)]1/2 = ωpR, where the wave is reflected at an oblique angle of
2α and converted to a Z-mode in the region above the O-mode reflection height. This Z-mode wave
propagates downward to the upper hybrid resonance layer at ωp = (ω2

0 −Ω2
e)

1/2 = ωpU and is converted
to an upper hybrid wave.

Through this linear mode conversion [2], the O-mode HF heater wave energy will be trapped in
the region between ωp = ωpR and ωpU layers.

2.2. Nonlinear Mode Conversion

Another effective way (and probably the most effective way) to convert the HF heater to the plasma
waves is through parametric instabilities, which excite high frequency electron waves and low frequency
ion waves simultaneously by the HF heater. This is a nonlinear mode conversion process employing the
nonlinearity of plasma to implement mode-mode couplings and to channel feedbacks to the interactions.
The couplings are imposed by the frequency and wavevector matching conditions. The process prefers
the excited waves (in particular, the high frequency electron waves) to be plasma modes to reduce the
threshold condition for the commencement of the instability. Thus the HF heater has to be accessible to
the regions where the frequencies of the high frequency plasma modes are close to the heater frequency.
As shown in Fig. 1(a), the vertically incident LH circularly polarized HF heater (X-mode) is reflected at a
height with ωpX = [ω0(ω0−Ωe)]1/2 = ωpL that is below the electron plasma resonance layer ωpO = ω0 as
well as the upper hybrid resonance layer ωpU = (ω2

0−Ω2
e)

1/2. On the other hand, the vertically incident
RH circularly polarized HF heater (O-mode) is accessible to both the electron plasma layer and upper
hybrid resonance layer and converted to the O-mode in the region close to its reflection height. In other
words, the O-mode HF heater is accessible to the spatial regions, where many parametric coupling
conditions can be matched. Moreover, near the reflection height the O-mode heater’s electric field is
enhanced by a “swelling effect”, which is arisen from the total reflection at cutoff, providing a factor of
∼2, and from wave accumulation in slowing down the propagation while approaching the turning point,
providing additional factor of ∼2. This “swelling effect” has significant positive impact on exciting
instabilities in this region. It makes easy to exceed the threshold fields and increases the growth rates
of the instabilities.

3. PARAMETRIC INSTABILITIES

A parametric amplifier uses three coupled resonant circuits (e.g., LC circuits) to convert frequency from
one to another. A nonlinear (variac) capacitor C in the circuit provides the coupling (i.e., frequency
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mixing). The three resonant modes, oscillating at ω0, ω1, and ωS , in a parametric amplifier are called
source (pump), idler (sideband), and signal (decay mode), where, the frequency matching condition
ω0 = ω1 + ωS is satisfied. Generalize the basic principle for wave amplification in a circuit to a system,
one recognizes that the system has to support at least three branches of oscillations and carries nonlinear
properties for wave-wave couplings.

Plasma can support high frequency EM waves, as well as electrostatic (ES) plasma waves of high
and low frequencies as plasma modes that oscillate in plasma as thermal fluctuations in the absence
of external sources. Moreover, plasma is a nonlinear medium. Therefore, parametric couplings among
three modes can occur. When a large amplitude high frequency wave Ep(ω0, kp) (either EM or ES)
appears in plasma, this wave can act as a pump wave to excite plasma modes through parametric
couplings. The electric field of the high frequency pump wave sets up a quiver motion veq(t) in the
electron plasma. The quasi-neutrality permits low frequency plasma wave to set up charge density
perturbation ns (ωs, ks), in which the electrons undergoe quiver motion. Thus a nonlinear current
density −ensveq is produced. It is a source current to drive beat waves E1 (ω1, k1) and E′1 (ω′1, k′1) with
their wavevectors and frequencies governed by the matching conditions:

ω0 = ω1 + ω∗s = ω′1 − ωs and kp = k1 + ks = k′1 − ks (2)
These beat waves, in turn, also couple with the pump wave to give rise a low frequency nonlinear force
on electrons; this force drives a plasma density perturbation which oscillates at the same frequency and
wavevector as ns(ωs, ks). Hence, this parametric coupling produces a feedback to the original density
perturbation ns(ωs, ks). The strength of the coupling depends on the involved nonlinearities and the
nature of the induced beat waves. The coupling is strong as the beat wave is resonant with plasma
(i.e., a plasma mode). If the feedback is positive and large enough to overcome linear losses of the
coupled waves, the coupling becomes unstable and coupled waves grow exponentially in the expense
of pump wave energy. This is called “parametric instability”, by which the pump wave Ep (ω0, kp)
decays to two sidebands E1 (ω1, k1) and E′1 (ω′1, k′1) through a low frequency decay mode ns (ωs, ks).
This instability process involves the nonlinearity of the plasma and thus is a nonlinear instability. The
parametric coupling is imposed by the frequency and wavevector matching conditions (2) as well as a
threshold condition on the pump electric field intensity.

This process can be reduced to a three-wave coupling process when the decay mode ns (ωs, ks) has
an oscillation frequency. In this situation, two sidebands cannot satisfy the same dispersion relation
simultaneously. The frequency-upshifted sideband E′1(ω′1, k′1) is off resonant with the plasma and can
be ignored in the coupling.

The most effective parametric instabilities excited directly by the HF heater are 1) parametric
decay instability (PDI) and 2) oscillating two-stream instability (OTSI), in both mid-latitude and high-
latitude regions [3–5]. The sideband(s) in mid-latitude region is Langmuir wave. In high-latitude
region the sideband(s) can be upper hybrid wave or Langmuir wave, however, the instabilities involving
Langmuir wave as a sideband have to compete with those excited in the upper hybrid resonance region,
where the upper hybrid waves are the sidebands of the instabilities. The wavenumber k0 of the heater
is much smaller than the wavenumbers of the electrostatic sidebands and decay modes, thus a dipole
pump, i.e., k0 = 0, is generally assumed.

3.1. Formulation of Parametric Couplings

Parametric excitation of Langmuir/upper hybrid waves φ (ω, k) and low-frequency plasma waves
ns (ωs, ks) by electromagnetic or Langmuir/upper hybrid pump waves Ep(ω0, kp) are considered in
the following, where Ep, φ, and ns denote electric field of a pump wave, electrostatic potential of
the Langmuir/upper hybrid sideband, and density perturbation of the low frequency decay mode,
respectively. Langmuir waves can have large oblique propagation angles (with respect to the geomagnetic
field B0 = ẑB0), upper hybrid waves have near 90◦ propagation angles, and low-frequency plasma waves
include ion acoustic/lower hybrid waves, and purely growing modes.

The coupled mode equation for the Langmuir/upper hybrid sideband is derived from the electron
continuity and momentum equations, and Poisson’s equation

∂tne +∇ · neve = 0 (3)
(∂t + νe)neve + Ωeneve × ẑ = −∇ · neveve − 3v2

te∇δne − (e/me)neE (4)
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∇2φ = 4πeδne (5)

where ne = n0 + δne + ns; n0 and δne are the unperturbed plasma density and electron density
perturbation associated with Langmuir/upper hybrid waves, respectively; Ωe = eB0/mec the electron
cyclotron frequency; vte = (Te/m)1/2 the electron thermal speed; E = EP + EL and EL = −∇φ;
and the adiabatic relationship ∇Pe = 3Te∇δne is used; νet = νen + νei + νeL = νe + νeL is the
effective electron collision frequency, where νe = νen + νei, νen is the electron-neutral elastic collision
frequency, νei the electron-ion Coulomb collision frequency [νei = 2.632(n0/T

3/2
e ) ln Λ ∼= 39.5(n0/T

3/2
e ) ∼=

4.87×10−7(f2
p /T

3/2
e ), here ln Λ ∼= 15 is assumed; n0 is in cm−3, Te is in K, and fp is the electron plasma

frequency] and νeL a phenomenological collision frequency to model the electron Landau damping effect
[νeL = (π/2)1/2(ω2

aω
2
p/kzk

2v3
te) exp(−ω2

a/2k2
zv

2
te); where ωa is the plasma wave frequency, i.e., ωa = ω

and νet = νeh for the high frequency sideband and ωa = ωs and νet = νes for the low frequency decay
mode].

With the aid of (5) and the following two orthogonal components of (4),

(∂t + νeh)neve × ẑ = Ωeneve⊥ −∇ · neveve × ẑ− [3v2
te∇δne + (e/me)neE]× ẑ (6)

and
(∂t + νeh)nevez = −∇ · nevevez −

[
3v2

te∇zδne + (e/me)neEz

]

the three orthogonal components of (4) are combined into a single scalar equation

(∂t + νeh)
[
(∂t + νeh)2 + Ω2

e

]
∇ · neve

= −
[
(∂t + νeh)2 + Ω2

e

] [
3v2

te∇2δne − ω2
pδne

]
+ Ω2

e∇2
⊥

[
3v2

teδne − (e/me) n0φ
]

− [
Ω2

e∂z∇ · nevevez + Ωe (∂t + νeh)∇ · ẑ× (∇ · neveve) + (∂t + νeh)2∇ · (∇ · neveve)
]

−(e/me)
{[

(∂t + νeh)2∇+ Ω2
e∇z

]
· (nsEP )− Ωe(∂t + νeh)ẑ · (∇ns ×EP )

}
(7)

where ωp = (4πn0e
2/me)1/2 is the electron plasma frequency.

The right hand side (RHS) of (7) is assembled into four groups. The first two groups contain linear
response terms and the last two contain coupling terms. The contribution to the parametric coupling
from the third group is much smaller than that from the fourth group and hence, the coupling terms in
the third group will be neglected. Use (3), (5), and (7), the coupled mode equation for the Langmuir
(or upper hybrid) sideband is derived to be [6]

{[
(∂t + νeh)2 + Ω2

e

] (
∂2

t + νeh∂t + ω2
p − 3v2

te∇2
)∇2 − Ω2

e

(
ω2

p − 3v2
te∇2

)∇2
⊥
}

φ

= ω2
p

{[
(∂t + νeh)2∇+ Ω2

e∇z

]
· 〈Epn

∗
s/n0〉 − Ωe(∂t + νeh)ẑ · 〈∇(n∗s/n0)×EP 〉

}
(8)

where 〈 〉 stands for a filter, which keeps only terms having the same phase function as that of the
function φ on the left hand side. Although (8) is derived from the fluid equations, the kinetic effect of
electron Landau damping has been added phenomenological in the collision damping rate.

Both electrons and ions respond effectively to low frequency wave fields, hence the formulation of
the coupled mode equation involve electron and ion fluid equations. Because electrons and ions tend to
move together, the formulation can be simplified by introducing quasi-neutral condition: nsi

∼= nse = ns.
The ion fluid equations are similar to (3) and (4), except that the subscript e is changed to i, and the
charge −e changed to e. Moreover, the collision terms νeve and νivi are replaced by νei(ve − vi) and
νie(vi − ve) + νinvi in the electron and ion fluid equations, respectively, where νin is the ion-neutral
collision frequency. The ion Landau damping rate νiL/2 ∼= (π/8)1/2(ω2

s/kzvs)(Te/Ti)3/2 exp(−ω2
s/2k2

zv
2
ti)

on the ion acoustic wave will be included through a phenomenological collision frequency in the ion
acoustic wave coupled mode equation by replacing νin by νin + νiL = νi, where vs = (Te/M)1/2. Also
included in the formulation is the electron thermal energy equation [7]

∂tTe + (2Te0/3)∇ · ve = (2/3ne)∇ · (κz∇z + κ⊥∇⊥)Te − 2νe(m/M) (Te − Te0) + 2νem
〈
v2
e

〉
/3 (9)

where κz = 3n0Te0/2mνe, κ⊥ = (νe/Ωe)2κz, and Te0 is the unperturbed electron temperature.
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Using the same procedure as that outlined in the early work [8], the coupled mode equation for the
low frequency mode in the collision case is derived to be{

∂3
t

{
(∂t + νes)

[
∂t(∂t + νi)− C2

s∇2
]
+ ΩeΩi∂t

}∇2
⊥

+Ω2
e

{(
∂2

t + Ω2
i

) [
∂t(∂t + νi)− C2

s∇2
]
+ Ω2

i C
2
s∇2

⊥
}∇2

z

}
(ns/n0)

= (m/M)
[(

∂2
t + Ω2

i

)∇2
z + ∂2

t∇2
⊥
]
[∂t(∂t + νes)∇⊥ · (ap⊥ +∇⊥δTe/m)

+Ω2
e(∂zapz − ∂t∇ · JB/n0)− Ωe∂t∇ · ap × ẑ

]
(10)

where Ωi is the ion cyclotron frequency, Cs = [(Te + 3Ti)/M ]1/2 the ion acoustic speed, vti = (Ti/M)1/2

the electron thermal speed, and M the ion (O+) mass; the coupling terms ap = 〈ve · ∇ve〉 and
JB = 〈neve〉 arise from plasma nonlinearities and can be expressed explicitly by taking the linear
part of the electron velocity response and the electron density response to the high frequency wave
fields; and δTe = Te−Te0 is the result of the differential Ohmic heating, which is significant only for the
field-aligned purely-growing modes and can be evaluated from (9). In the analyses, (8) and (10) can be
simplified for each considered parametric coupling process before being linearized and transformed to
the k-ω domain; the spatial and temporal variation of physical functions in (8) and (10) are assumed
to have the form of p = p exp[i(κ · r −$t)]. Thus (8) and (10) are converted to the coupled algebraic
equations, which are combined to derive the dispersion equation of a parametric instability, where κ
and $ = $r + ir are the appropriate wavevector and complex frequency of each physical quantity.

3.2. Analyses

Exemplified in the following are the decay of an O-mode EM dipole pump Ep (ω0, kp = 0) into a
Langmuir/upper hybrid sideband φ (ω, k) and an ion acoustic/lower hybrid decay mode ns (ωs, ks)
in the spatial region below the HF reflection height, where Ep = (x̂ + iŷ)Ep⊥ + ẑEpz + c.c.;
Ep⊥,z = (εp⊥,z/2) exp(−iω0t) and c.c. represents complex conjugate; thus, Ep = ẑEp +c.c. = ẑεp cosω0t
near the HF reflection height and Ep = (x̂ − iŷ)Ep + c.c. = εp(x̂ cosω0t − ŷ sinω0t) in the high-
latitude upper hybrid resonance region; φ and ns denote the sideband’s electrostatic potentials and
ion acoustic/lower hybrid mode’s density perturbation, respectively; k = ẑkz + x̂k⊥; frequency and
wavevector matching conditions lead to ω = ω0 − ω∗s and ks = −k.

3.2.1. Oscillating Two-stream Instability (OTSI)

3.2.1.1 Excitation of Langmuir Waves Together with Purely Growing Density Striations

From (8), the coupled mode equations for Langmuir sidebands φ1 (ω1, k1) and φ′1 (ω′1, k′1) are
{[

(∂t + νeh)2 + Ω2
e

] (
∂2

t + νeh∂t + ω2
p − 3v2

te∇2
)∇2 − Ω2

e(ω
2
p − 3v2

te∇2)∇2
⊥
}

φ1±

= ω2
p[(∂t + νeh)2 + Ω2

e]∂z〈Epns±/n0〉 (11)

where the notations φ1+ = φ1, φ1− = φ′1, and n∗s+ = ns = ns− are used.
The parallel (to the magnetic field) component of the wavevector of the short scale purely growing

mode is not negligibly small, thus the short scale purely growing mode, similar to the ion acoustic
mode, is also mainly driven by the parallel component of the ponderomotive force induced by the high
frequency wave fields. The coupled mode Equation (10) for the purely growing mode is reduced to

{(
∂2

t +Ω2
i

) [
∂t(∂t+νin)−C2

s∇2
]
+Ω2

i C
2
s∇2

⊥
}∇2

z(ns/n0)=(m/M)
[(

∂2
t +Ω2

i

)∇2
z+∂2

t∇2
⊥
]
∂zapz (12)

where apz = ∂z〈v2
ez/2〉 for the present case that Ep = ẑEp + c.c..

Equations (11) and (12) are transformed to the k-ω domain and combined to a dispersion equation
{(

γ2
s + Ω2

i

) [
γs(γs + νin) + k2

1C
2
s

]− Ω2
i k

2
⊥C2

s

}

= 2
(
e2/mM

)
k2

1 cos2 θ
(
γ2

s + Ω2
i cos2 θ

) {
∆ω2/

[
∆ω4 + ω2

0(2γs + νeh)2
]} |Ep|2, (13)

where ∆ω2 = ω2
p + 3k2

1v
2
te + Ω2

e sin2 θ − ω2
0, and θ = sin−1(k⊥/k1).
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We first set γs = 0 in (13) to determine the threshold condition of the instability. The threshold
field is obtained to be

εpth = 2|Ep(θ)|th =
(
2mM/e2

)1/2
Cs

[(
∆ω4 + ω2

0ν
2
eh

)
/∆ω2

]1/2
/ cos θ. (14)

Equation (14) shows that the threshold field of OTSI varies with the propagation angle θ and
wavelength λ1 of the Langmuir sidebands as well as the location of excitation. For each propagation
angle θ and wavelength λ1, the instability has the minimum threshold field

εpthm = 2|Ep(k1, θ)|m = 2
(
mM/e2

)1/2
Cs (ω0νeh)1/2 / cos θ (15)

when it is excited in a preferential layer at height h, with ω2
p(h) = ω2

p(k1, θ) = ω0(ω0 + νeh)− 3k2
1v

2
te −

Ω2
e sin2 θ, i.e., ∆ω2(k1, θ) = ω0νeh. In other words, the spectral lines of the Langmuir sidebands excited

by OTSI have an angular (θ) and a spectral (k1) distribution, as well as a spatial (h) distribution in a
finite altitude region. This minimum threshold field (15) increases with the oblique propagation angle
θ of (k1, θ) lines, but it is independent of k1. The altitude h of the preferentially excited region for (k1,
θ) lines moves downward as the oblique propagation angle θ of these lines increases.

The maximum growth rate γsM (k1, θ) of the instability and its excitation region are determined
by taking partial derivative of ∆ω2 on (13) and setting ∂γs/∂∆ω2 = 0 in the resultant. It leads to
∆ω2|m = ∆ω′2(k1, θ) = ω0(2γsM + νeh), and γ3

sM + γsMk2
1C

2
s − (νehk2

1C
2
s /2)(|Ep|2/|Ep(k1, θ)|2m) ∼= 0,

where γ2
sM À Ω2

i , ν2
eh are assumed (i.e., |Ep|2/|Ep(k1, θ)|2m À 1). This quadratic equation for γsM has

a real solution

γsM = (G + H)1/3 − (G−H)1/3, (16)

where G = [(k2
1C

2
s /3)3 + H2]1/2 and H = (νehk2

1C
2
s /4)(|Ep|2/|Ep(k1, θ)|2m).

The RHS of (16) can be simplified in two pump power regimes. In the moderate heating
power regime that |Ep|2/|Ep(k1, θ)|2m < 2k1Cs/νeh (i.e., γsM < k1Cs), (16) reduces to γsM ∼
(νeh/2)(|Ep|2/|Ep(k1, θ)|2m). On the other hand, it reduces to γsM ∼ (2H)1/3 in the strong power
regime that |Ep|2/|Ep(k1, θ)|2m > 2k1Cs/νeh (i.e., γsm > k1Cs). It is noted that the altitude h′1 of the
maximum growth rate layer (i.e., ω2

p(h
′
1) = ω2

p(h1) + 2ω0γsM ) is slightly higher than the altitude h1 of
the minimum threshold layer (i.e., h′1 > h1). The height difference is given by ∆h = h′−h ∼= 2γsML/ω0,
where L is the linear scale length of the plasma density distribution. It shows that the height of the
preferential (maximum growth rate) layer of the instability tends to shift upward from the matching
height of the instability sidebands as the heating power (i.e., γsM ) increases. However, in the moderate
power regime this shift is negligibly small.

3.2.1.2 Excitation of Upper Hybrid Waves φ1± ((ω1, ±k1) Together with Field-aligned Density
Irregularities ns (ωs = iγs, ks = −k1)

Under the assumption that |kz/k⊥| ∼ 0, the dispersion equation is derived from combining (8) and (10)
to be [(

γs + 2νem/M + νek
2
1v

2
te/Ω2

e

) (
γsΩeΩi/νes + k2

1C
2
s

)
+ γsk

2
1C

2
s /3

] (
ω2

0ν
2
eh + Γ2

)

= 2νeh

(
4e2/3mM

)
k2

1(1− Ωe/ω0)2
[
Γ− ν2

eh − ω2
0k

2
1/2k2

D

] |Ep|2 (17)

where Γ = ω2
uk − ω2, ω2

uk = ω2
u + 3k2

1v
2
te , ω2

u = ω2
p + Ω2

e, and kD = ωp/vte .
Set γs = 0 in (17), the threshold field εpth = 2|Ep|th of the instability is obtained to be

εpth = 2(Cs/e)
[
3mM

(
ω2

0ν
2
eh + Γ2

) (
2m/M + k2

1v
2
te/Ω2

e

)
/8 (1− Ωe/ω0)

2 (
Γ− ν2

eh − ω2
0k

2
1/2k2

D

)]1/2
(18)

The right hand side of (18) has to be positive, it leads to the condition that

Γ > ν2
eh + ω2

0k
2
1/2k2

D = a (19)

The threshold field for Γ = Γ0 = a + (a2 + ν2
eω2

0)
1/2 has the minimum value

εpthm = 2(Cs/e)
[
3mM

(
ω2

0ν
2
eh + Γ2

0

)
(2m/M + k2

1v
2
te/Ω2

e)/8(1− Ωe/ω0)2(a2 + ν2
ehω2

0)
1/2

]1/2
(20)
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The growth rate of the instability is obtained from (17) to be

γS = (νeh/2)
{

[b2 + 8(k2
1v

2
te/Ω2

e)(2m/M + k2
1v

2
te/Ω2

e)(|εP /εpthm|2 − 1)]1/2 − b
}

(21)

where b = 2m/M + 11k2
1v

2
te/3Ω2

e.

3.2.2. Parametric Decay Instabilities (PDI)

3.2.2.1 Decay to Langmuir and Ion Acoustic Waves

The dispersion equation is derived to be
[
ω2 + iνehω − ω2

kθ

] [
1 +

(
1− Ω2

e/ω2
)−1 (

Ω2
e/ω2

)
sin2 θ

] [
ω∗s (ω∗s − iνi)− k2C2

s

]

= ω2
p(e/mω)2(m/M)

{
1 +

(
1− Ω2

e/ω2
)−1 [

ωs

(
ω2

u − ω2
)
/ω2

pω
]
tan2 θ

}
[(kz|Epz|)

+ (1 + Ωe/ω)−1 (k⊥|Ep⊥|)
]2

(22)

where ω2
kθ = ω2

p + 3k2v2
te + Ω2

e sin2 θ and sin2 θ = k2
⊥/k2.

We now set ω = ωr + iγk and ωs = ωsr + iγk in (22) to evaluate the threshold field
εpth = 2Epth(k, θ) and growth rate γk(θ) of the instability excited at an arbitrary height h1, where
ω2

p(h1) = ω2
r − 3k2

1v
2
te − Ω2

e sin2 θ1 is the matching height of the (k1, θ1) Langmuir wave. In the general
case that when the sideband and decay wave of the instability are driven waves excited near the HF
reflection height, rather than eigen-modes of plasma, the threshold field and growth rate of the instability
are obtained to be

|Epth (k, θ; k1, θ1) | =
(
1 + ∆ω4

1/ω2
0ν

2
eh

)1/2 (mM/e2)1/2
(
νehνiωsrω

3
0

)1/2
/k cos θωp (23)

and

γk
∼=

[
(νehνi/4) (Ep/Epth)2 + (νeh − νi)2/16

]1/2
− (νeh + νi)/4 (24)

where ∆ω2
1 = ω2

kθ − ω2
r = 3(k2 − k2

1)v
2
te + Ω2

e(sin
2 θ − sin2 θ1); ω2

sr = k2C2
s − ωsrνi∆ω2

1/ωrνeh.
It is shown in (23) that the threshold field also varies with the propagation angle θ and wavelength

λ1 of the Langmuir sideband as well as the location of excitation. When the instability is excited at the
matching height h of its Langmuir sideband (k, θ) in the region between the HF reflection height and
the upper hybrid resonance layer, i.e., ∆ω1 = 0, the threshold field is the minimum given by

εpthm = 2 |Epth(k, θ)|m ∼= 2
(
mM/e2

)1/2 (
1− Ω2

e sin2 θ/ω2
0

)−1/2
[
1 +

(
1− Ω2

e/ω2
0

)−1 (
ωsr/ω2

pω0

)

×(Ω2
e cos2 θ − 3k2v2

te) tan2 θ
]−1/2

(νehνiωsrω
3
0)

1/2/ωpk cos θ (25)

3.2.2.2 Decay to Upper Hybrid Wave φ (ω, k) and Lower Hybrid Wave ns (ωs, ks = −k)

Use the similar approach to combine (8) and (10), under the condition |kz/k⊥| ¿ 1, it yields a dispersion
equation

(−Γ + iνeω)
[
ωs ∗2 −i(νes + νi/ξ)ω∗s − ω2

Lks

] ∼=
(
e2/mM

)
(Ωe/ω0)

2 [
3k2v2

te/ω∗s(ω0 + Ωe)
]
k2|Ep|2 (26)

where Γ = ω2
uk − ω2; ω2

Lks = ω2
LHξ + k2C2

s , ω2
LH = ω2

pi/(1 + ω2
p/Ω2

e) ∼= ΩeΩi and ξ = 1 +
(M/m)(k2

z/k2
⊥); νe = νei + νen, νes = νe + νeLs, and νeLs = (π/2)1/2(M/m)3/2[ω4

LHξ/k3v3
te(ξ −

1)1/2] exp[−Mω2
LHξ/2mk2v2

te(ξ − 1)]. We now set ω = ωuk + iγk and ωs = ωLks + iγk in (26) and
evaluate the threshold field εpth = 2e0th and the growth rate γk of the instability excited in upper
hybrid resonance region. Thus (26) reduces to

(2γk + νe) (2γk + νes + νi/ξ) = (e/mω2
0)

2(1 + Ωe/ω0)−1
(
3k2v2

te/ξ
)
k2|Ep|2 (27)



150 Kuo

and EpUth and γkU of the instability are determined to be

|EpU |th = (m/e) (1 + Ωe/ω0)
1/2 [νe (νes + νi/ξ)]1/2 (ξ/3)1/2

(
ω2

0/k2
1vte

)
(28)

and

γkU =
{

[νe(νes + νi/ξ)/4] (Ep/EpUth)2 + (νe − νes − νi/ξ)2 /16
}1/2

− (νe + νes + νi/ξ) /4 (29)

3.2.3. Langmuir Cascade

Langmuir waves excited by OTSI and PDI in the region below the HF reflection height can become
pump waves to excite new parametric instabilities, which generate frequency-downshifted Langmuir
waves to be their sidebands. This is called “Langmuir cascade”. Continuous cascade of Langmuir
waves through new parametric instabilities broadens the downshifted frequency spectrum of Langmuir
waves [9, 10]. Similar description is also applicable to the “upper hybrid cascade”. The permissible
number of cascade and the required pump threshold field vary with each cascade process characterized
by the low frequency decay mode. In the following, a Langmuir cascade process that involves an ion
acoustic wave as the decay mode is discussed. This three-wave coupling process is represented by

Langmuir Pump (k1, ω1) → Langmuir sideband (k2, ω2) + Ion acoustic wave (ks,ωs)

where k2 = k1 − ks and ω2 = ω1 − ω∗s .
Because HFPLs have a fixed k value, the cascade lines in the HFPLs are originated from different

heights, moving down sequentially. In the frequency spectrum of HFPLs, the first spectral peak having
the highest frequency at ω = ω1 is an OTSI line if ω1 = ω0, the heating wave frequency; if ω1 is
downshifted from ω0 by ∆ω = ω0 − ω1 = ωS0 = 2kRCs, where kR is the wavenumber of the probing
backscatter radar signal, then it is a PDI line; the subsequent spectral peaks at ω2, ω3, . . . correspond
to the first, second, . . . cascade lines. The cascade lines are recognized by doubling their frequency
downshift from the preceding lines to 2ωS0 . For example, if a spectrogram of HFPLs contains 7 spectral
peaks starting at ω = ω0, then the first two spectral peaks at ω = ω0 and ω0 − ωS0 are called OTSI
and PDI line, respectively. The remaining 5 spectral peaks at ω0 − (2n + 1)ωS0 , n = 1, . . ., 5 are called
cascade lines and are attributed to the PDI process. Therefore, the spectral width of HFPLs is about
11ωS0 .

3.2.4. Filamentation Instability

A large-amplitude wave propagating in plasma can breakup into filaments because of the filamentation
instability [11]. This occurs from small perturbations of the plasma density, which result in a modulation
of the plasma dielectric constant and wave distribution. This in turn increases the density perturbation.
Filamentation instability can be excited by the HF heater directly, that is termed electromagnetic
filamentation instability [12], as well as by the plasma waves (such as Langmuir wave and upper hybrid
wave), that is termed electrostatic filamentation instability [6].

Similar to the OTSI, filamentation instability is also a four-wave coupling process involving purely
growing decay mode. The differences are that the spatial variation of the purely growing decay mode
in the filamentation instability is in the direction perpendicular, rather than parallel, to the wave
propagation direction and its scale length is much larger than that of the purely growing decay mode
excited by the OTSI. The purely growing decay modes of filamentation instabilities are either directly
excited in field-aligned nature (i.e., varying spatially in the direction perpendicular to the background
magnetic field) or evolved, after excitation, into field-aligned nature, which are termed field-aligned
density irregularities (FAIs). Short to medium scale (i.e., less than 100 meters) FAIs cause intense
bistatic scattering and backscattering of ground-based HF/VHF/UHF radar signals [13]. The large
scale FAIs (i.e., larger than a few hundred meters) cause virtual height spread of the sounding echoes
in the ionogram, known as (artificial) spread-F, and scintillation of the beacon satellite signals [14].

In HF heating experiments, HF heaters generate large-scale FAIs directly via electromagnetic
filamentation instability [12, 15, 16]. Sheet-like large-scale FAIs [17] were observed. Those in short
to medium scale sizes are generated via electrostatic filamentation instabilities [6], which are excited by
the high frequency sidebands of the PDI and OTSI.
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4. NONLINEAR SCHRODINGER EQUATION FOR LANGMUIR WAVES

Near the O-mode reflection height, the pump wave and the dominant parts of parametrically excited
plasma waves are polarized in parallel and nearly parallel to the geomagnetic field. In essence, these
waves evolve in unmagnetized plasma. In the following, unmagnetized fluid equations will be combined
into two; one describes the Langmuir wave and the other one for the ion wave, which are coupled to
each other due to the nonlinear nature of the plasma. We will introduce some assumptions and make
approximations accordingly to combine these two equations into a single one describing the nonlinear
Langmuir waves.

4.1. Coupled Nonlinear Equation for the Langmuir Wave

The coupled mode equation for the Langmuir wave is derived from (3) to (5), in which the magnetic
field term (the second term on the LHS) of (4) is removed and (5) is rewritten as

∇ ·E = −4πe(ne − n̂) = −4πeδne (30)
where ne = n0 +δne +ns; n̂ = n0 +ns; n0, δne, and ns are the unperturbed plasma density and electron
density perturbations associated with Langmuir waves and ion waves, respectively. Apply the operation
(∂t + νe) to (3), i.e., (∂t + νe) (3), and with an aid of (4), we obtain

∂t(∂t + νe)δne −∇ · (3v2
te∇δne) = 〈∇ · (∇ · neveve) + (e/me)∇ · (neE)〉 (31)

where 〈 〉 stands for a filter, which keeps only terms in the same frequency range. Thus,
〈∇ · (neE)〉 = n0∇ ·E +∇ · (nsE) (32)

Substitute (32) into (31) and with the aid of (30), a governing equation for the Langmuir wave field
E is derived to be[

∂t (∂t + νe) + ω2
p − 3v2

te∇2
]
E = −4πe〈∇· (neveve)〉 −

(
ω2

p/n0

)
(nsE) (33)

This is the nonlinear mode equation of the Langmuir wave. The nonlinear nature of the equation
is shown implicitly by the two terms on the RHS of (33). The second term on the RHS of (33) depends
explicitly on the density perturbation of the ion wave and manifests the coupling between Langmuir
waves and ion waves. Therefore, the equation for the ion wave is needed and derived.

4.2. Coupled Nonlinear Equation for the Ion Wave

We combine the momentum equations of electron and ion fluids by adding them together. The electric
field terms and electron-ion collision terms in the two equations are cancelled; and the electron inertial
term me∂tve and the ion convective term mivi · ∇vi, which are small comparing to their respective
counterpart, can be neglected. The result is

mi(∂t + νin) vi + meve · ∇ve = −n−1
0 ∇(Pe + Pi) (34)

With the aid of the quasi-neutrality, the relation ve · ∇ve = ∇(v2
e/2), and the continuity equation

∂tns +∇ · (n0vi) = 0, (34) becomes[
∂t(∂t + νin)− C2

s∇2
]
(ns/n0) = (me/mi)∇2

〈(
v2
e/2

)〉
(35)

where the implicit nonlinear term on the RHS of (35) can be expressed explicitly in terms of the
Langmuir wave field E. In other words, through the nonlinearity of plasma, ion waves are driven by
the Langmuir waves.

4.3. Assumptions and Approximations

Consider only low frequency off-resonant ion waves, which are directly driven by the Langmuir waves.
We can assume that |∂t(∂t + νin)(ns/n0)| ¿ |C2

s∇2(ns/n0)| and (10) is approximated to obtain
(ns/n0) ∼= −(me/mi)〈(v2

e/2)〉/C2
s . Moreover, we will assume that |〈(∇·(neveve)〉| ¿ |(ω2

p/4πen0)(nsE)|.
This assumption imposes an upper bound on the amplitude and lower bound on the scale length of a
nonlinear Langmuir wave governed validly by the equation in the formulation. Thus (33) reduces to[

∂t(∂t + νe) + ω2
p − 3v2

te∇2
]
E =

(
ω2

pi/C2
s

) 〈(
v2
e/2

)〉
E (36)



152 Kuo

4.4. Derivation of Nonlinear Schrodinger Equation for Langmuir Waves

Set E = ε(ξ, τ) exp[−i(ω1t − k1z)] + c.c., where ξ = k1z − τ , τ = k1vgt, vg = ∂kω|ω1,k1 = 3k1v
2
te/ω1,

and ε (ξ, τ) is the envelope of the wave, ω1 and k1 are the carrier frequency and wavenumber, and c.c.
stands for complex conjugate, thus ve

∼= −i[eε(ξ, τ)/meω1] exp[−i(ω1t − k1z)] + c.c.; and take forward
wave approximation, (36) reduces to

−1/2∂2
ξ a +

(
Vl −A|a|2) a = i∂τa (37)

where a = eε/meω1vte , Vl = −∆ω2/6k2
1v

2
te , ∆ω2 = ω2 − (ω2

p + 3k2v2
te), and A = (ω2

pi/6k2
1C

2
s ).

Equation (37) is a nonlinear Schrodinger equation, where the wave function a (ξ, τ) represents the
envelope of Langmuir waves [18, 19]. The third term on the LHS of (37) is a cubic nonlinear term. In
the Hamiltonian representation, this term, Vl − A|a|2, represents a potential operator of the system,
where Vl is a linear potential function and −A|a|2 is a self-induced nonlinear potential function. The
total potential function (Vl −A|a|2) varies with the intensity of the wave function, thus it is possible to
trap the wave function in self-induced potential well. When this occurs, the package of Langmuir waves
evolves into a localized nonlinear wave having an envelope called “Soliton” to be demonstrated in the
following.

4.5. Analysis

Let a (ξ, τ) = F (ξ)e−i($τ+Φ), where F (ξ) is a real function, then (37) reduced to

F ′′ + ΛF + 2AF 3 = 0 (38a)

where F ′′ = d2
ξF and Λ = 2($ − Vl).

Consider F as the spatial coordinate of an unit mass object in an one dimensional space,
Equation (38a) represents an equation of motion of the object, in which the acceleration is given to be
−(ΛF + 2AF 3). This equation is integrated to be

1/2(F ′)2 + 1/2
(
ΛF 2 + AF 4

)
= C1 (38b)

where the integration constant C1 = 1/2[F ′2(0) + ΛF 2(0) + AF 4(0)].
Equation (38b) is the energy conservation equation describing the trajectory of the object in the

potential field V E = 1/2(ΛF 2 + AF 4) = TE − KE, where the total energy TE = C1 and kinetic
energy KE = 1/2(F ′)2. Two typical plots of the potential function in the cases of Λ > 0 and Λ < 0 are
exemplified in Fig. 3(a). As shown, both plots represent potential wells.

(a) (b)

Figure 3. (a) Two potential distributions showing three type potential wells and (b) three periodic
solutions corresponding to the three periodic trajectories trapped in the three type potential wells shown
in (a).

In the case of Λ > 0, the potential well traps objects with C1 > 0; the trapped object is bounced
back and forth in the potential well to have a periodic trajectory Fp1(ξ), illustrated in Fig. 3(b), which
is a symmetric alternate function. In the case of Λ < 0, the potential well traps objects with C1 > 0 as
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well as with 1/2(ΛF 2
m + AF 4

m) < C1 < 0. For C1 > 0, the bounce motion of the object has a periodic
trajectory Fp2(ξ), which is a symmetric alternate function as illustrated in Fig. 3(b). On the other
hand, as shown in Fig. 3(b), the periodic trajectory Fp3(ξ) of the object for 1/2(ΛF 2

m +AF 4
m) < C1 < 0

is a non-alternate function. Moreover, there is also exists a non-periodic trajectory for C1 = 0 in the
case of Λ < 0. Let the object start at F = F1(= 0) and exam the motion of the object in the region
between F1 and F2. Initially, it moves very slowly to the right. As it drops into the potential well, it
moves quickly toward the potential minimum at Fm. After passing the potential minimum, the object
starts to climb up to the turning point at F = F2, where the object is bounced back into the potential
well. It quickly passes the potential minimum and then climbs up toward the starting point F1. It takes
a long time for the object to reach F1, where the object stays. This represents a solitary trajectory to
be shown in the following.

4.5.1. Analytical Periodic Solutions

As illustrated in Fig. 3, the solution of (38b) for C1 6= 0 is periodic. The analytical solutions of (38a)
are also found in a few special cases as illustrated in the following.

(1) For $ > 0. Let η1 = (2$)1/2ξ and F (ξ) = F1y(η1), (38a) is normalized to

y′′ + (1− Vl/$) y +
(
AF 2

1 /$
)
y3 = 0 (39a)

where y′′ = d2y/dη2
1. For Vl = AF 2

1 , i.e., F 2
1 = −(∆ω2Cs/ω2

piv
2
te), the solution of (39a) is a Jacobi

elliptic function cn(η1, γ1), where γ1 = (Vl/2$)1/2. Because F 2
1 > 0, it requires that ∆ω2 < 0; namely,

the nonlinear periodic solution exists in the region above the matching height.
(2) For $ < 0 and ∆ω2 > 0. Let η2 = (2|Vl|)1/2ξ and F (ξ) = F2y(η2), (38a) is normalized to

y′′ + (1− |$|/|Vl|)y +
(
AF 2

2 /|Vl|
)
y3 = 0 (39b)

where y′′ = d2y/dη2
2. For |$| = AF 2

2 , i.e., F 2
2 = (6|$|k2

1C
2
s /ω

2)
pi , the solution of (39b) is a Jacobi elliptic

function cn(η2, γ2), where γ2 = (|$/2Vl|)1/2.
(3) For $ = 0 and ∆ω2 < 0. Let η3 = (Vl)1/2ξ and F (ξ) = F3y(η3), (38a) is normalized to

y′′ − 2y +
(
2AF 2

3 /Vl

)
y3 = 0 (39c)

where y′′ = d2y/dη2
3. For Vl = AF 2

3 , i.e., F 2
3 = −(∆ω2Cs/ω2

piv
2
te), the solution of (39c) is a Jacobi

elliptic function dn(η3, 0).

4.5.2. Solitary Solution

Consider a localized solution of (38a), it requires that F = 0 = F ′ as |ξ| → ∞. Thus, C1 = 0, and (38b)
is re-expressed to be

F ′2 − αF 2 + AF 4 = 0 (40)

where α = −Λ = 2(Vl −$). A solitary solution of (40) is given by

F (ξ) = (α/A)1/2sech
√

αξ (41)

subject to α > 0; it requires that ∆ω2 < −6$k2
1v

2
te . Again, it exists in the region above the matching

height as well as higher than that of the nonlinear periodic solution.
Soliton is the result of the balance between the dispersion effect (represented by the second term on

the LHS of (37) and the nonlinearity (represented by the third term on the LHS of (37) of the medium.
The nonlinearity of the medium focuses the wave to overcome the wave dispersion in the propagation,
thus a shape-preserved solitary wave can exist. It is noted that the solitary solution exists only under
the condition $ < Vl, i.e., the wave energy is less than the linear potential energy. Because soliton is
a localized entity, several solitons can appear simultaneously and interact each other in the transient
period [20].

It is shown that plasma can support Langmuir soliton, but Langmuir soliton is not a necessity
of the plasma nonlinearity; the solution form of the nonlinear Schrodinger equation, either a periodic
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function or a solitary function, depends on the initial/boundary conditions of the source wave function.
In heating experiments, heating wave covers a large cross section area (a few tens of km in diameter).
Therefore, under the normal condition, it is not likely to excite localized Langmuir waves as the source
waves to evolve nonlinearly into Langmuir solitons.
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