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Simple Relations between a Uniaxial Medium
and an Isotropic Medium

Saffet G. Şen*

Abstract—In this article, in a simple way, simple relations are derived between the electric field
components of an electrically uniaxial medium and those of an isotropic medium. The permittivity of
the isotropic medium is the same as the permittivity of the uniaxial medium that is common to the axes
transverse to the optic axis. Using the spectral representation, the vector wave equation for the electric
field intensity vector of the uniaxial medium is solved for the x directed, y directed and z directed point
sources. For the x directed and y directed point sources, the electric field components transverse to the
optic axis are written in terms of the corresponding components of the isotropic medium plus some other
terms. Part of these terms are closed forms expressions, and the rest are Sommerfeld type integrals.
Elements of each group are related to each other by coordinate transformations. The electric field
components parallel to the optic axis are shown to be obtained from the isotropic medium components
using coordinate transformations. The relations between the uniaxial medium and isotropic medium
field components are verified by comparing the results of a previous study in the literature to the results
obtained using the relations in this study. Good agreement is achieved between these results.

1. INTRODUCTION

Anisotropic materials are materials whose electromagnetic properties depend on the direction. An
electrically uniaxial material is a special case of anisotropic materials. An electrically uniaxial material
has a permittivity along its distinguished or optic axis which is different from the common permittivity
in the directions of the other two axes.

Anisotropic materials have a wide application range in technology. Microwave integrated circuits,
resonators, microstrip antennas are some of the application areas. A great amount of literature on
anisotropic materials exists. Some of the studies on the propagation of electromagnetic waves in
homogeneous uniaxial media are given in [1–4]. In [1], using some coordinate variable transformations
in Maxwell’s equations, equivalence is established between TM z electromagnetic waves in electrically
uniaxial media and TM z waves in isotropic media. A similar equivalence is built for TE z electromagnetic
waves. In [2], electrically uniaxial medium is studied in a separate chapter. The relations between the
electrically uniaxial medium fields and isotropic medium fields are described by using scalar potential
functions. The scalar potentials for the electrically uniaxial medium are expressed in terms of scalar
potentials for the isotropic medium. In [3], the dyadic Green’s functions for an electrically uniaxial
medium are determined in closed forms using the 3-dimensional Fourier transform. In [4], the dyadic
Green’s functions are derived for a general uniaxial medium, i.e., a medium which is magnetically and
electrically uniaxial medium, by solving a dyadic differential equation. Apart from these articles, the
free-space Green functions for several types of anisotropic media are studied in the references [8–28].
The basics of uniaxial media are given in the books in [2, 3, 5–7].

In this article, the Green’s functions for the components of the electric field for an electrically
uniaxial medium are found for three kinds of point sources, an x directed point source, a y directed
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point source and a z directed point source. They are related to the Green’s functions of the isotropic
medium with a permittivity the same as the permittivity of the uniaxial medium that is common to the
axes transverse to the optic axis. The solution is made using the spectral representation method given
in [5]. Each of the Green’s functions contains a term which is a scaled version of the corresponding
isotropic medium Green’s function. For the components transverse to the optic axis, there is another
term which is a Sommerfeld type integral, and the rest of the terms are in closed form. Sommerfeld
integral type terms are convertible to each other by using coordinate scalings. The same conversion is
possible for the closed form terms.

In Section 2, spectral domain wave equations are derived for the electric field components of the
uniaxial medium. In Section 3, these spectral domain equations are solved for three basic point source
configurations. In Section 4, the relations obtained are verified by comparing their results to those
obtained from the closed form expressions given in [4]. Good agreement is obtained except for the field
points with zenith angle θ close to 0.

2. SPECTRAL DOMAIN WAVE EQUATIONS

For the electrically uniaxial medium with its distinguished axis in the ẑ direction, first two of the
Maxwell’s equations can be written in the following form assuming the time harmonic dependence of
e−jωt:

~∇× ~E = jωµ ~H (1)
~∇× ~H = ~J − jω¯̄ε · ~E (2)

In these equations, ~E is the electric field intensity vector, ~H the magnetic field intensity vector, and ~J
the electric current density vector. The scalar µ is the permeability of the medium, and the tensor ¯̄ε is
the permittivity tensor of the medium given by

¯̄ε = x̂x̂ε + ŷŷε + ẑẑεz (3)
ω is the angular frequency and j the imaginary unit. Taking the curl of both sides of Equation (1) and
using the Gauss law given by

~∇ ·
(
¯̄ε · ~E

)
=

1
jω

~∇ · ~J, (4)

the following wave equation is obtained for ~E:

∇2 ~E + ω2µ¯̄ε · ~E + ~∇~∇.

[
ẑ
(εz − ε)

ε
Ez

]
= −jωµ ~J + ~∇

(
~∇ · ~J

jωε

)
(5)

The spectral representation or 3-dimensional inverse Fourier transform of a scalar F is defined as
follows [5]:

F (x, y, z) =
1

(2π)3

∫∫∫ ∞

−∞
F̃ (kx, ky, kz) ej~k·~rd~k (6)

where F̃ is the spectral domain form of F and
~k = x̂kx + ŷky + ẑkz, ~r = x̂x + ŷy + ẑz, d~k = dkxdkydkz (7)

If the spectral expansion is applied to Equation (5), then the following three equations are obtained:
(−k2 + ω2µε

)
Ẽx +

(εz − ε)
ε

(−kxkz) Ẽz =
(
−jωµ− k2

x

jωε

)
J̃x − kxky

jωε
J̃y − kxkz

jωε
J̃z (8)

(−k2 + ω2µε
)
Ẽy +

(εz − ε)
ε

(−kykz) Ẽz =

(
−jωµ− k2

y

jωε

)
J̃y − kxky

jωε
J̃x − kykz

jωε
J̃z (9)

(−k2 + ω2µε
)
Ẽz +

(εz − ε)
ε

(−k2
z

)
Ẽz =

(
−jωµ− k2

z

jωε

)
J̃z − kxkz

jωε
J̃x − kykz

jωε
J̃y (10)

where
k2 = k2

x + k2
y + k2

z (11)
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3. BASIC POINT SOURCE CONFIGURATIONS

In this section, the spectral domain wave equations are to be solved for basic point source configurations.
They are the x̂ directed, ŷ directed and ẑ directed point source configurations.

3.1. x̂ Directed Point Source

The x̂ directed point source is given as follows:

~J = x̂Ilδ (x) δ (y) δ (z) (12)

where
Il = 1A ·m (13)

The spectral domain representation for this source is

J̃x = 1, J̃y = 0, J̃z = 0 (14)

If the spectral domain equations are solved for this point source, then the following expressions are
obtained for spectral ~E components:

Ẽxxuni =
jωµ

(kz − kz1) (kz − kz2)
− jωµ

(kz − kz3) (kz − kz4)

−
jωµ

k2
x

k2
x + k2

y

(kz − kz1) (kz − kz2)
+

jωµ
k2

x

k2
x + k2

y

(kz − kz3) (kz − kz4)
+

jωµ +
k2

x

jωεz

(kz − kz3) (kz − kz4)
(15)

Ẽyxuni =
−jωµ

kxky

k2
x + k2

y

(kz − kz1) (kz − kz2)
+

jωµ
kxky

k2
x + k2

y

(kz − kz3) (kz − kz4)
+

1
jωεz

kxky

(kz − kz3) (kz − kz4)
(16)

Ẽzxuni =

1
jωεz

kxkz

(kz − kz3) (kz − kz4)
(17)

where

kz1 =
√

ω2µε− k2
x − k2

y, kz2 = −
√

ω2µε− k2
x − k2

y (18)

kz3 =
√

ω2µε− ε

εz
k2

x −
ε

εz
k2

y, kz4 = −
√

ω2µε− ε

εz
k2

x −
ε

εz
k2

y (19)

The kz integration in the spectral representation is performed by the residue integration indicated in [5]
to obtain the following integrals:

Exxuni = Ixx1 − Ixx2 − Ixx3 + Ixx4 + Ixx5 (20)

Ixx1 =
(
− ωµ

8π2

)∫∫ ∞

−∞

ejkz1 |z|ej~kt·~rt

kz1

d~kt = jωµ
ejkr

4πr
(21)

Ixx2 =
(
− ωµ

8π2

)∫∫ ∞

−∞

ejkz3 |z|ej~kt·~rt

kz3

d~kt (22)

Ixx3 =
(
− ωµ

8π2

)∫∫ ∞

−∞

k2
x

k2
x + k2

y

kz1

ejkz1 |z|ej~kt·~rtd~kt (23)

Ixx4 =
(
− ωµ

8π2

)∫∫ ∞

−∞

k2
x

k2
x + k2

y

kz3

ejkz3 |z|ej~kt·~rtd~kt (24)
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Ixx5 =
j

8π2

∫∫ ∞

−∞

jωµ +
k2

x

jωεz

kz3

ejkz3 |z|ej~kt·~rtd~kt (25)

Eyxuni = Iyx1 + Iyx2 + Iyx3 (26)

Iyx1 =
ωµ

8π2

∫∫ ∞

−∞

kxky

k2
x + k2

y

kz1

ejkz1 |z|ej~kt·~rtd~kt (27)

Iyx2 =
(
− ωµ

8π2

)∫∫ ∞

−∞

kxky

k2
x + k2

y

kz3

ejkz3 |z|ej~kt·~rtd~kt (28)

Iyx3 =
1

8π2ωεz

∫∫ ∞

−∞

kxky

kz3

ejkz3 |z|ej~kt·~rtd~kt (29)

Ezxuni = Izx1 =
1

8π2ωεz

∫∫ ∞

−∞

|z|
z

kxejkz3 |z|ej~kt·~rtd~kt (30)

In the above integrals, the following definitions are used:
~kt = x̂kx + ŷky, ~rt = x̂x + ŷy, d~kt = dkxdky (31)

Each of the integral groups contains some integrals which are not totally independent of each other.
Using the variable transformations given by

kx =
√

ε

εz
k′x, ky =

√
ε

εz
k′y, (32)

the following relations can be derived:

Ixx2 (x, y, z) =
(εz

ε

)
Ixx1

(√
εz

ε
x,

√
εz

ε
y, z

)
(33)

Ixx4 (x, y, z) =
(εz

ε

)
Ixx3

(√
εz

ε
x,

√
εz

ε
y, z

)
(34)

Iyx2 (x, y, z) = −
(εz

ε

)
Iyx1

(√
εz

ε
x,

√
εz

ε
y, z

)
(35)

In addition to these symmetry relations, some integrals are related with the spectral field components
for the isotropic medium with permittivity ε. If the spectral domain scalar wave equations are solved
for the isotropic medium, then the following integrals are obtained for the electric field components:

Exxiso =
j

8π2

∫∫ ∞

−∞

jωµ +
k2

x

jωε

kz1

ejkz1 |z|ej~kt·~rtd~kt (36)

Eyxiso =
1

8π2ωε

∫∫ ∞

−∞

kxky

kz1

ejkz1 |z|ej~kt·~rtd~kt (37)

Ezxiso =
1

8π2ωε

∫∫ ∞

−∞

|z|
z

kxejkz1 |z|ej~kt·~rtd~kt (38)

Utilizing the variable transformation in (32), the following relations can be written:

Ixx5 =
(εz

ε

)
Exxiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(39)

Iyx3 =
(εz

ε

)
Eyxiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(40)

Ezxuni =
√

εz

ε
Ezxiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(41)
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Sommerfeld integral forms are to be derived by applying a series of variable transformations followed
by the application of an integral identity for Bessel functions of the first kind as indicated in [5]. The
variable transformations and related expressions are as follows:

kx = kρ cos (α) , ky = kρ sin (α) (42)
~kt · ~rt = kρρ cos (α− φ) , dkxdky = kρdkρdα (43)

x = ρ cos (φ) , y = ρ sin (φ) (44)

The identity for the Bessel functions of the first kind is given by

Jn (kρρ) ejnφ =
1
2π

∫ 2π

0
ejkρρ cos(α−φ)+jnα−jn π

2 dα (45)

In the Sommerfeld integrals, the integration path denoted by P is the Sommerfeld integration path, and
the branch of the square root relation used for the calculations of kz1 is the Im {kz1} = 0 branch [5].

Ixx3 =
jωµ

8π

ejkr

r
+

[
ωµ cos (2φ)

16π

] ∫

P

kρ

kz1

H
(1)
2 (kρρ) ejkz1 |z|dkρ (46)

Iyx1 =
[
−ωµ sin (2φ)

16π

] ∫

P

kρ

kz1

H
(1)
2 (kρρ) ejkz1 |z|dkρ (47)

Hence, x component of the uniaxial medium electric field can be related to that of the isotropic medium
electric field as follows:

Exxuni = Ixx1 − Ixx2 − Ixx3 + Ixx4 + Ixx5 (48)

where

Ixx1 (x, y, z) = jωµ
ejkr

4πr
(49)

Ixx2 (x, y, z) =
(εz

ε

)
Ixx1

(√
εz

ε
x,

√
εz

ε
y, z

)
(50)

Ixx3 =
jωµ

8π

ejkr

r
+

[
ωµ cos (2φ)

16π

] ∫

P

kρ

kz1

H
(1)
2 (kρρ) ejkz1 |z|dkρ (51)

Ixx4 (x, y, z) =
(εz

ε

)
Ixx3

(√
εz

ε
x,

√
εz

ε
y, z

)
(52)

Ixx5 (x, y, z) =
(εz

ε

)
Exxiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(53)

As to y component of the uniaxial medium electric field, the following equations are valid:

Eyxuni = Iyx1 + Iyx2 + Iyx3 (54)

where

Iyx1 =
[
−ωµ sin (2φ)

16π

] ∫

P

kρ

kz1

H
(1)
2 (kρρ) ejkz1 |z|dkρ (55)

Iyx2 (x, y, z) = −
(εz

ε

)
Iyx1

(√
εz

ε
x,

√
εz

ε
y, z

)
(56)

Iyx3 (x, y, z) =
(εz

ε

)
Eyxiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(57)

3.2. ŷ Directed Point Source

The ŷ directed point source is given as follows:

~J = ŷIlδ (x) δ (y) δ (z) (58)
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where
Il = 1A ·m (59)

The spectral domain representation for this source is

J̃x = 0, J̃y = 1, J̃z = 0 (60)
If the spectral domain equations are solved for this point source, then the following expressions are
obtained for spectral ~E components:

Ẽxyuni =
−jωµ

kxky

k2
x + k2

y

(kz − kz1) (kz − kz2)
+

jωµ
kxky

k2
x + k2

y

(kz − kz3) (kz − kz4)
+

1
jωεz

kxky

(kz − kz3) (kz − kz4)
(61)

Ẽyyuni =
jωµ

(kz − kz1) (kz − kz2)
− jωµ

(kz − kz3) (kz − kz4)

−
jωµ

k2
y

k2
x + k2

y

(kz − kz1) (kz − kz2)
+

jωµ
k2

y

k2
x + k2

y

(kz − kz3) (kz − kz4)
+

jωµ +
k2

y

jωεz

(kz − kz3) (kz − kz4)
(62)

Ẽzyuni =

1
jωεz

kykz

(kz − kz3) (kz − kz4)
(63)

If kz integration in the spectral representation is performed, the following expressions are obtained:
Exyuni = Ixy1 + Ixy2 + Ixy3 (64)

Ixy1 =
ωµ

8π2

∫∫ ∞

−∞

kxky

k2
x + k2

y

kz1

ejkz1 |z|ej~kt·~rtd~kt (65)

Ixy2 =
(
− ωµ

8π2

)∫∫ ∞

−∞

kxky

k2
x + k2

y

kz3

ejkz3 |z|ej~kt·~rtd~kt (66)

Ixy3 =
1

8π2ωεz

∫∫ ∞

−∞

kxky

kz3

ejkz3 |z|ej~kt·~rtd~kt (67)

Eyyuni = = Iyy1 − Iyy2 − Iyy3 + Iyy4 + Iyy5 (68)

Iyy1 =
(
− ωµ

8π2

)∫∫ ∞

−∞

ejkz1 |z|ej~kt·~rt

kz1

d~kt = jωµ
ejkr

4πr
(69)

Iyy2 =
(
− ωµ

8π2

)∫∫ ∞

−∞

ejkz3 |z|ej~kt·~rt

kz3

d~kt (70)

Iyy3 =
(
− ωµ

8π2

)∫∫ ∞

−∞

k2
y

k2
x + k2

y

kz1

ejkz1 |z|ej~kt·~rtd~kt (71)

Iyy4 =
(
− ωµ

8π2

)∫∫ ∞

−∞

k2
y

k2
x + k2

y

kz3

ejkz3 |z|ej~kt·~rtd~kt (72)

Iyy5 =
j

8π2

∫∫ ∞

−∞

jωµ +
k2

y

jωεz

kz3

ejkz3 |z|ej~kt·~rtd~kt (73)

Ezyuni = Izy1 =
1

8π2ωεz

∫∫ ∞

−∞

|z|
z

kye
jkz3 |z|ej~kt·~rtd~kt (74)
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Similar to the case for the x̂ directed source, the following relations can be written:

Ixy2 (x, y, z) = −
(εz

ε

)
Ixy1

(√
εz

ε
x,

√
εz

ε
y, z

)
(75)

Iyy2 (x, y, z) =
(εz

ε

)
Iyy1

(√
εz

ε
x,

√
εz

ε
y, z

)
(76)

Iyy4 (x, y, z) =
(εz

ε

)
Iyy3

(√
εz

ε
x,

√
εz

ε
y, z

)
(77)

If the spectral domain equations are solved for the isotropic medium with permittivity ε for the y
directed point source, then the following integrals can be derived:

Exyiso =
1

8π2ωε

∫∫ ∞

−∞

kxky

kz1

ejkz1 |z|ej~kt·~rtd~kt (78)

Eyyiso =
j

8π2

∫∫ ∞

−∞

jωµ +
k2

y

jωε

kz1

ejkz1 |z|ej~kt·~rtd~kt (79)

Ezyiso =
1

8π2ωε

∫∫ ∞

−∞

|z|
z

kye
jkz1 |z|ej~kt·~rtd~kt (80)

Comparing the isotropic medium solutions with the uniaxial medium solutions yields the following
equations:

Ixy3 =
(εz

ε

)
Exyiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(81)

Iyy5 =
(εz

ε

)
Eyyiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(82)

Ezyuni =
√

εz

ε
Ezyiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(83)

After the Sommerfeld integral representations of integrals Ixy1 and Iyy3 are derived, the following
equations can be written:

Ixy1 =
[
−ωµ sin (2φ)

16π

] ∫

P

kρ

kz1

H
(1)
2 (kρρ) ejkz1 |z|dkρ (84)

Iyy3 =
jωµ

8π

ejkr

r
−

[
ωµ cos (2φ)

16π

] ∫

P

kρ

kz1

H
(1)
2 (kρρ) ejkz1 |z|dkρ (85)

Hence, x and y components of the electric field for the uniaxial medium can be written as follows:

Exyuni = Ixy1 + Ixy2 + Ixy3 (86)

where

Ixy1 =
[
−ωµ sin (2φ)

16π

] ∫

P

kρ

kz1

H
(1)
2 (kρρ) ejkz1 |z|dkρ (87)

Ixy2 (x, y, z) = −
(εz

ε

)
Ixy1

(√
εz

ε
x,

√
εz

ε
y, z

)
(88)

Ixy3 (x, y, z) =
(εz

ε

)
Exyiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(89)

Eyyuni = Iyy1 − Iyy2 − Iyy3 + Iyy4 + Iyy5 (90)
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where

Iyy1 (x, y, z) = jωµ
ejkr

4πr
(91)

Iyy2 (x, y, z) =
(εz

ε

)
Iyy1

(√
εz

ε
x,

√
εz

ε
y, z

)
(92)

Iyy3 =
jωµ

8π

ejkr

r
−

[
ωµ cos (2φ)

16π

] ∫

P

kρ

kz1

H
(1)
2 (kρρ) ejkz1 |z|dkρ (93)

Iyy4 (x, y, z) =
(εz

ε

)
Iyy3

(√
εz

ε
x,

√
εz

ε
y, z

)
(94)

Iyy5 (x, y, z) =
(εz

ε

)
Eyyiso

(√
εz

ε
x,

√
εz

ε
y, z

)
(95)

3.3. ẑ Directed Point Source

The ẑ directed point source is given as follows:
~J = ẑIlδ (x) δ (y) δ (z) (96)

where
Il = 1A ·m (97)

The spectral domain representation for this source is

J̃x = 0, J̃y = 0, J̃z = 1 (98)
The spectral domain field components can be written as follows:

Ẽxzuni =

ε

εz

kxkz

jωε

(kz − kz3) (kz − kz4)
(99)

Ẽyzuni =

ε

εz

kykz

jωε

(kz − kz3) (kz − kz4)
(100)

Ẽzzuni =

ε

εz

(
jωµ +

k2
z

jωε

)

(kz − kz3) (kz − kz4)
(101)

After performing the kz integration in the spectral representation, the following two-dimensional integral
forms can be obtained for the electric field components:

Exzuni =
1

8π2ωεz

∫∫ ∞

−∞

|z|
z

kxejkz3 |z|ej~kt·~rtd~kt (102)

Eyzuni =
1

8π2ωεz

∫∫ ∞

−∞

|z|
z

kye
jkz3 |z|ej~kt·~rtd~kt (103)

Ezzuni =
(
− 1

8π2ωεz

) ∫∫ ∞

−∞

ω2µε− k2
z3

kz3

ejkz3 |z|ej~kt·~rtd~kt (104)

The counterparts of these expressions in the isotropic medium are

Exziso =
1

8π2ωε

∫∫ ∞

−∞

|z|
z

kxejkz1 |z|ej~kt·~rtd~kt (105)
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ejkz1 |z|ej~kt·~rtd~kt (107)
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If these two groups of expressions are compared to each other, then the following relations can be
derived:

Exzuni (x, y, z) =
√

εz

ε
Exziso

(√
εz

ε
x,

√
εz

ε
y, z

)
(108)

Eyzuni (x, y, z) =
√

εz

ε
Eyziso

(√
εz

ε
x,

√
εz

ε
y, z

)
(109)

Ezzuni (x, y, z) = Ezziso

(√
εz

ε
x,

√
εz

ε
y, z

)
(110)

In addition, the Sommerfeld integral forms for electric field components can be found as follows:

Exzuni =
j cos (φ)
8πωεz

∫

P

|z|
z

k2
ρH

(1)
1 (kρρ) ejkz3 |z|dkρ (111)
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j sin (φ)
8πωεz

∫

P

|z|
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(
− ε

8πωε2z

)∫

P

k3
ρ

kz1

H
(1)
0 (kρρ) ejkz3 |z|dkρ (113)

4. RESULTS

In this section, the validity of the formulas derived for the electric field components in an electrically
uniaxial medium are to be shown using numerical results. The reference to be used is the article by
Weiglhofer [4]. The sources are assumed at the origin of the coordinate system.

For x directed point source, the electric field is obtained in [4] as follows:

~Euni =
(
− 1

jωε

){
~∇

[
∂

∂x
ge (~r)

]
+ x̂ω2µε

εz

ε
ge (~r)

}
− jωµ
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ε
ge (~r)− gm (~r)

] x̂y2 − ŷxy

x2 + y2
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x̂− 2
x̂y2 − ŷxy

x2 + y2

)
rege (~r)− rmgm (~r)
jω
√

µε (x2 + y2)

}
(114)
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Figure 1. x directed point source, Ex versus φ for εrz = 2, R = 1 m.
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For y directed point source, the electric field is obtained in [4] as follows:

~Euni =
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− 1
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}
(115)

For z directed point source, the electric field is obtained in [4] as follows:

~Euni =
(
− 1

jωε

){
~∇

[
∂

∂z
ge (~r)

]
+ ẑω2µεge (~r)

}
(116)
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Figure 2. x directed point source, Ey versus φ for εrz = 2, R = 1 m.
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In the above expressions, the following definitions are valid:

re =

√
εz

(
x2

ε
+

y2

ε
+

z2

εz

)
(117)

rm =
√

x2 + y2 + z2 (118)

ge (~r) =
ejω

√
µεre

4πre
(119)

gm (~r) =
ejω

√
µεrm

4πrm
(120)

~r = x̂x + ŷy + ẑz (121)
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The results are obtained for x directed point source and z directed point source. No calculations are
made for y directed point source since they are similar to the x directed point source results. For
example, x component of the electrical field for y directed point source is the same as y component of
the electric field for x directed point source. The operation frequency is 1 GHz. The Sommerfeld type
integrals are calculated by the steepest descent method (SDM).

The permittivity tensor of the medium is
¯̄ε = ε0 (x̂x̂ 1 + ŷŷ 1 + ẑẑ 2) (122)

The distance coordinate of the field point in spherical coordinate system is chosen R = 1 m for results
which are versus varying azimuth angle φ of the field point. The zenith angle θ is equal to 60◦ for these

0 20 40 60 80

 -50

0

50 Weiglhofer
Article

0 20 40 60 80

 -50

0

50 Weiglhofer
Article

0 20 40 60 80

0

5.×10 -13

1.×10 -12

1.5×10 -12

2.×10 -12

2.5×10 -12

θ (Degrees)

R
e{

E
  }

 (
V

/m
)

%
 E

rr
or

 in
 |E

  | z

z

Im
{E

  }
  (

V
/m

)
z

θ (Degrees)

θ (Degrees)
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Figure 8. z directed point source, Ey versus θ for εrz = 2, R = 1 m.
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Figure 9. z directed point source, Ez versus θ for εrz = 2, R = 1m.

results, which are displayed in Fig. 1 to Fig. 3. If the results obtained with respect to the azimuth angle
φ are examined, it can be observed that they have got high accuracy for R = 1 m. The accuracy of the
results increases as εrz is increased, or the radial distance is increased.

For the results which are given versus the zenith angle θ of the field point, R is chosen 5m. The
reason of choosing minimum R as 5 m is that the results have low accuracy for θ closed to 0 when the
field points are close to the source. The azimuth angle φ is 5◦ for these results. The results which are
versus the zenith angle θ are given in Fig. 4 to Fig. 9. The results obtained with respect to the varying
zenith angle θ indicate that the SDM does not perform well for θ close to 0. The accuracy of the results
increases as εrz is increased, or the radial distance is increased. There is no accuracy problem for z
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components of the electric field for x directed and y directed point sources. The same case is valid
for the electric field components produced by the z directed point source. The reason is that they are
related to the isotropic field components by simple coordinate transformations.

5. CONCLUSION

In this article, the electric field components of an electrically uniaxial medium are related to those of
an isotropic medium with a permittivity the same as the permittivity of the uniaxial medium that is
common to the axes transverse to the optic axis using a simple method, i.e., the spectral representation
method. The obtained relations are also simple. They contain terms which are convertible to each other
by simple coordinate transformations. For the zenith angle θ not close to 0, the relations are verified
with high accuracy using the SDM method for Sommerfeld integral type terms.
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