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HRR Profiles Time-Frequency Non-Negative Sparse Coding
for SAR Target Classification
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Abstract—A new approach to classify synthetic aperture radar (SAR) targets is presented based on
high range resolution (HRR) profiles time-frequency matrix non-negative sparse coding (NNSC). Firstly,
SAR target images have been converted into HRR profiles. And the non-negative time-frequency matrix
for each of the profiles is obtained by using an adaptive Gaussian representation (AGR). Secondly, NNSC
is applied to learn target time-frequency basis of the training set. Feature vectors are constructed by
projecting each HRR profile time-frequency matrix to low dimensional time-frequency basis space.
Finally, the target classification decision is found with support vector machine and nearest neighbor
algorithm respectively. To demonstrate the performance of the proposed approach, experiments are
performed with Moving and Stationary Target Acquisition and Recognition (MSTAR) public release
SAR database. The experimental results support the effectiveness of the proposed technique for SAR
target classification.

1. INTRODUCTION

Synthetic aperture radar (SAR) is a coherent radar system which has the ability to produce high-
resolution remote sensing images in all-weather condition [1]. In order to achieve high cross-range
resolution, SAR collects data from multiple observation points, and focuses the echo coherently to
obtain a two-dimensional high-resolution description of the scene. Automatic Target Recognition (ATR)
systems using SAR sensors have been the subject of research in the area of military defense for many
years [2]. Due to the unique characteristics of SAR image formation process, such as specular reflection,
multiple bounces and nonliteral natures of the data, it is difficult to extract effective features for ATR as
used in optical image. It is important to develop efficient and robust feature extraction and classification
algorithms for ATR systems [3].

There is a broad class of feature extraction method based on two-dimensional SAR images for
target classification. The most straightforward approach is to use a SAR target image’s intensity values
to directly generate image features [4, 5]. Another popular approach feature extraction technique is
based on wavelet transform or multi-scale approach [6]. Alternatively, the features such as target region
outline descriptors or ridges can also be extracted to classify targets [7, 8]. Physics-based features can
be extracted using scattering center models, which provide a concise, physically relevant description of
the target [9]. There are also several target features extraction methods based on shadow regions in a
SAR image [10].

However, SAR target classification can also use features extracted from high resolution range
(HRR) profiles converted from a SAR complex image [11]. Compared to image-based feature extraction
techniques, one benefit of HRR profiles feature extractions for SAR ATR is the ability to exploit target-
sensor aspect dependent scattering characteristics. In addition, it is also prior to image-based feature
extraction when SAR images are blurred or low-SNR due to target moving or other factors [12]. Some
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researchers have proposed a number of recognition features based on SAR target HRR profiles. Power
spectrum features of HRR profiles are employed for SAR target recognition [13]. One-dimensional
scattering centers of HRR profiles are investigated for target recognition via Relax algorithm [11]. SAR
target classification is also researched from HRR profiles high order statistic features [14]. From these
works, it can be seen that how to extract robust and effective features of HRR profiles is very important
in the HRR profiles-based SAR target recognition.

In terms of radar target HRR profiles feature extraction, it has been found that exploitation of
time-frequency (T -F ) domain features can be effective for target detection and discrimination. T -F
analysis techniques have long been used to reveal the complicated scattering mechanisms concealed in
radar echoes [15]. In [16], T -F geometrical moments features extraction method is derived for radar
target classification. An approach is developed using T -F analysis for human gait radar signals [17].
T -F analysis techniques are also successfully applied to exploit radar target micro-Doppler signature as
shown in [18]. When using time-frequency features for radar target recognition, the most critical issue
is to recover discriminative information while reducing the dimension of the time-frequency plane data.
Our focus in this paper concentrates on developing a new feature extraction technique in T -F domain
based on non-negative sparse coding (NNSC). Sparse coding is an efficient way of coding information, in
which most of the code elements are zero and not active [19, 20]. It is well known that sparse coding has
succeeded in areas including image processing and pattern recognition [21, 22]. In conventional sparse
coding, the data are described as a combination of elementary features which include both additive and
subtractive components. However, the fact that features can ‘cancel each other out’ using subtraction
is contrary to the intuitive notion of combining parts to form a whole. Thus, completely non-negative
sparse coding have been investigated in [23]. Recently, NNSC has emerged as a useful feature extraction
method in areas related to face recognition and image denoising [24, 25]. In this work, non-negative
T -F representations has been applied to target HRR profiles to obtain non-negative T -F data matrix,
so NNSC is naturally considered for non-negative T -F feature extraction. This paper investigates
how NNSC is applied to learn features of HRR profiles T -F matrix and can be used for SAR target
classification.
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Figure 1. The procedure of the proposed SAR target classification approach.
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Figure 1 highlights the contribution of this paper in the developed SAR target classification
procedure. To fulfill the above objectives, in the first point, target HRR profiles are converted from each
corresponding SAR complex image. In the second point, we choose the T -F analysis tool of adaptive
Gaussian representative (AGR) to obtain each HRR profile non-negative T -F matrix. In the third
stage of this paper, NNSC is used to learning T -F basis based on training data set and extract time-
frequency features for both training and testing data sets. In the last stage, experiments are carried
out on MSTAR public release database in order to evaluate the effectiveness of the proposed approach.

The rest of this paper is organized as follows. In Section 2, the method of HRR profiles converted
from SAR image is described, and non-negative T -F analysis of HRR profile is investigated utilizing
adaptive Gaussian representation (AGR). In Section 3, the theory of NNSC is reviewed briefly. Section 4
presents the principles of applying NNSC to SAR target classification. The experimental verification
of the proposed approach using Moving and Stationary Target Acquisition and Recognition (MSTAR)
public release database is presented in detail in Section 5. Finally, the conclusions are summarized in
Section 6.

2. SAR TARGET HRR PROFILE T -F ANALYSIS

2.1. Conversion from SAR Complex Image to HRR Profiles

As discussed above, a SAR target image has to be converted into HRR profiles. Because we use the
MSTAR public release SAR dataset considered for the experiments in this work, we briefly describe the
procedure of how MSTAR SAR image chips are converted to HRR profiles which is detailed in [11].

Consider a SAR complex image S(d, c), where d reflects the downrange dimension and c the cross
range. A two-dimensional (2D) inverse FFT is taken of S(d, c) to obtain the corresponding phase history
data. Next, the deconvolution of the weighting and removal of the zero-padding is performed for the
phase history data due to the operation of Taylor window weighting and zero-padding in SAR image
formation.

Then, a 2D FFT is applied to produce a deconvoluted and Nyquist-sampled image S′(d, c). Note
that both the target and surrounding clutter exist in S′(d, c). So, to remove the clutter, a target
segmentation procedure is taken to the image S′(d, c). Then, an inverse FFT is performed in the cross
dimension for all d, of which each d-dependent waveform, for a fixed c, corresponds to a HRRP. At
last, for MSTAR SAR data, each 128× 128 SAR complex image can obtain 100 HRR profiles. Figure 2
depicts an example of the conversion of one BMP2 targets SAR image.
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Figure 2. An example of conversion from a SAR complex image to HRR profiles. (a) BMP2 target
SAR image. (b) HRR profiles.

2.2. HRR Profile Time-frequency Analysis Based on AGR

T -F domain indicates a two-dimensional energy representations of a signal in terms of time and
frequency domains. There are several T -F approaches, such as the short-time Fourier transform (STFT),
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Wigner-Ville distribution (WVD), adaptive Gaussian representation (AGR). However, not all the T -F
analysis methods are suitable for radar HRR profiles feature extraction purposes. In this study, we select
AGR to represent HRR profiles in the T -F domain. Compared to other T -F approaches, AGR can
decompose the radar signal into T -F centers corresponding to scattering centers and local resonances
with high T -F resolutions. AGR can give a joint T -F distribution which is non-negative, adaptive and
cross-term interference free. The advantage of AGR processing for radar applications has been well
described in [14, 15]. Up to now, AGR has been successfully applied in ISAR imaging, complicated
scattering diagnostic, and radar target classification.

AGR expands a HRR profile in time-domain r(t) in terms of normalized Gaussian elementary
functions gi(t) with an adjustable T -F center (ti, fi) and a variance αi

r(t) =
∞∑

i=0

Cigi(t). (1)

where

gi(t) =
(

1
παi

) 1
4

exp
{
−(t− ti)2

2αi

}
· exp (j2πfit) .

The adjustable parameters ti, fi and αi for Gaussian basis functions, and Ci for the coefficient can be
obtained such that gi(t) is most similar to ri(t).

|Ci|2 = max
ti,fi,αi

∣∣∣∣
∫

ri(t)g∗i (t)dt

∣∣∣∣
2

, αi ∈ R+, ti, fi ∈ R. (2)

where ri(t) is the remainder after the orthogonal projection of ri−1(t) onto gi−1(t), and this iterative
procedure is described as

ri(t) = ri−1(t)− Ci−1gi−1(t) (3)

Since the projection integral in (2) is the Fourier transform of ri(t) with the Gaussian window
u(t) = (παi)−0.25 exp[−((t− ti)2/2αi)], the adjustable T -F center (ti, fi) and associated variance αi

can be obtained using FFT and the specific search procedure in [6]. The ti, fi, αi, and Ci finally
obtained give the solution of (2) and these four parameters completely describe one Gaussian T -F basis
function at the i-th iteration.

After imax stages of AGR decomposition, the following relationships hold

r(t) =
imax∑

i=0

Cigi(t)+rimax+1(t). (4)

And

‖r(t)‖2 =
imax∑

i=0

|Ci|2 + ‖rimax+1(t)‖2 (5)

Therefore, the AGR iteration in (3) continues until the reconstruction error ‖rimax+1(t)‖2 is sufficiently
small, hence, the upper limit imax is determined.

After ti, fi, αi, and Ci, i = 0, 1, 2, . . . , imax are obtained via AGR processing, the T -F matrix,
which represents a signal energy distribution in the joint T -F plane, and Θ(t, f) is given by

Θ(t, f) =
imax∑

i=0

2 |Ci|2 exp
{
−(t− ti)2

2αi
− (2π)2αi(f − fi)2

}
. (6)

In Figure 3, T -F matrices of several HRRPs from BMP2 target and BTR70 target using AGR
technique are depicted. In this work, each T -F matrix has a size of 100 by 100 for a HRR profile with
100 sampling points. It can be seen that all T -F matrices are sparse and localization.
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Figure 3. T -F matrices of several HRRPs from different targets, (a) a HRRP of BMP2 target, (b) a
HRRP of BTR70 target, (c) T -F matrix of the HRRP in (a), (d) T -F matrix of the HRRP in (b).

3. NON-NEGATIVE SPARSE CODING

NNSC is an adaptive representation of the statistics of the data and has its roots in neural information
processing, which is proposed in [22]. It is argued that when NNSC model is learnt from image data, the
learnt basis components have the properties of the spatial receptive fields of simple cells in the primary
visual cortex [26]. So, the NNSC technique provides a principled method for using training data to
determine the significant parts of an image, which has been successfully applied in image denoising and
pattern recognition. In this paper, as a T -F matrix of a HRR profile is non-negative, it can be treated
and processed as an image.

The basic idea behind NNSC is as follows. An observed multi-dimensional non-negative vector
z is modeled as a linear combination of a number of non-negative basis vectors represented by
D = [D1, . . . ,Dk]. That is, let an image z with n non-negative pixel be represented by

z = Dh =
K∑

k=1

Dkhk (7)

The K columns of D are the bases images, and each of them is an n dimensional vector. Thus, D is
an n×K matrix. The K-dimensional non-negative coefficient vector h provides specific contribution of
each basis vector. The crucial assumption in the NNSC technique is that the coefficient vector exhibits
sparseness. The goal is to select a set of basis, so that z can be represented sparsely and accurately. It
has been shown that imposing non-negativity constraints leads to a part-based representation, because
only additive and not subtractive combinations are allowed. The enforcing sparsity of the coefficient
vector leads to solutions where only a few bases are active simultaneously. This can lead to better
solutions, because it forces the basis to be more source specific.
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For T -F matrices feature extraction in this paper, Equation (7) is extended from representing a
single T -F matrix to a set of T -F matrices. Let a dataset of m training T -F matrices be given as an
n × m matrix Z with each column consisting of n non-negative pixel values of a T -F matrix. This
matrix Z is approximately factorized into the n×K basis matrix D and an K×m matrix H. Each T -F
matrix can then be represented as a linear combination of the basis matrices using the approximate
factorization:

Z ≈ DH (8)

where D and H are non-negative matrices which is referred to as the dictionary and the sparse code.
The columns of the dictionary matrix constitute a source specific basis, and the sparse code matrix
contains weights. Each column of H contains the weights needed to approximate the corresponding
columns in Z using the bases from D.

Combining the goal of small reconstruction error with that of sparseness, the following objective
function to be minimized can be arrived [5].

ΩNNSC(D,H) =
n∑

i=1

m∑

j=1

(
Zij −

K∑

l=1

DilHlj

)2

+ λ

K∑

k=1

m∑

j=1

ξ(Hkj) (9)

Subject to the constraints ∀i, j, k, l : Dil ≥ 0, Hlj ≥ 0, and |dj | = 1, where dj denotes the jth column of
D. The sparseness parameter λ is a constant that controls the tradeoff between accurate reconstruction
and sparseness. When λ equals zero, the objective function reduces to the squared error version of
non-negative matrix factorization (NMF) [25]. The form of ξ defines how sparseness is measured, and
it is suggested that a typical choice for ξ is ξ(Hkj) = |Hkj | in [11].

The NNSC learning algorithm includes two parameters, the sparseness factor λ ≥ 0 and the iterative
step size µ for the projected gradient descent. The objective function is non-increasing under the
following update rules [23]:

Hkj ← Hkj

n∑

i=1

[
DTZ

]
kj

[DTDH]kj + λ
(10)

D ← DT − µ
(
DTH− Z

)
HT (11)

Dkl ← Dkl
n∑

k=1

Dkl

(12)

where [ ]kj indicates that the noted divisions and multiplications are computed element by element. This
projected gradient decent step is guaranteed to decrease the objective function if the step size µ ≥ 0 is
small enough. However, there is no guarantee of reaching the global minimum, due to the non-convex
constraints:

ΩNNSC

(
D(t+1),H(t+1)

)
≤ ΩNNSC

(
D(t),H(t)

)
; t ≥ 0 (13)

4. SAR TARGET CLASSIFICATION USING NNSC

4.1. NNSC Features Extraction

The task of SAR target classification using NNSC is depicted in Figure 1, which mainly includes two
stages. One stage is training in which the training SAR target NNSC features are extracted for later
use. At another stage of testing, each test input is presented to the system sequentially, and testing
NNSC features are extracted. The target type is found by performing classification algorithm with
support vector machine (SVM) or nearest neighbor (NN) decision.

In this paper, although a SAR target image can be converted into 100 HRR profiles, we extract
one from every 10 HRR profiles for the following feature extraction on the consideration of computation
cost reduction. So, there are 10 T -F matrices for each SAR target image. For an individual HRR T -F
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matrix zp
i (i = 1, . . . , 10) of a training SAR image from the target p, the corresponding feature vector

vp
i is obtained by projecting zp

i to lower dimensional basis feature space as follows.

vp
i =

(
DTD

)−1
DTzp

i (14)

The feature vector vp of a training SAR image from the target p can be constructed in sequence by vp
i

as follows:
vp = [vp

1, . . . ,v
p
10] (15)

A similar way as above is applied to extract testing feature vectors vq.

4.2. Classification Algorithm

For comparison, in later experiments, SVM and NN algorithms are applied respectively in the
classification stage.

4.2.1. NN Classification Algorithm

In NN classification algorithm, the distance η(vq, vp) is computed between the testing feature vector
and the training feature vector. The target type is classified as the class to which the closest training
feature vector belongs. For the experiments carried out in this paper, classification is decided using
Euclidean distance as follows.

η (vq,vp) = ‖vq − vp‖2
2 (16)

where ‖ · ‖2
2 means l2-norm.

4.2.2. SVM

SVM classifiers are based on the principle of structural risk minimization [5]. Assuming a set of N
training samples and labels {vi, yi}i=1,...,N , the result of training the SVM is the hyperplane decision
function

ε(v, α) =
N∑

i=1

αiyiφ(vi,v) + b (17)

where, variables αi are Lagrange multipliers. φ(vi,v) is the kernel function of the test feature vector
with the training feature vectors and b the bias from the feature space origin. The classification of
the test data is based on the sign of the decision function indicating which side of the hyperplane the
pattern falls on in the feature space. Here, for φ(vi,v) we choose the radial basis kernel function as
follows.

φ (vi,v) = exp

(
−‖vi − v‖2

2σ2

)
(18)

where, σ is the kernel width parameter.
The SVM classifier is initially a binary classifier. Therefore, some methods are needed to extend

SVM in a multi-class problem. To achieve this, one simple but valuable method is based on combining
binary classification results with a proper consensual rule such as majority voting. In the literature,
there are two techniques widely used. They are One-Against-All (OAA) strategy and One-Against-One
(OAO) strategy. In the literature, OAO strategy takes more computational time than OAA Strategy
that has been reported [27]. Additionally, more classification accuracies are usually obtained by using
OAA strategy. Therefore, OAA strategy is chosen in this paper to get highest results obtained by SVM
classifiers.
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5. EXPERIMENTAL RESULTS

5.1. Database

In this paper, we use the Moving and Stationary Target Acquisition and Recognition (MSTAR) public
release database to evaluate the SAR target classification performance of the proposed approach. This
is a standard dataset for SAR ATR algorithm, consisting of X-band SAR images for ten targets [28].
These targets include BMP2 (tank), BRDM2 (truck), BTR60 (armored car), BTR70 (armored car),
D7 (bulldozer), T62 (tank), T72 (tank), ZIL131 (truck), ZSU234 (cannon), 2S1 (cannon). Visible light
images of these targets are shown in Figure 4. Examples of MSTAR SAR images at near aspect angles
are shown in Figure 5. Each image has a size around 128 by 128. Different target images may have
slightly different sizes. The images are already centered with 0 to 360 degree of orientation. Since all
the targets have similar length and width, the size and shape of target images at near aspect angles are
almost the same, which makes the traditional feature extraction methods ineffective for this application.
Unlike optical images, a SAR image reflects the structure of target’s scatters, which does not have even
reflect rate over different angles. Thus SAR images of the same target taken at different orientation
angles can show great difference, which makes classification even more difficult. For each target, images

BMP2 BRDM2 BTR60 BTR70 D7

T62 T72 ZIL131 ZSU234 2S1

Figure 4. Visible light images of ten targets in MSTAR database.
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Figure 5. SAR images of ten targets at near aspect angles (the data in brackets are aspect angles).
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Table 1. MSTAR Data sets used in classification experiments.

No. Type Train (17◦) Test (15◦)
1 BMP2 233 196
2 BTR60 256 195
3 BTR70 233 196
4 BRDM2 298 274
5 D7 299 274
6 T62 299 273
7 T72 232 196
8 ZIL131 299 274
9 ZSU234 299 274
10 2S1 299 274

are acquired at 17 degree and 15 degree depression angles over the full 360 degree aspect angles. The
data in depression 17 degree are used for training and the other for testing. In MSTAR SAR database,
there are 3 different serial numbers for BMP2 and T72. For these two targets, we only use the images
from serial number SN C21 for BMP2 and SN 132 for T72. Table 1 lists the type and sample number
of training and testing sets.

The main work before doing classification is the preprocessing of HRR profiles T -F matrices
computation and feature vector extraction as described in Section 2 and Section 4. Each T -F matrix
was reduced to 25× 25 due to the high dimensionality of the original 100× 100 T -F matrix.

In the sequel, we will carry out several classification experiments. For comparison, we evaluate the
performance of the proposed method on a 10-Class SAR target recognition problem with three features,
including NNSC features, NMF features and PCA features. For NMF features extraction, we used the
method in [28].

No other additional information was used, e.g., the aspect angle is included in the header of each
SAR image chip file. Such information is necessary for template-based classifiers.

5.2. Learning Basis

T -F matrices NNSC feature extraction was obtained for 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150
and 200 basis components as described in Section 3. This was done to analyze how the classification
results are affected by the number of learning basis. A set of NNSC basis components (computed for all
HRR profiles T -F matrices of the training set in the MSTAR database) of dimensionality 20, 50, 100
and 200 is shown in Figure 6. It can be seen that the basis components are both sparse and localized.

5.3. Classification Result

The recognition accuracy obtained by three features extraction techniques with SVM as a function
of basis dimension for 10-target classification is shown in Figure 7. For all these experiments, the
recognition rates for NNSC, NMF and PCA improve as the basis dimension increases, eventually
saturating. However, for NNSC, the rates tend to improve at a faster rate giving higher recognition
accuracies for relatively fewer basis dimensions.

From Figure 7, it can be seen that the highest accuracy with NNSC is obtained at a basis dimension
of 80. The highest accuracy with NMF is also obtained at a basis dimension of 80. However for PCA,
the highest accuracy is obtained at a basis dimension of 200. When NNSC performs best at 80 basis
dimensions, the corresponding confusion matrix of 10-target classification results is presented in Table 2.
The confusion matrix in Table 3 shows the confusion matrix of 10-target classification best results with
NMF at 80 basis dimensions. And the confusion matrix in Table 4 shows the 10-target classification
best results with PCA at 200 basis dimensions. The results in Tables 2–4 reveal that SVM classifier
achieves an accuracy of 98.78% with NNSC, 92.93% with NMF, and 82.86% with PCA, respectively. It
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(a) (b)

(c) (d)

Figure 6. T -F sparse and part-based basis of different dimensions obtained by the NNSC technique.
It can be observed that the basis components tend to become more localized as the dimensionality is
increased from 20 to 200. (a) 20, (b) 50, (c) 100, (d) 200.
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Figure 7. Recognition accuracy vs. basis
dimension using three feature extraction methods
with SVM for MSTAR 10-target classification.
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Figure 8. Recognition accuracy vs. basis
dimension using three feature extraction methods
with NN for MSTAR 10-target classification.

can be seen that NNSC is superior to other methods in the same training and test sets. This confirms
the validity and high performance of the proposed approach for SAR ATR. Note that the rates given
in Tables 2–4 reflect the “best” recognition rates obtained for the respective technique. They do not
indicate which combination of classification algorithm and number of basis dimensions produce this
rate.
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Table 2. Confusion matrix of 10-target classification results of NNSC + SVM at 80 basis dimensions.

Test
Train

BMP2

(%)

BTR60

(%)

BTR70

(%)

BRDM2

(%)

D7

(%)

T62

(%)

T72

(%)

ZIL131

(%)

ZSU234

(%)

2S1

(%)

BMP2 92.35 0 1.53 0 0 3.57 2.55 0 0 0

BTR60 0 100 0 0 0 0 0 0 0 0

BTR70 0 0 98.47 1.02 0 0 0.51 0 0 0

BRDM2 0 0 0 100 0 0 0 0 0 0

D7 0 0 0 0 100 0 0 0 0 0

T62 0 0 0 0 0 100 0 0 0 0

T72 0.51 0 0 0 0 0 96.94 0 2.55 0

ZIL131 0 0 0 0 0 0 0 100 0 0

ZSU234 0 0 0 0 0 0 0 0 100 0

2S1 0 0 0 0 0 0 0 0 0 100

ACCR

(%)
98.78

Note: ACCR means average correct classification rate.

Table 3. Confusion matrix of 10-target classification results of NMF + SVM at 80 basis dimensions.

Test
Train

BMP2 BTR60 BTR70 BRDM2 D7 T62 T72 ZIL131 ZSU234 2S1

BMP2 90.82 2.55 0 0 1.02 0 3.57 0 2.04 0

BTR60 1.54 83.59 0.51 3.08 1.03 5.13 1.54 1.03 1.54 1.03

BTR70 1.02 6.12 79.59 5.10 0 5.10 0 3.06 0 0

BRDM2 0 0 0 100 0 0 0 0 0 0

D7 0 0 0 0 100 0 0 0 0 0

T62 2.56 0.37 2.56 0.73 0 91.58 0.37 0.37 0.73 0.73

T72 2.55 6.12 1.53 3.57 0 1.02 83.67 0 1.53 0

ZIL131 0 0 0 0 0 0 0 100 0 0

ZSU234 0 0 0 0 0 0 0 0 100 0

2S1 0 0 0 0 0 0 0 0 0 100

ACCR (%) 92.93

Figure 8 presents the recognition performance of three feature extraction methods with NN
classification algorithm as a function of basis dimension. Tables 5–7 show the best recognition accuracy
for different methods with the corresponding basis dimensions. The results in Figure 8 and Tables 5–7
indicate that NNSC obtains the recognition performance superior to the other used methods again
when NN algorithm is used. It can be seen that PCA with NN performs the worst. Again, we
observe that NNSC performs the best and obtains relative high recognition rates with a low number of
basis dimensions. More crucially, NNSC makes about 9.74% improvement over NMF and about 21.7%
improvement over PCA.

This implies that PCA cannot deal with T -F matrix localized feature extraction as well as NNSC
techniques. From Figure 8, we also observe that recognition performance has significantly declined
when basis dimensions are greater than 80 for NNSC. This phenomenon also occurs for the other two
methods. This is because NN algorithm is not suitable for high-dimension feature vector classification
as SVM. Comparing Figure 7 with Figure 8, it can be seen that the classification performance with
SVM is better than that with NN for all kinds of features extraction technique in this paper.

A conclusion can be drawn about PCA and the part-based techniques (including NNSC and NMF)
by considering the recognition accuracy. The part-based techniques have a much higher recognition
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Table 4. Confusion matrix of 10-target classification results of PCA + SVM at 200 basis dimensions.

Test
Train

BMP2 BTR60 BTR70 BRDM2 D7 T62 T72 ZIL131 ZSU234 2S1

BMP2 70.41 2.55 5.61 2.55 2.55 4.59 2.04 5.10 4.08 0.51

BTR60 2.56 83.59 2.56 0.51 1.54 1.03 3.59 0.51 1.03 3.08

BTR70 2.55 5.61 78.57 6.63 0.51 0 3.06 0.51 2.55 0

BRDM2 2.55 1.46 2.19 85.77 1.82 0.37 0 3.65 1.09 1.09

D7 2.92 3.65 4.74 4.74 72.99 1.82 2.92 2.55 2.19 1.46

T62 1.10 2.93 0.37 2.20 0 87.18 0 1.47 2.56 2.20

T72 0.51 3.57 0 2.55 0 0.51 88.78 2.55 0.51 1.02

ZIL131 4.74 1.82 2.92 3.65 0.73 0.37 3.28 80.66 0.37 1.46

ZSU234 3.28 1.46 0.37 0.37 0 0 1.09 2.19 89.42 1.82

2S1 3.28 0 1.09 0 1.82 0 0.37 0 2.19 91.24

ACCR (%) 82.86

Table 5. Confusion matrix of 10-target classification results of NNSC + NN at 80 basis dimensions.

Test

Train

BMP2

(%)

BTR60

(%)

BTR70

(%)

BRDM2

(%)

D7

(%)

T62

(%)

T72

(%)

ZIL131

(%)

ZSU234

(%)

2S1

(%)

BMP2 89.29 0 2.55 1.53 2.04 3.06 0 1.53 0 0

BTR60 0 100 0 0 0 0 0 0 0 0

BTR70 0 4.08 91.84 2.04 0 0 2.04 0 0 0

BRDM2 0 0 0 100 0 0 0 0 0 0

D7 0 0 0 0 100 0 0 0 0 0

T62 1.10 2.20 0 0 0 92.31 1.83 0 2.56 0

T72 2.55 2.04 3.57 0 0 3.06 88.78 0 0 0

ZIL131 0 0 0 0 0 0 0 100 0 0

ZSU234 0 0 0 0 0 0 0 0 100 0

2S1 0 0 0 0 0 0 0 0 0 100

ACCR

(%)
96.22

Table 6. Confusion matrix of 10-target classification results of NMF + NN at 100 basis dimensions.

Test
Train

BMP2 BTR60 BTR70 BRDM2 D7 T62 T72 ZIL131 ZSU234 2S1

BMP2 89.80 3.06 2.55 0 0 1.53 2.55 0 0 0.51

BTR60 1.54 76.41 12.82 3.08 1.03 0 1.54 1.03 1.54 1.03

BTR70 0 7.14 74.49 0 0 4.08 5.10 4.08 0 5.10

BRDM2 1.82 1.46 2.55 85.77 0 2.55 3.65 0 0 2.18

D7 0 0 4.01 0 86.12 2.92 2.92 0 2.19 1.82

T62 2.56 0 5.12 1.10 0 89.02 0.74 0 0.73 0.73

T72 3.57 6.12 1.53 0 0 1.02 86.22 1.53 0 0

ZIL131 3.28 0.73 2.18 0 0 0 2.56 91.24 0 0

ZSU234 0 0 0 0 0 0 0 0 100 0

2S1 1.82 1.46 0 5.47 0 1.82 1.46 2.19 0 85.77

ACCR (%) 86.48
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Table 7. Confusion matrix of 10-target classification results of PCA + NN at 120 basis dimensions.

Test
Train

BMP2 BTR60 BTR70 BRDM2 D7 T62 T72 ZIL131 ZSU234 2S1

BMP2 67.86 2.04 5.61 4.08 2.55 4.59 10.20 0.51 2.04 0.51

BTR60 3.59 72.82 1.54 1.54 3.59 11.28 2.56 0.51 1.54 1.03

BTR70 7.65 2.04 68.37 5.61 1.02 5.10 2.04 1.53 2.55 4.08

BRDM2 3.28 0.73 1.46 75.91 1.82 4.74 6.20 2.19 2.55 1.09

D7 1.82 4.74 3.65 5.84 72.63 0.73 3.28 2.19 4.01 1.09

T62 2.56 1.47 1.83 0.73 4.40 77.29 5.86 0.73 1.83 3.30

T72 4.08 2.04 1.53 2.55 4.59 2.55 78.57 2.55 1.02 0.51

ZIL131 4.38 2.19 3.28 3.28 1.82 6.57 2.19 70.80 3.65 1.82

ZSU234 2.92 1.09 0.73 4.01 3.28 1.82 1.09 2.92 79.56 2.55

2S1 2.55 3.28 1.09 0.37 1.82 0.73 1.46 5.47 1.82 81.39

ACCR (%) 74.52
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Figure 9. Average correct classification results with different SNR.

correct rate than PCA. This behavior is consistent with the theory that PCA is based on a global
transformation of the original space, and the part-based techniques are local in nature. Thus, it turns
out that when considering T -F localization, PCA is not able to represent them as well as part-based
methods. Clearly, as one would expect, part-based features are superior to holistic features. In part-
based methods, from experiment results, it can be seen that NNSC outperforms NMF. Also, it is noted
that the high recognition accuracies obtained by NNSC are with a relatively small number of basis
dimensions. But this is not the case with NMF.

The obtained recognition accuracy of the proposed method on 10-class SAR ATR tasks is also
competitive with previously reported results. In [11], on 10-class SAR ATR tasks they employed HMM
classifier with HRR profiles scattering centers features to give the best accuracy of 92.16%, worse than
our results. It is worth pointing out that the proposed approach can acquire high recognition accuracy
without target poses to be known or estimated. These clearly verify the superiority of the proposed
method.

In addition, we consider the effect of random noise to classification performance of the proposed
approach. We added Gaussian noise to testing data to evaluate the robustness of each feature extraction
algorithm. Figure 9 shows how correct classification rates vary as the signal-to-noise ratio (SNR) varies
from −5 dB to 20 dB. From Figure 9, one can identify that NNSC with SVM achieves more than 90%
accuracy when SNR is greater than 10 dB, and it decreases rapidly at the SNR levels below 5 dB. But,
from the results in Figure 9, it can be seen that NNSC with SVM is superior to the other methods in
the whole SNR range.
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6. CONCLUSION

The problem of SAR target classification has been addressed in this paper. We have designed and
implemented a classification scheme that is based on learning HRR profile T -F features using NNSC.
NNSC is employed since it helps reveal the low dimensional structures of the T -F patterns observed
in a high dimensional T -F domain. We note that no other literature source has so far reported SAR
target classification results using the NNSC technique. The research objective reported in this paper
was to demonstrate how the NNSC technique is able to learn parts of a HRR profile T -F matrix and
how it can be used for SAR target classification. We have tested three feature extraction techniques:
NNSC, NMF and PCA on MSTAR public database. We have compared three features for 10-target
classification problem with SVM and NN, respectively. It was found that NNSC with SVM performs
much better than other methods and exhibits a strong robustness to noise. It is noted here that the high
recognition accuracies obtained by NNSC are with a relatively small number of basis dimensions. Also,
it is worth pointing out that the proposed approach can perform well without requiring the poses to be
known. However, the computational cost of the proposed method is larger than other methods due to
many iterations in AGR and NNSC, which is a weakness. Fast algorithms and further experimentation
will be required to settle this issue.
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