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Abstract—Here we realize a broadband absorber by using a hyperbolic metamaterial composed of
alternating aluminum-alumina thin films based on superposition of multiple slow-wave modes. Our
super absorber ensures broadband and polarization-insensitive light absorption over almost the entire
solar spectrum, near-infrared and short-wavelength infrared regime (500–2500 nm) with a simulated
absorption of over 90%. The designed structure is fabricated and the measured results are given.
This absorber yields an average measured absorption of 85% in the spectrum ranging from 500 nm
to 2300 nm. The proposed absorbers open an avenue towards realizing thermal emission and energy-
harvesting materials.

1. INTRODUCTION

Metamaterials are attractive for not only their special electromagnetic properties, but also their potential
for new effects and devices, such as negative refraction, cloaking, super-lenses and absorbers. Recent
studies have focused on some metamaterial perfect absorbers, which can achieve near-unity absorption
of electromagnetic waves and enhance the performance of thermal emitters and thermo-photovoltaic
systems. Perfect electromagnetic (EM) wave absorbers, which can completely absorb all incident EM
radiation without producing any reflection, transmission or scattering [1], are of increasing importance
in many fields of science and engineering, e.g., thermal emitters and collection of solar energy. Thin
film perfect absorbers, which can effectively trap photons and transfer their energy into electrical or
thermal energy within a few hundred nanometers, are of particular interest, playing an important role
in thermo-photovoltaic systems and thermoelectric generators [1–3]. However, such thin film absorbers
are extremely difficult to create because there do not exist many natural materials that can absorb EM
radiation over a wide wavelength range and for a wide range of incident angles.

A possible route to realizing efficient light absorption is to use various plasmonic structures,
including micro-cavities [4], strips [5–7] and subwavelength slits [8, 9]. Metamaterials (MMs) are also
promising candidates for designing stable thin film perfect absorbers, exhibiting wavelength scalability
as well as angle or polarization insensitivity [10–13]. However, due to the resonant nature, the
aforementioned absorbers often tend to be narrow banded, limiting practical applications. An effective
method to extend the absorption bandwidth is to blend together various strong resonators operating at
several neighboring frequencies [14–18]. However, the bandwidth of the absorption spectrum cannot be
broadened significantly because the number of resonators is limited.

Received 3 April 2014, Accepted 22 May 2014, Scheduled 15 June 2014
* Corresponding author: Sailing He (sailing@jorcep.org).
1 Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP, Zhejiang
University, Hangzhou 310058, China. 2 ZJU-SCNU Joint Research Center of Photonics, Centre for Optical and Electromagnetic
Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou 510006, China.
3 Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, Stockholm S-100 44,
Sweden. 4 Department of Physics, Zhejiang University, Hangzhou 310058, China. Sailing He and Fei Ding contributed equally.



70 He et al.

Recently, non-resonant thin film absorbers have been demonstrated with composite metamaterials
involving metal nanoparticles embedded in dielectric layers [19, 20]. When the antireflection effect of a
tapered subwavelength strip is introduced, a tungsten slab consisting of pyramid arrays can theoretically
display nearly-complete absorption throughout the entire solar spectrum [21]. Based on adiabatic
nanofocusing of gap surface plasmon modes excited by the scattering off subwavelength-sized wedges,
broadband visible light absorption can be realized in ultra-sharp convex metal grooves [22]. Non-
resonant absorption by tungsten pyramid arrays and ultra-sharp convex metal grooves is broadband,
but the designed structures are too sophisticated to demonstrate and the absorption performance is not
robust, with minor experimental deviations. Additionally, the ultra-sharp convex metal grooves have a
long wavelength limit due to both the adiabatic condition and the decrease in the plasmon absorption
for longer wavelengths [22]. At the same time, a sawtoothed anisotropic metamaterials slab, which can
effectively excite slow-wave modes, has been shown to achieve a large bandwidth of about 86% of its
central wavelength [23] (experimental verification has been done in the microwave regime [24]).

In this paper, we realized ultra-broadband absorbers, which can cover the visible and near-infrared
regime by patterning multi-sized hyperbolic metamaterial (HMM) cells with appropriate geometrical
parameters in a co-plane. We demonstrate experimentally that a two-dimensional (2D) quadrangular
frustum pyramid (QFP) absorber in the wavelength range from 500 nm to 2300 nm. Moreover, the
absorption is polarization insensitive due to the symmetry arrangement of the QFP absorber design.

2. RESULTS

2.1. Polarization-Dependent Absorption in Tapered Strip Array

Firstly, we investigate a structure consisting of alternating thin Alumina (Al2O3) and Aluminum (Al)
films. The permittivity and thickness of the Al2O3 layers are εd and td, respectively, and εm and tm
for the Al layers. When the thickness of each layer is much smaller than the wavelength, the periodic
structure can be homogenized as an MM with effective anisotropic permittivity εmm . According to the
effective medium theory [25], the permittivity tensor εmm can be approximately written as

εx = εy = f · εm + (1− f) · εd

εz =
εm · εd

f · εd + (1− f) · εm

(1)

where f = tm/(tm + td) is the filling ratio of the metal. Firstly, 20 pairs of Al2O3-Al layers are used to
construct the practical structure with td = 8 nm, tm = 12 nm and f = 0.6 (Figure 1(a)). Considering
the dispersive permittivities of Al2O3 and Al (Ref. [26]), we see Re(εx) < 0 and Re(εz) > 0, and this
multilayered MM is a hyperbolic MM (HMM) whose equal-frequency dispersion curve is hyperbolic
throughout the visible, near-infrared, and mid-infrared spectral regions. For instance, the real and
imaginary parts of εmm calculated with Eq. (1) are plotted in Figure 1(b), verifying the HMM condition.

Then, we carved this HMM slab into periodic tapered strips with period Px = 300 nm, top width
Wt = 50nm and bottom width Wb = 300 nm, which can realize broadband strong absorbers based on
the slow-wave effect, as illustrated in Figure 1(a). The HMM tapered strip array is constructed on an
Au film with a thickness (100 nm) large enough to block light transmission.

We performed full wave electromagnetic simulations using the finite difference time domain (FDTD)
method and finite element method (FEM). In the simulations, a periodic boundary condition is used
in the x direction, and a plane wave of TM polarization is incident downwards along the z direction
as an excitation source, which means that the incident plane is the x-z plane and the magnetic field is
polarized along the y axis. The absorption is defined by A(ω) = 1−T (ω)−R(ω), where T (ω) and R(ω)
are the total transmission and reflection. Since the bottom gold film is thick enough, the transmission
equals zero for the entire investigated spectrum, and consequently the absorption can be given simply
by A(ω) = 1−R(ω).

The obtained absorption spectrum at normal incidence (black dashed-dotted in Figure 1(c))
indicates that the absorption performance is excellent, with absorptivity higher than 90% covering
the wavelength range from 500 nm to 1850 nm. We find that the absorption obtained from the practical
multilayered tapered strip array with 20 Al2O3-Al pairs (black dashed-dotted in Figure 1(c)) is almost
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Figure 1. (a) Schematic of the 1D HMM absorber with 20 Al2O3-Al pairs. Wt = 50 nm, Wb = 300 nm,
Px = 300 nm and H = 400 nm. (b) Components of εmm calculated using Eq. (1). (c) Absorption spectra
for the multilayered absorber with 10 Al2O3-Al pairs (red solid line), 20 Al2O3-Al pairs (black dashed
line) and the effective homogeneous structure (blue dash-dotted line).

the same as that of the homogenous effective HMM absorber (blue dash-dotted line in Figure 1(c)),
which indicates that the effective medium theory is valid for the present case.

If we discretize the homogenous effective pyramid into Al2O3-Al composite layers by a smaller
number of pairs than the present case, e.g., 10 pairs, while the height of the tapered strip array and
the filling ratio are fixed (H = 400 nm, td = 16 nm and tm = 24 nm), the calculated spectrum (red
solid line in Figure 1(c)) of the discrete model is very close to those of the 20-pair practical absorber
and effective homogeneous HMM absorber except for some oscillations. This is because in this case
the thickness (tm) of the Al plates is close to the skin depth of Al within the studied wavelength range
so that the incident light cannot penetrate through the metal directly. Although there are some small
oscillations, the strong absorption is still maintained, and this absorber consisting of 10 Al2O3-Al pairs
is much easier to fabricate.

As stated in Ref. [23], the broadband absorption arises from a slow-wave effect supported by the
HMM tapered strip array. The HMM tapered strips can be treated as periodic tapered waveguides.
For a guided mode at some wavelengths, when it propagates down along an MM-tapered waveguide
gradually towards some critical width where the group velocity (vg = dωc/dβ) approaches 0, it is
slowed down, trapped, and blocked. Due to the specific gradient shape, these waveguides can achieve
a broadband and tunable slow-wave effect. As the tapered waveguides are lossy, the energy of the
supported guided modes is strongly absorbed. Thus the incident light can be efficiently absorbed in a
wide, long-wavelength range.

To better understand this absorbing mechanism, the magnetic field distributions for the practical
multilayered tapered strips (20 pairs of Al2O3-Al layers) at several different wavelengths (λ = 0.8 µm,
1.2µm, and 1.6µm) are respectively shown in Figures 2(a)–(c), and the corresponding magnetic field
distributions for the homogenous effective tapered strips are displayed in Figures 2(d)–(f).

It is obvious that the practical strips and homogenous structure have very similar field distributions
except for some details around Al2O3-Al interfaces due to the average effect of the effective medium
theory. In the practical structure, the resonant magnetic field is not just localized in the dielectric
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Figure 2. (a)–(c) Magnetic field amplitude distributions at different incident wavelengths for the
practical absorber of 20 Al2O3-Al pairs. (d)–(f) Corresponding magnetic field amplitude distributions
at different incident wavelengths for the effective homogeneous structure. (g) Schematic of periodic
air/HMM/air waveguide array with a fixed core width of W and period of P . Only three cells are
shown. (h) Dispersion curves of the periodic air/HMM/air waveguide array at different W . Black circle
points show degeneracy points. (i) The cutoff wavelength at different widths from the waveguide theory
(red solid line with circles) and simulation data (blue star points).

spacer between two neighboring metal layers, but diffuses into several dielectric spacers. It is seen that
the incident light at a certain wavelength accumulates at a certain position of the tapered strips. For
instance, the incident light at λ = 0.8µm is trapped mainly at the upper part of the strip, and the
magnetic fields at the bottom part are weak. The incident light at λ = 1.2 µm is localized at the middle
waist region. At a longer wavelength, λ = 1.6µm, the incident light is mainly harvested by the bottom
part, whereas around the top parts there is almost no strong field concentration.

To further demonstrate the slow-wave nature of the guided modes in the tapered hyperbolic
waveguides, we calculated the dispersion curves of a periodic hyperbolic waveguide array with a fixed
core width (Figure 2(g)). In the hyperbolic waveguide array, the guided modes in adjacent waveguides
will couple and interact with each other due to the overlap of evanescent fields. Therefore, we should
take the period into consideration. Based on Maxwell’s equations and boundary conditions (Ref. [27]),
the dispersion relationship between the incident photon frequency (ωc = ω/c) and the propagating
constant (β) is derived as

tan
(

kx · W

2

)
− k1

kx
εz · tanh

[
k1 · P −W

2

]
= 0 (2)

where kx =
√

ω2
cεz − εz

εx
· β2, k1 =

√
β2 − ω2

c , P is the period and W is the core width of the waveguide.
In this calculation, the structures are supposed to be lossless for simplicity. When P = 300 nm, for
W = 100 nm, W = 150 nm, and W = 200 nm, the dispersion curves of the fundamental mode are plotted
in Figure 2(h). One can see that the propagating constant increases gradually with the frequency at
first; then the incident light approaches the cutoff frequency where the degeneracy point occurs; after
the cutoff frequency, the dispersion line declines slightly. At the degeneracy points (λ = 0.704µm,
1.026µm and 1.325µm), vg approaches zero, indicated by the black empty circles. Therefore, for a
waveguide of a certain core width, the slow-wave modes can be excited around a certain wavelength.
Though the lossless assumption cannot explain the physics of broadband absorption accurately, the
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degeneracy points at the dispersion curves of lossless structures can approximately predict the critical
width [28, 29].

We also plotted the cutoff wavelength at different widths in Figure 2(i). In Figure 2(i), one can
see that the air/HMM/air waveguide of widths from 50 to 280 nm can support slow light modes of
wavelengths from 0.4µm to 2µm, which is in good agreement with the absorption band shown in
Figure 1(c). Additionally, for a certain width, the corresponding cutoff wavelengths calculated from
simulation data (blue star points) and the dispersion curves of waveguide theory (red solid line with
circles) are essentially consistent.

2.2. Tune and Broaden the Absorption Spectrum

For this multilayered structure composed of alternating Al2O3-Al layers, the HMM condition (Re(εx) <
0 and Re(εz) > 0) is fulfilled throughout the visible, near-infrared and mid-infrared spectral regions.
Therefore a broadband and tunable slow-wave effect can be fulfilled. In addition the absorption spectrum
of the proposed absorber is flexible and can be easily tuned with proper design.

As mentioned above, there is a one-to-one correspondence between the wavelength of incident light
and the width of the HMM strip (different positions of the tapered strip), which means that a wider
strip can accommodate light with a longer wavelength. If we enlarge the tapered strip, we can achieve
a perfect absorber working in the longer wavelength range. For example, we take the HMM made up of
10 Al2O3-Al pairs into consideration. During the optimization, the height of the tapered strips and the
filling ratio are kept constant (H = 400 nm, td = 16 nm and tm = 24nm). As shown in Figure 3(a), a
larger tapered strip with period Px = 550 nm, top width Wt = 150 nm and bottom width Wb = 500 nm
can achieve perfect absorption from 1400 nm to 2800 nm, with over 90% light absorbed in this spectrum,
revealing the flexibility and scalability of this absorber.

Below we try to increase the bandwidth of the absorption by assembling multi-sized tapered strips
with appropriate geometrical parameters in a co-planar. As mentioned above, the working absorption
spectrum will vary with the variation of geometrical parameters. Therefore, multi-sized strips with
different geometrical parameters are positioned on a co-planar to ensure that the absorption frequencies
can be close to each other, giving a broader absorption spectrum.

For the sake of simplicity and clarity, we study the case of two different-sized tapered strip arrays
(i.e., pyramids) made of 10 Al2O3-Al pairs placed in a unit cell with a fixed total height and metal filling
ratio. Firstly we just put the two aforementioned different-sized pyramids into a unit cell. The top and
bottom widths of the large pyramid are Wt1 = 150 nm and Wb1 = 500 nm, respectively, and Wt2 = 50 nm
and Wb2 = 300 nm for the small pyramid. As shown in Figure 3(b) (black dashed line), the absorber
with two sub-cells can achieve a broader absorption spectrum. However, the absorption performance is
still far from satisfactory as the absorption efficiency is not very high in the visible frequency regime

(a) (b)

Figure 3. (a) Schematic of the 1D strip absorber with 10 Al2O3-Al pairs. Wt = 150 nm, Wb = 500 nm,
and Px = 550 nm. (b) Absorption spectra for broadband absorber consisting of two different sized
sub-cells with different top widths. Wt2 = 50 nm, Wb1 = 500 nm, Wb2 = 300 nm, and Px = 825 nm.
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Figure 4. (a)–(i) Magnetic field amplitude distributions at different incident wavelengths for a
broadband absorber consisting of two different sized sub-cells within a unit cell. The parameters are
Wt1 = Wt2 = 50nm, Wb1 = 500 nm, Wb2 = 300 nm, Px = 825 nm.

and there are dips around 800 nm. This trend is understandable. When two pyramids are put together
into a unit cell, the effective absorption cross-section of the incident light in the short wavelength range
declines noticeably, and more light will transmit directly through the gaps between neighboring HMM
strips down to the gold film and be finally reflected. To overcome this problem and simplify the design,
we only decrease the top width of the large pyramid (Wt1) to increase the absorption cross-section for
the short wavelength light, improving the absorption efficiency in short wavelength range. A quite good
result is obtained when Wt1 is reduced to 50 nm and other parameters are kept unchanged. As shown
in Figure 3(b) (red solid line), more than 90% of light is absorbed from 500 nm to 2500 nm, and the full
absorption bandwidth at half maximum (FWHM) is above 150%, which is much wider than that in the
previous cases.

To verify the physical insight better, we calculate the magnetic field distributions at some
wavelengths of the absorber within a unit cell, depicted in Figure 4. When the wavelength is small,
as shown in Figure 4(a)–(c), both the small and large pyramids contribute to the absorption. In other
words, light is not solely accumulated at a certain part of one type of pyramid, but rather is trapped
at multiple regions within both pyramids. In addition both the fundamental and high order slow-wave
modes are generated. When the wavelength gets larger but below 1.6µm (Figures 4(d)–(f)), light is
mainly concentrated in the small pyramid, and the light with the longer wavelength will stay in the
wider part of the pyramid. At λ = 1.6µm, the small pyramid cannot accommodate the slow-wave
mode independently, and thus some energy transfer is stored in the large pyramid (Figure 4(f)). In the
wavelength range above 1.8µm, the large pyramid dominates the light absorption and nearly all the
energy is trapped and absorbed in it. Analogously, light of differing wavelengths is strongly trapped at
some part of the large pyramid corresponding to the specific width of the strip.
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2.3. Experimental Results

In the above, the 1D tapered strip absorber is polarization dependent. To remove this polarization-
dependence, a two-dimensional (2D) periodic array of quadrangular frustum pyramids (QFPs) is
proposed, and is illustrated in Figure 5(a). The parameters of QFPs are identical to those of the 1D
multi-sized strip array, and the period along the y direction is the same as that along the x direction.

To experimentally observe the broadband absorption, we have fabricated the 2D QFP absorber
(15µm× 15µm) via thin-film deposition combined with focused-ion-beam (FIB) milling. The 10 pairs
of alternating Al2O3-Al thin films are firstly deposited on the Au-film-coated silicon substrate with
sputtering. Then FIB milling is used to pattern the 1D tapered strip arrays. During the milling, a
proper grayscale bitmap is designed to distribute the dose intensity, which can control the tapered
angle. The scanning electron microscopy (SEM) image of the fabricated parallel strips along the x-axis
is shown in Figure 5(b). When this 1D tapered strip array along the x direction is fabricated, an
orthogonal strip array along the y direction is milled to construct the 2D QFP absorber. This process
is vital for realizing the symmetry absorber, which is polarization-independent. In reality, the process
is really strenuous as some milled away materials may get into the pre-fabricated grooves along the
x direction when milling the crossed strips along the y direction, which will lead to strong geometric
asymmetry. After trying several times with different grayscale bitmaps and doses, we have successfully
implemented a 2D QFP absorber with acceptable structural asymmetry, illustrated in Figure 5(c).

As the absorption bandwidth is wide, the total reflection R(ω) is measured separately with
two different setups. In the wavelength range of 500 nm–1650 nm, we use makeshift linear reflection
spectroscopy to measure the reflection, based on an inverted microscope equipped with a super-
continuum source, pinholes and spectrometers. Thus the measured spectral range is limited by the
response of spectrometers. That is why there is a gap between 900 nm and 1000 nm. In the wavelength
range over 1600 nm, we adopt another detection system based on a monochromator.

The measured absorption spectrum is broad and flat except for some oscillations around 2300 nm,

(a) (b)

(c) (d)

Figure 5. (a) Schematic of the simulated 2D QFP absorber; the parameters of a unit cell are
Wt1 = Wt2 = 50 nm, Wb1 = 500 nm, Wb2 = 300 nm, Px = Py = 825 nm, tm = 24 nm, td = 16 nm.
(b) SEM images of 1D taper array along the y axis (scale bar 1µm) milled in a multilayered film
displaying slight period variations and surface roughness (see inset, scale bar 300 nm). (c) SEM images
of 2D QFP arrays. (d) Comparison between the experimental absorption (black dashed line) and
simulated absorption (red solid line). The normally incident light is arbitrarily polarized.
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and the absorption is above 0.8 from 730 nm to 2010 nm. On average, the measured absorption at normal
incidence between 500 nm and 2300 nm is found to be 0.85 for arbitrary polarized light [see dashed black
curve in Figure 5(d)]. The experimental data is in good agreement with the simulated spectrum in the
middle wavelength range (1000 nm–2000 nm), considering the imperfection in the fabricating process as
well as the measurement error. However, the discrepancy between the curves in the short wavelength
range (500 nm–700 nm) is a little bit big, which is ascribed to the variation of the parameters of the
fabricated QFP absorber from those of the designed structure. As the top layer of QFP is only 50 nm
wide, in the fabrication process, it will deviate from the designed shape, becoming a tip. Then the light
in the short wavelength cannot be efficiently trapped and will be reflected. Therefore the absorption
efficiency in the short wavelength range is not high. In addition, the low absorption in the long
wavelength range (2000 nm–2300 nm) is ascribed to another factor besides the imperfection fabrication.
As the lenses in our system are made up of BK7 glass and have a relatively strong absorption at long
wavelengths, it brings the signals into a dramatic dissipation. Then we have to tune up the pinhole
area to get an acceptable signal-to-noise ratio, meanwhile, more reflecting lights from the vicinity of the
structure are collected somehow, reducing the measured absorption coefficient.

2.4. Angle-Independent Absorption Performance

Ideally, the performance of the absorber should be insensitive to the incident angle (θ) for applications
such as solar energy harvesting. We performed the full-wave simulations to verify the angle dispersion
for both TE polarization (the electric field of the incident light is kept parallel to the y-axis, Figure 6(a))
and TM polarization (the magnetic field of the incident light is kept parallel to the y-axis, Figure 6(b))
and found that the absorption effect is nearly robust for oblique incidence. In the simulation, the
incident angle (θ) is varied in 5◦ steps from 0◦ to 80◦. For both polarizations, the absorption is nearly
independent of the incident angle (θ), and the broadband response is achieved when the angle is below
40◦. In addition, the absorption still remains above 80% even when the incident angle reaches 60◦.

(a) (b)

Figure 6. Incident angle dependence of the absorption performance. (a) Absorption as a function of
the wavelength and incident angle for TE polarization. (b) Absorption as a function of the wavelength
and incident angle for TM polarization.

3. CONCLUSIONS

We have successfully realized ultra-broadband absorbers based on multi-sized HMM slow-wave
structures, which ensures polarization-insensitive light absorption (above 90%) between 500 nm and
2500 nm in the simulation and an average measured absorption of 85% in the spectrum of 500 nm–
2300 nm. Our absorber offers a wide and smooth absorption spectrum with high absorption in both
simulation and experiment, which can cover both the visible and infrared frequency ranges. We
emphasize that our proposal is general and can be applied to further broaden the absorption bandwidth
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with more slow-wave structures integrated in a unit cell, allowing for realization of thin film thermal
emitters and blackbody emission. In addition, these types of HMM absorbers are also promising
candidates for improving the performance of thermo-photovoltaic systems.

3.1. Methods

3.1.1. Simulations

We performed the full wave simulations using Lumerical, a commercial FDTD software package. For the
tapered strip absorber, the simulations are performed in two-dimensional layouts. In the simulations, the
mesh grid was set to 5 nm over the entire simulation volume, with a refinement (1 nm) over the volume
occupied by the tapered strips. A unit cell of the tapered strip is simulated using periodic boundary
conditions along the x-axis and perfectly matched layers along the propagation of electromagnetic waves
(z-axis). Plane waves were launched incident to the unit cell along the +z direction with the electric field
along the x direction, and reflection is monitored with a power monitor placed behind the radiation
source; transmission is monitored with a power monitor placed behind the structure. Electric and
magnetic fields are detected using the frequency profile monitors.

We used the three-dimensional layouts to simulate the quadrangular frustum pyramids absorber.
In the simulations, for the volume occupied by the pyramids, the mesh grid was set to 8 nm along the x
and y directions, and 2 nm along the z direction. A cubic mesh with a mesh size of 10 nm was employed
for the other volume. We used periodic boundary conditions along the x and y-axes, and perfectly
matched layers along the propagation of electromagnetic waves (z-axis). We also used power monitors
to acquire the reflection and transmission, and frequency profile monitors to record the field profiles.

Optical constants of Al2O3, Al and Au were taken from Ref. [26].

3.1.2. Fabrication

The fabrication of the multilayered films started with a 100 nm Au film deposited on a flat silicon
substrate using sputtering at a deposition rate of 0.5 nm/s. The fabrication process was followed
by depositing 10 pairs of alternating Al2O3 (16 nm)/Al (24 nm) thin layers onto the Au film using
sputtering. The film growth rates for Al2O3 and Al were 0.04 nm/s and 0.3 nm/s, respectively.

Figure 7. SEM images of 2D QFP arrays with square border (fabricated on 3 July 2013, as indicated
at the right-bottom corner; the publication was very much delayed due to the experimental set-up for
the long-wavelength measurement and some other reasons).
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Arrays of HMM absorbers were fabricated using a cross-beam system (FIB and scanning electron
microscope), where a constant current (20–50 pA) of Ga+ ions was focused onto the surface at normal
incidence, with the position of the beam controlled by a lithography system. To fabricate the tapered
strip array, during the FIB milling, we have used the grayscale bitmaps to pattern the nano-structure
in order to precisely control the tapered angle. Assigning a bitmap to a shape is equivalent to varying
the dose pixel by pixel using the grayscale intensity as a weight, and the dose is then distributed over
the shape as a function of the brightness of the pixel. With the carefully designed grayscale bitmap and
proper doses, we have successfully fabricated the 1D tapered strip arrays with optimized parameters.

For 2D QFP arrays, we first fabricated the 1D tapered strip array and then milled the orthogonally
oriented strip array. To compensate for the structural anisotropy caused by milling orthogonally oriented
strips, we have adjusted the grayscale bitmaps and dose value. Figure 7 shows the SEM images of 2D
QFP arrays with the square border.

3.1.3. Optical Measurements

Reflection spectra of the fabricated samples were studied using two different systems. In the wavelength
range of 500 nm–1650 nm, we use a homemade linear reflection spectroscopy to measure the reflection.
The spectroscopic setup included an IX71 microscope (Olympus) equipped with a super-continuum
white light laser source (NKT) and fiber-coupled spectrometers. The reflected light was collected in
the backscattering configuration using an MPlanFL (Olympus) objective with a magnification of ×100
(numerical aperture (N.A.) = 0.8). A tunable pinhole with a minimum diameter of 1000µm is set at the
conjugate plane of the sample to control the image area with a diameter of 10µm. In this way, we can
make sure that the backscattering light collected is mainly from the sample area and therefore suppresses
the background noise. The signal was measured by using an Ocean Optics USB2000 spectrometer at
the visible frequency (350–1000 nm) and by using an Ocean Optics NIR-QUEST spectrometer in the
near-infrared range (900–1700 nm). In the long wavelength range (above 1750 nm), we adopt another
detection system. An inverted microscope (Ti-u from Nikon), followed by a confocal optical path, collects
signals into a monochromator (SP 2300i from Princeton Instruments). An infrared detector (Zolix) is
used to measure the spectrum when the monochromator is scanning. Additionally, a long pass filter (for
the wavelength above 1750 nm) is used to block shorter wavelengths for the monochromator. Reflectivity
spectra were obtained by using calibration reflection measurements with a reference broadband dielectric
mirror that exhibits an average reflection of 99% between 400 and 700 nm of light wavelengths. In the
wavelength range above 700 nm, we used the gold film as the reference mirror.
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