
Progress In Electromagnetics Research M, Vol. 36, 131–137, 2014

Space-time Matrix Method for Mixed Near-Field and Far-Field
Sources Localization
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Abstract—Mixed near-field and far-field sources localization problem has received significant attention
recently in some practical applications, such as speaker localization using microphone arrays and
guidance systems, etc. This paper presents a novel space-time matrix method to localize mixed near-
field and far-field sources. Using the proposed method, both the direction-of-arrival (DOA) and range
of a source can be estimated by the same eigen-pair of a defined space-time matrix. Therefore, the
pairing of the estimated angles and ranges is automatically determined. Compared with the previous
work, the presented method offers a number of advantages over other recently proposed algorithms. For
example, it can avoid not only parameters matching problem but also aperture loss problem. It has
lower computational complexity since the proposed method does not require the high-order statistics
or any parameter search. Simulation results show the performance of the proposed algorithm.

1. INTRODUCTION

Source localization from noisy observations is a fundamental problem in array signal processing. Various
algorithms have been developed in the past decades for locating far-field sources (FFSs) [1–3] or near-
field sources (NFSs) [4–7]. For the FFS scenario, only DOA parameter needs to be estimated; however,
for the NFS scenario, both DOA and range parameters of NFSs should be estimated since the NFSs
are located closely to the array. The signals received at an array are often the mixture of FFSs and
NFSs, in some practical applications such as speaker localization using microphone arrays, etc. In such
scenario, each speaker may be in the near-field (NF) or far-field (FF) of the received array.

A lot of work has been done on the mixed NF and FF sources localization recently. For example,
a two-stage MUSIC algorithm based on cumulant is proposed to solve the mixed sources localization
issue [8]. Despite its effectiveness, it has a high computational burden since this method needs multiple
particular cumulant matrices (which are based on high-order statistics) and three times eigenvalue
decomposition of some high-dimensional matrices. To alleviate the computational overhead, a MUSIC-
based one-dimensional (1-D) spectral peak search algorithm is presented in [9]. However, this method
has great loss of array aperture. Via ESPRIT-like and polynomial rooting methods, an effective mixed
sources localization algorithm is given in [10]. It can obtain better estimation performance with reduced
computational complexity and find the DOAs of N − 2 sources when the receiving system is equipped
with a uniform linear array (ULA) of N sensors. An improved method is presented in [11]. The
proposed approach can estimate DOAs and powers of FFSs by the MUSIC spectral function. And then,
an oblique projection technique is adopted to eliminate the FFSs so that DOAs and ranges of NFSs
can be estimated by exploiting the symmetry property of ULA. A maximum likelihood localization
method based on data supported optimization (DSO) is proposed in [12]. In this method, a two-stage
estimation technique is exploited to obtain the data supported grid points. A mixed sources localization
based on sparse signal reconstruction is presented in [13]. The DOAs of mixed sources are estimated
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by constructing the cumulant domain data. After that, the ranges are estimated by constructing the
mixed over complete basis to get the sparse representation of the receiving array output. A two-stage
matrix differencing algorithm [14] is proposed. Firstly, the proposed method exploits the property of the
Toeplitz structure associated with the covariance matrix of the FFSs to eliminate the FF components.
Secondly, DOAs and ranges of NFSs are estimated by an ESPRIT-like solution. Finally, the DOAs
of FFSs are estimated via MUSIC algorithm. The method [15] exploits the recursive relationship of
spherical harmonics and spherical array to estimate the DOAs of multiple mixed sources. It can avoid
high-order statistics computation and parameter search. However, it can not discriminate far-field and
near-field signals.

In this paper, a new space-time matrix method is developed to resolve the mixed sources localization
problem when the FFSs and NFSs coexist. The DOAs and ranges of all incoming signal sources can be
estimated by the eigen-pairs of a defined space-time matrix based on second order statistics. The outline
of the paper is organized as follows. The data model is described in Section 2. Section 3 introduces the
space-time matrix method. Section 4 shows some simulation results. Finally, the conclusion is given in
Section 5.

2. DATA MODEL

Consider K narrow band signal sources sk(t) (1 ≤ k ≤ K), generated by the NFSs and FFSs, impinging
on a ULA with M omni-directional sensors. Assume that the first K1 sources are the FFSs and that
other K −K1 sources are the NFSs.

The ULA geometry is depicted in Fig. 1. Employing the first antenna of the ULA as the phase
reference, the signal received at the mth antenna can be written as

ym(t) =
K∑

k=1

amksk(t) + nm(t) (m = 1, 2, . . . , M) (1)

where amk denotes the mth antenna responding to signal sk(t) from direction θk, and range rk. nm(t)
stands for the noise output of the mth antenna. In matrix form, the array output can be given by

Y(t) = As(t) + n(t) (2)

where Y(t) = [y1(t), y2(t), . . . , yM (t)]T is the array output vector. s(t) = [s1(t), . . . , sK(t)]T represents
the signal waveform vector. n(t) = [n1(t), . . . , nM (t)]T stands for the array noise vector. A =
[a(θ1, r1),a(θ2, r2), . . . ,a(θK , rK)] is the N × K array steering matrix of the mixed NFSs and FFSs.
In the array steering matrix, the steering vector a(θk, rk) = [a1k, a2k, . . . , aMk] with amk = exp{j((m−
1)αk+(m−1)2βk

)}, in which αk = −2πd
λ sin(θk)·βk = πd2

λrk
cos2(θk)·rk ∈ [0.62(D2/λ)1/2, +∞). d denotes

the distance between two adjacent sensors. λ stands for the wavelength of sources. θk ∈ [−π/2, π/2]
and rk are the DOA and range of the kth source relative to the origin, respectively. D represents the
array aperture.

kθ
kr

( )ks t

x0 1 2 M

y

Figure 1. Uniform linear array configuration.
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The common assumptions are listed first.
(A1): K < M , all sources are not fully correlated.
(A2): ni(t) (i = 1, . . . , M) is a complex Gaussian random process with zero-mean and equal variance

σ2
n. The noise ni(t) is uncorrelated with sk(t) (k = 1, . . . , K).

Under the above assumptions, it can be easily seen that

Rnmnl
(τ) = E{nm(t)n∗l (t + τ)} = σ2

nδ(τ)δ(m− l) (3)
Rnmsk

(τ) = E{nm(t)s∗k(t + τ)} = 0 (4)
Rsmsk

(τ) = E{sm(t)s∗k(t + τ)} = sk,k(τ)δ(m− k) (5)

where δ(·) is the Dirac function. The superscript (·)∗ represents the conjugate operation. E{·} denotes
the statistical average operation. sk,k(τ) = E{sk(t)s∗k(t + τ)}.

Given the observed signal y(t), the task is to estimate the two-dimensional parameters (θk, rk)(k =
1, . . . , K).

3. ALGORITHM FORMULATION

To develop an effective joint DOA and range estimation algorithm, we define the correlation functions
ri,M (τ) and ri,M−1(τ) as follows

ri,M (τ) = E{yi(t)y∗M (t + τ)} (i = 1, . . . , M) (6)
ri,M−1(τ) = E{yi(t)y∗M−1(t + τ)} (i = 1, . . . , M) (7)

where yi(t) is given by (1).
From (3)∼(7), we have the following equations

ri,M (τ) = E





(
K∑

k=1

sk(t)aik + ni(t)

)


K∑

p=1

s∗p(t + τ)a∗Mp + n∗M (t + τ)








=
K∑

k=1

E {sk(t)s∗k(t + τ)} a∗Mkaik + σ2
nδ(τ)δ(i−M)

=
K∑

k=1

(
sk,k(τ)a∗Mk

)
aik (τ 6= 0, i = 1, 2, . . . , M) (8)

Similarly, ri,M−1(τ) has the following expression

ri,M−1(τ) = E{yi(t)y∗M−1(t + τ)}

=
K∑

k=1

(
sk,k(τ)a∗(M−1)k

)
aik (τ 6= 0, i = 1, 2, . . . ,M)

=
K∑

k=1

(
sk,k(τ)a∗Mk

)
aik

a∗(M−1)k

a∗Mk

(9)

Define that three vectors r1(τ), r2(τ), and rs(τ) as follows

r1(τ) = [r1M (τ), r2M (τ), . . . , rMM (τ)]T (10)

r2(τ) = [r1(M−1)(τ), r2M (τ), . . . , rMM (τ)]T (11)

rs(τ) = [s1,1(τ)a∗M1, s2,2(τ)a∗M2, . . . , sK,K(τ)a∗MK ]T (12)

Thus,

r1(τ) = Ars(τ) (13)
r2(τ) = AΦrs(τ) (14)
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where the matrix Φ has the following form

Φ = diag

{
a∗(M−1)1

a∗M1

,
a∗(M−1)2

a∗M2

, . . . ,
a∗(M−1)K

a∗MK

}
= diag

{
ej(α1+(2M−3)β1), . . . , ej(αK+(2M−3)βK)

}
(15)

Collect N times “pseudo-snapshot” for r1(τ), r2(τ), respectively, i.e., τ = Ts, 2Ts, . . . , NTs, we
can obtain the following “pseudo-snapshot matrices”

X = [r1(Ts), r1(2Ts), . . . , r1(NTs)] (16)
Y = [r2(Ts), r2(2Ts), . . . , r2(NTs)] (17)

Invoking the expressions of r1(τ) and r2(τ) in (13)∼ (14), we have the following relationship

X = ARs (18)
Y = AΦRs (19)

where Rs = [rs(Ts), rs(2Ts), . . . , rs(NTs)].
Making use of (18) and (19), we define a space-time matrix R as [16, 17]

R = YX† (20)

where the superscript (·)† stands for matrix pseudo inverse (Moore-Penrose inverse), then we have the
following Theorem 1.

Theorem 1. Assume that there are K (near-field or far-field) narrow-band sources, with complex
baseband representations sk(t) (1 ≤ k ≤ K) such that the kth source arrives a ULA from direction θk

and range rk. If there are no same elements on the diagonal of matrix Φ, and Rs is the a full rank
matrix, then, the K nonzero eigenvalues of R are equal to the K elements on the diagonal of matrix
Φ, and the corresponding eigenvectors are equal to the corresponding column vectors of R, namely,
RA=AΦ.

Proof : Under the above assumptions, it is easy to know that A is a full rank matrix. Furthermore,
we can draw a conclusion that rank(X) = rank(A) = rank(Rs) = K. Thus, we have the following
equations

X† = RH
s

(
RsRH

s

)−1 (
AHA

)−1
AH (21)

From (19) ∼ (21), the following equation can be obtained

RA = YX†A =
(
AΦRs

)(
RH

s (RsRH
s )−1(AHA)−1AH

)
A

=
(
AΦ

)(
(RsRH

s )(RsRH
s )−1(AHA)−1AHA

)
= AΦ (22)

This concludes the proof.
Remarks:
(1) From Theorem 1, it can be easily seen that the array steering matrix A and the diagonal

matrix Φ can be obtained by computing the eigendecomposition of the space-time matrix R. Then the
incoming angle θk and range rk can be estimated by making use of the kth eigen-pair of the matrix R,
that is, the paring of the estimated two-dimensional parameters is automatically determined.

(2) If there are several sources are close in the angle of incidence θ or range r, but there are no same
elements on the diagonal of matrix Φ, then Theorem 1 is still true, namely, it can resolve the incoming
rays with very close θ angles or very close r ranges under the aforementioned conditional restriction.

The procedure of the proposed method is concluded as follows.
(1) Collect the data matrices X and Y, according to (16) and (17), respectively.
(2) Calculate X† and the space-time matrix R.
(3) Compute the eigen-pairs (λk, ξk) of R (k = 1, . . . , K), where λk is the kth eigenvalue of R and

ξk is the corresponding eigenvector.
(4) Estimate αk and βk as follows

β̂k =
µk − νk

M − 2
, α̂k = νk − (M − 1)× β̂k (23)
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where νk = angle(λk), µk = 1
M−1angle(

∑M
m=2

ξ∗k,m−1ξk,m

ξ2
k,1

) with ξk,m denoting the mth element of the kth

eigenvector ξk.
(5) Estimate DOA θk and range rk as follows





θ̂k = sin−1

(
−λ̂k × λ

2πd

)

r̂k =
πd2 cos2(θ̂k)

λβ̂k

(24)

(6) According to the size of range estimates r̂k, k = 1, . . . , K, determine the type (NFS or FFS) of
sources.

In fact, according to (24), we can easily determine that the kth source sk(t) is near-field or far-
field one. When r̂k ∈ [0.62(D2/λ)1/2, 2D2/λ] (Fresnel region), we can determine that the source sk(t)
corresponding to r̂k is a near-field source. On the contrary, when r̂k ∈ (2D2/λ,+∞), we can determine
that the source sk(t) corresponding to r̂k is a far-field source.

4. SIMULATION RESULTS

In this section, several simulation results are provided to illustrate the performance of the proposed
space-time matrix method (STMM).

Consider a ULA composed of 7 sensors with quarter-wavelength inter-sensor spacing. The input
signal-to-noise ratio (SNR) is defined as 10log10(σ2

s/σ2
n), where σ2

s denotes the power of signal source
s(t), and σ2

n stands for the noise power. Assume that there are one far-field and two near-field sources
are incoming on the ULA, and they are located at (20◦, 45λ), (−30◦, 5λ) and (20◦, 2λ), respectively.
The number of snapshots at each sensor is N = 50. All results provided are based on 200 independent
runs. We use the root-mean-square-error (RMSE) RMSEθ and RMSEr as the performance measure.
They are defined as 




RMSEθ =

√√√√E

{
K∑

k=1

(θk − θ̂k)2
}

RMSEr =

√√√√E

{
K∑

k=1

(rk − r̂k)2
} (25)

where θ̂k and r̂k are the estimate of θk and rk, for k = 1, 2, . . . , K.
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Figure 2. RMSEθ curves versus SNR.

-5 0 5 10 15 20
10-3

10-2

10-1

100

SNR (dB)

R
M

S
E

(W
a
v
e
le

n
g
th

)

M2
TSMDA
STMM

Figure 3. RMSEr curves versus SNR.
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Figure 4. RMSEθ curves versus snapshot
number.
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Figure 5. RMSEr curves versus snapshot
number.

Figures 2 and 3 give RMSEθ and RMSEr curves with SNRs ranging from −5 to 20 dB, respectively.
The solid line stands for the RMSE curve of the proposed STMM. The dotted line represents the RMSE
curve of the method presented in [10] (For the sake of convenience, this method is referred to as M2).
The dashdotted line denotes the RMSE curve of the proposed method in [14] (this method is named as
TSMDA for short), respectively. From Figs. 2 and 3, we can note that the STMM outperforms the M2
and TSMDA in DOA and range estimates.

When SNR is set to 10 dB and the snapshot number varies from 50 to 500. The RMSEθ and
RMSEr curves of the aforementioned three algorithms are shown in Fig. 4 and Fig. 5, respectively.
From Figs. 4 and 5, we can see that the proposed method has higher estimation accuracy than that of
M2 and TSMDA.

5. CONCLUSIONS

In this paper, we present a space-time matrix method for mixed sources localization. The eigen-pairs
of the defined space-time matrix are utilized to estimate the DOAs and ranges. So, the paring of the
estimated parameters is automatically determined. The presented approach has a lower computational
complexity, but it exhibits superior performance, such as a smaller estimation error and better robustness
to SNR change.
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