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Fast Wideband Analysis of Antennas Using IE-PO Hybrid Method
and the Best Uniform Approximation
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Abstract—An efficient wide-band analysis that combines modified integral equation-physical optics
(IE-PO) hybrid formulation with the best uniform approximation is proposed for antennas around
an electrically large platform in this paper. The modified single-level Fast Fourier Transform (FFT)
algorithm which is based on the subdomain FFT acceleration is employed by interpolating the Green’s
function and introducing the concept of the empty groups. Furthermore, the correction of the near-
interaction is avoided. On the other hand, the best uniform approximation technique is applied to
analyze wide-band properties of antennas. Due to the above modifications, the hybrid method needs
fewer unknowns and memory requirements than the conventional one.

1. INTRODUCTION

Usually a platform structure can significantly affect antenna properties in mobile communication, so
existent mutual electromagnetic coupling effects should be well handled via numerical technique with
low computational cost. As we know, the integral equation (IE) [1–3] method is very popular in solving
electromagnetic problems.

In recent years, a series of classic fast IE methods have been proposed. Multilevel fast multipole
algorithm (MLFMA) [4, 5] is an extension of fast multipole method (FMM) [6–8]. On the other hand,
the researches of fast Fourier transform (FFT) based on grid basis function lead to more tractable
methods, such as precorrected-FFT (P-FFT) [9, 10], conjugate gradient-FFT and adaptive integral
method (AIM) [11]. In this class of approaches, the polynomial interpolation of the Green’s function
via uniform Cartesian grid brings forth a Toeplitz matrix, allows the fast computation of well-separated
MoM interaction terms with the aid of a global FFT and is easier to implement than other approaches.
As References [11–13] point out, the conventional MoM requires O(N2) for both storage and matrix-
vector multiplication, where N denotes the number of unknowns. However, the FFT approach is O(N1.5)
for storage requirement and O(N1.5 log N) for matrix-vector multiplication for 3-D PEC electromagnetic
problems.

However, for electrically large platform, the efficiency of IE method may be lost due to excessive
computer requirement. It should be noted that the most powerful tool for solving such model is the
hybrid algorithm which combines IE with high frequency asymptotic method. In the hybrid analysis, the
original model is divided to the full-wave region and the asymptotic region, respectively. The interaction
between two regions is accounted for in the integral equation (IE) resulting in that the unknowns only
appears in the full-wave region. With the development in recent years, the hybrid approach shows the
accuracy and validity of offering considerable computational saving in terms of memory and execution
time.

In practical applications, the properties of antennas over a wide frequency band are usually
concerned. With the hybrid algorithm, it is still time-consuming due to the repeated solution of
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matrix equation at each frequency point. Over the past few years, there have been some efforts to
achieve fast frequency sweep, such as impedance matrix interpolation, asymptotic waveform evaluation
(AWE) [14–18], model-based parameter estimation (MBPE) [19] and the best uniform approximation
technique [20–22]. In AWE and MBPE, Taylor series expansion is generated for a specific value of the
system parameter, and the rational function approach obtained from Padé approximation is used to
improve the accuracy of the numerical solution. However, the accuracy of the Taylor series is limited
by the radius of convergence, and the high derivatives of the dense impedance matrix must be stored to
compute the coefficients, which will greatly increase the memory consumed. Compared with AWE and
MBPE, the best uniform approximation is easy to be applied in IE method and can obtain accurate
results over a wide frequency band without increasing memory.

In this paper, an improved IE-FFT approach combined with physical optics (PO) is utilized
to analyze the radiation of antennas around an electrically large platform. By interpolating the
Green’s function and introducing the concept of the empty groups, the modified single-level Fast
Fourier Transform (FFT) algorithm based on the subdomain can avoid the calculation process of near-
interaction. Furthermore, the best uniform approximation technique is applied to get an accurate
representation of the frequency response. Finally, numerical results show the efficiency of the approach
proposed in this paper.

This paper is organized as follows. Section 2 gives a brief overview of the IEFFT-PO method,
and then derives the best uniform approximation technique in detail. Two numerical examples will be
presented in Section 3 to demonstrate the accuracy and efficiency of the hybrid technique. Finally, the
conclusions and discussions will be provided in Section 4.

2. METHOD DESCRIPTION

2.1. The Combined Field Integral Equation

The CFIE is merely a linear combination of the EFIE and the MFIE as follows:

CFIE = αEFIE +
(1− α)

jk0
MFIE (1)

where α is the combination factor and 0 ≤ α ≤ 1. Note that the choice of the combination factor
strongly depends on the accuracy and efficiency required. The larger the factor is, the more accurate
the results are. In contrast, the smaller the factor is, the higher the efficiency is. It is found that
combination factor α = 0.8 is an overall good choice in Ref. [12].

After applying the conventional integral equation-physical optics (IE-PO) hybrid method, the CFIE
can be converted into a matrix equation

(Z11 + Z12A) I1 = V1 (2)
I2 = AI1 (3)

where the sub-matrix Z11 and Z12 represent the self-interaction and mutual-interaction between the full-
wave region and the asymptotic region; A is the matrix relating the electric current in the asymptotic
region to the full-wave region; I1 and I2 are the current coefficient vector of the two regions, respectively.

In Equation (3), the elements of A can be written as:

A = δ

∫

T+
n +T−n

{[(
t̂+q + t̂−q

) · ∇G
(
r, r′

)]
n̂q −

[
n̂q · ∇G

(
r, r′

)] (
t̂+q + t̂−q

)} · fn(r′)dr′ (4)

where n̂q denotes the normal vector on the surface. T+
n and T−n represent two triangles connected to

the edge n of the triangulated surface model. t̂+q and t̂−q are the two unit vectors in the middle of qth
edge which are perpendicular to the edge and which are lying the in the plane of the triangle pairs T±q .
fn(r′) is the vector basis function. G(r̃, r̃′) is the Green’s function in free space defined as

G
(
r̃, r̃′

)
=

e−jk|̃r−r̃′|

4π |̃r− r̃′| (5)

where k denotes the wave number, r̃ and r̃′ are the source and observation points, respectively.
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2.2. Improved IE-FFT and PO Hybrid Method

In Fig. 1, an improved grids distribution located in the nonempty groups is proposed. By introducing the
concept of the empty groups, modified IE-FFT algorithm which is based on the subdomain is employed
to reduce matrix storage and to accelerate all the matrix-vector multiplications in both the linear
system for the moments and the iterative solver. Furthermore, the correction of the near-interaction is
avoided. Note that matrix G is Toeplitz, and this enables the use of FFT to compute the matrix-vector
multiplication.

Figure 1. Grid distribution of the improved IE-FFT method.

By interpolating the Green’s function on these grids, the matrix equation can be written as

Z = ZMoM
(near) + ZIE-FFT

(far)

= ZMoM
(near) + jk0η0

[
α




N∑

i=1

ΠiAGi,j

Mi∑

j=1

(ΠjA)T − 1
k2

0

N∑

i=1

ΠiDGi,j

Mi∑

j=1

(ΠjD)T




−(1− α)
jk0

N∑

i=1

ΠiMGi,j

Mi∑

j=1

(ΠjA)T

]
(6)

In Equation (6), k0 and η0 are wave number and wave impedance of free space, respectively.
The projection matrices ΠA, ΠD and ΠM are all sparse, and then the matrix vector product can be
accelerated by FFT. The projection matrices can be evaluated as follows:

ΠA =
∫

S
[f1 (r) , f2 (r) , . . . , fN (r)]T

[
β1 (r) , β2 (r) , . . . , β(p+1)3 (r)

]
dS (7)

ΠD =
∫

S
[∇ · f1 (r) ,∇ · f2 (r) , . . . ,∇ · fN (r)]T

[
β1 (r) , β2 (r) , . . . , β(p+1)3 (r)

]
dS (8)

ΠM =
∫

S
[∇f1 (r) ,∇f2 (r) , . . . ,∇fN (r)]T

[
β1 (r) , β2 (r) , . . . , β(p+1)3 (r)

]
dS (9)

Gi,j =




g1,1 g1,2 . . . g1,(p+1)3

g2,1 g2,2 . . . g2,(p+1)3

. . . . . . . . . . . .
g(p+1)3,1 g(p+1)3,2 . . . g(p+1)3,(p+1)3


 (10)

where N is the number of panels in a single group i or j. βi(r) are Lagrange interpolation basis functions
for nodes i, respectively. p is the approximation order, (p + 1)3 is the number of grids. Gi,j is a 3-D
Toeplitz Green’s function matrix produced by the regular grids located in group i or j. gi,j is the
Lagrange coefficients of Green’s function.

Similar to the above scheme, the hybrid formulation (2) can be derived by decomposing the
impedance matrix to near and far field couplings as follows

Z11 + Z12A = [[Z11 + Z12A]](near) + [Z11 + Z12A](far)

=
[
ZMoM

11(near) + ZMoM-PO
12(near) A] + [ZIE-FFT

11(far) + ZIE-FFT
12(far) A

]
(11)
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Using FFT to accelerate the matrix-vector multiplication, we can obtain the following equation

V1 =
[
ZMoM

11(near) + ZMoM-PO
12(near) A

]
I1

+jk0η0α



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Πi1AF−1
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F (Gi,j)F


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






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N∑

i=1

Πi1DF−1


F (Gi,j(k))F


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



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 (12)

where Π1A, Π1D and Π1M are the projection matrices of basis functions in full-wave region. On the
other hand, Π2A, Π2D and Π2M are those in the asymptotic region. The two operators F and F−1

stand for FFT and inverse FFT, respectively.
Once the current vector I1 in the full-wave region is determined, the vector I2 can be calculated

from Equation (3). It can be seen that the size of matrix equation in (12) is much smaller than that
using conventional full-wave algorithm.

2.3. The Best Uniform Approximation Technique

For a given frequency band k ∈ [ka, kb]. The coordinate transform is expressed as

k̃ =
2k − (ka + kb)

kb − ka
k̃ ∈ [−1, 1] (13)

Then we can obtain the electric current I1(k) as follows

I1(k) = I1

(
k̃(kb − ka) + (ka + kb)

2

)
≈

n∑

l=1

clTl(k̃)− c1

2
(14)

where

cl =
2
n

n∑

i=1

I(ki)Tl

(
k̃i

)
(15)

T1

(
k̃
)

= 1

T2

(
k̃
)

= k̃ (16)

Tl+1

(
k̃
)

= 2k̃Tl

(
k̃
)
− Tl−1

(
k̃
)

3 ≤ l ≤ n
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To improve the accuracy of the numerical solution, the Chebyshev series in (14) are matched via a
rational function. The Maehly approximation for the elements of I1(k) is

I1(k) ≈ RLM

(
k̃
)

=
PL

(
k̃
)

QM

(
k̃
) =

a0T0

(
k̃
)

+ a1T1

(
k̃
)

+ . . . aLTL

(
k̃
)

b0T0

(
k̃
)

+ b1T1

(
k̃
)

+ . . . bMTM

(
k̃
) (17)

where b0 = 1 in common, substitute (17) into (14) and use the identity

Tp(x)Tq(x) =
1
2

(
Tp+q(x) + T|p−q|(x)

)
(18)

The unknown coefficients ai (i = 0, 1, . . . , L) and bj (j = 1, 2, . . . , M) can be obtained as




a0 =
1
2
b0c0 +

1
2

M∑

j=1

bjcj

ai = ci +
1
4
bic0 +

1
2

M∑

j=1

bj

(
cj+i + c|j−i|

)

i = 1, 2, . . . , L

(19)




cL+2 + cL cL+3 + cL+1 . . . cL+M+1 + cL−M+1

cL+3 + cL+1 cL+4 + cL . . . cL+M+2 + cL−M+2
...

...
...

...
cL+M+1 + cL+M−1 cL+M+2 + cL+M−2 . . . cL+2M + cL







b1

b2
...

bM


=−2




cL+1

cL+2
...

cL+M


 (20)

Once the coefficients of the rational function are calculated, the induced current distribution can
be obtained at any frequency within the whole frequency wide-band.

3. NUMERICAL RESULTS

Two numerical examples are considered in this section to illustrate the efficiency and validity of the
presented algorithm for solving radiation problems. All the computations are carried out on a PC with
Intel Core2 CPU 2.8GHz and 2G RAM. The data are stored in double precision, and the bi-conjugate
gradient stabilized method was employed as iterative solver. In our implementation, the grid distance
is 0.08λ and the near-zone threshold dnear is 0.4λ. For the Lagrange interpolation operator, the order
p is 2 and the coefficient α is 0.8. The methods, such as IEFFT, IEFFT-PO, and IEFFT-PO+Maehly
methods, used in the examples are implemented by the Fortran program.

Figure 2. A dipole antenna above a conducting
square disk.

Figure 3. Input admittance frequency response
for there methods.
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In the first example, we consider a dipole located at a distance of 0.25 m above a conducting square
disk, as shown in Fig. 2. The height of the dipole is 0.3 m, and the size of the disk is 0.6m× 0.6m. In
the hybrid analysis, the dipole is assigned to the full-wave region, with the square being the PO region.
There are 15 basis functions in the full-wave region while 1089 basis functions are in the PO region.
Fig. 3 shows the input admittance response from 0.4 to 1.6 GHz obtained using IEFFT, IEFFT-PO,
and IEFFT-PO+Maehly methods. The frequency step is 12MHz and 101 frequency points are used for
the frequency response. It can be seen that the result from the IEFFT-PO and Maehly hybrid method
agrees exactly with that from the conventional IEFFT. In Fig. 4, the results of radiation pattern in the
plane of ϕ = 0◦ calculated by the hybrid algorithm are also in agreement with the conventional method
unless some deviations are due to the fact that the edge diffraction field, which is the largest portion of
the fields behind the square, was not taken into account. This example shows that it is viable to apply
our hybrid technique to analyze the radiation of antennas around a conducting platform.

The second example considered in this paper is an antenna array located at a distance of 0.3m
above a parabolic reflector, as shown in Fig. 5. The diameter and focal length of the parabolic reflector
is 1m and 0.8 m, The four elements in the array are bowtie antenna whose size is shown in the picture.
The array operate at a frequency of 1 GHz. In the simulation, four bowtie antennas are assigned to the
full-wave region with the parabolic reflector being the PO region. Fig. 6 shows the input admittance
response from 0.4 to 1.6GHz obtained using IEFFT, IEFFT-PO, and IEFFT-PO+Maehly methods.
Fig. 7 shows that the results of radiation pattern in the plane of ϕ = 0◦ calculated by the hybrid
method agree exactly with that from the conventional IEFFT and the commercial EM software FEKO
6.0. Computational characteristics of the four methods are summarized in Table 1. It can be seen that
applying the IEFFT-PO and Maehly hybrid method results in a reduction of the number of unknowns
and near field couplings. Therefore, the CPU time are drastically reduced. It should be noted that the
memory overflow occurs in the PC with the asymptotic waveform evaluation technique in this example.
Table 1 shows the efficiency of our hybrid method when it is applied to solve the electrically large
problems. It should be noted that the IEFFT method can be applied when the accuracy of results is
the main target in the project. However, when the efficiency is the main target, the IEFFT-PO and
Maehly hybrid method should be chosen firstly.

The relative root mean square (RMS) RCS error of a specific object is calculated by

ErrorRMS =


 1

N

N∑

j=1

∣∣∣∣10 log10

(
σ̃j(θ)
σj(θ)

)∣∣∣∣
2



1/2

(21)

Figure 4. Radiation pattern of ϕ = 0◦ plane in
example 1.

Figure 5. An antenna array above a circular disk.
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Table 1. Computational characteristics of the four methods for Fig. 5.

Method No. of unknowns No. of near field couplings Total CPU time (hours)
IEFFT 11854 4680725 150

IEFFT-PO 1284 380742 64
IEFFT-PO+Maehly 1284 103237 20.5

FEKO (MoM) 11854 None 40

Figure 6. Input admittance frequency response
for there methods.

Figure 7. Radiation pattern of ϕ = 0◦ plane in
example 2.

Figure 8. Relative RMS RCS error with the value of L(M).

where N represents selected frequency points, while σ̃j(θ) and σj(θ) are the RCS obtained by the
proposed method and the IEFFT-PO method, respectively. For the second example, Fig. 8 shows that
while the expanded coefficient L(M) is greater than 8, the relative RMS RCS error is less than 0.05 dB.
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4. CONCLUSION

An IE-PO hybrid method in conjunction with the best uniform approximation technique has been
presented to obtain fast frequency sweep response of antennas around electrically large platform. The
improved IE-FFT scheme based on subdomains is described, which can reduce memory requirements
and avoid the correction of near-interactions. After hybridizing PO approach, the algorithm can well
handle electrically large problems. Since the IE-PO algorithm requires O(N1.5) for storage, there is
still an electrical size limit in the proposed method. The limitation depends on the region assignment
and the number of unknowns in the full-wave region. In practice, the full-wave region is usually smaller
than the PO region. The fact makes that the IE-PO can be utilized to analyze antennas mounted on a
very large platform such as planes and ships. Furthermore, the best uniform approximation technique
is utilized to achieve fast frequency sweeping. Finally, numerical results show the validity and efficiency
of the method proposed in this paper and that the unknowns and the calculation time are about 1/7
and 1/9 of what needed in the original method.
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2. Obelleiro, F., J. M. Taboada, J. L. Rodŕıguez, J. O. Rubiños, and A. M. Arias, “Hybrid
moment-method physical-optics formulation for modeling the electromagnetic behavior of on-board
antennas,” Microw. Opt. Technol. Lett., Vol. 27, No. 2, 88–93, Oct. 2000.

3. Ma, J., S. X. Gong, X. Wang, et al., “Efficient IE-FFT and PO hybrid analysis of antennas around
electrically large platforms,” IEEE Antennas and Wireless Propagation Letters, Vol. 10, 611–614,
2011.

4. Song, J. M. and W. C. Chew, “Multilevel fast multipole algorithm for solving combined field
integral equation of electromagnetic scattering,” Microw. Opt. Technol. Lett., Vol. 10, No. 1, 14–
19, Sep. 1995.

5. Song, J. M., C. C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic
scattering by large complex objects,” IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488–1493,
Oct. 1997.

6. Song, J. M. and W. C. Chew, “Fast multipole method solution of combined field integral equation,”
11th Annual Review of Orogress in Applied Computational Electromagnetics, Vol. 1, 629–636,
Monterey, California, Mar. 1995.

7. Rokhlin, V., “Rapid solution of integral equations of classical potential theory,” J. Comput. Phys.,
Vol. 60, 187–207, 1985.

8. Coifman, R., V. Rokhlin, and S. Wandzura, “The fast multipole method for the wave equation: A
pedestrian prescription,” IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7–12, Jun. 1993.

9. Phillips, J. R. and J. K. White, “A precorrected-FFT method for electrostatic analysis of
complicated 3-D structures,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., Vol. 16,
No. 10, 1059–1072, Oct. 1997.

10. Phillips, J. R., “Error and complexity analysis for a collocation grid projection plus precorrected-
FFT algorithm for solving potential integral equations with Laplace or Helmholtz kernels,” Proc.
1995 Copper Mountain Conf. Multigrid Methods, 673–688, Apr. 1995.

11. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive integral method for solving
large-scale electromagnetic scattering and radiation problems,” Radio Sci., Vol. 31, No. 5, 1225–
1251, 1996.



Progress In Electromagnetics Research M, Vol. 36, 2014 147

12. Wang, C. F., F. Ling, J. M. Song, and J. M. Jian, “Adaptive integral solution of combined field
integral equation,” Microw. Opt. Technol. Lett., Vol. 19, No. 5, 321–328, 1998.

13. Seo, S. M. and J. F. Lee, “A fast IE-FFT algorithm for solving PEC scattering problem,” IEEE
Transactions on Magnetics, Vol. 41, No. 5, 1476–1479, 2005.

14. Ma, J., S. X. Gong, X. Wang, Y. Liu, and Y. X. Xu, “Efficient wide-band analysis of antennas
around a conducting platform using MoM-PO hybrid method and asymptotic waveform evaluation
technique,” IEEE Trans. Antennas Propagat., Vol. 60, No. 12, 6048–6052, 2012.

15. Peng, Z. and X. Q. Sheng, “A bandwidth estimation approach for the asymptotic waveform
evaluation technique,” IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 913–917, 2008.

16. Nie, X. C., N. Yuan, L. W. Li, and Y. B. Gan, “Fast analysis of RCS over a frequency band using
pre-corrected FFT/AIM and asymptotic waveform evaluation technique,” IEEE Trans. Antennas
Propagat., Vol. 56, No. 11, 3526–3533, 2008.

17. Wang, X., S. X. Gong, J. L. Guo, Y. Liu, and P. F. Zhang, “Fast and accurate wide-band analysis
of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation
technique,” IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4624–4633, 2011.

18. Güdü, T. and L. Alatan, “Use of asymptotic waveform evaluation technique in the analysis of
multilayer structures with doubly periodic dielectric gratings,” IEEE Trans. Antennas Propagat.,
Vol. 57, No. 9, 2641–2649, 2009.

19. Burke, G. J., E. K. Miller, S. Chakrabarthi, et al., “Using model-based parameter estimation to
increase the efficiency of computing electromagnetic transfer functions,” IEEE Transactions on
Magnetics, Vol. 25, No. 7, 2807–2809, Jul. 1989.

20. Hernandez, M. A., “Chebyshev’s approximation algorithms and applications,” Computers &
Mathematics with Applications, Vol. 41, No. 3–4, 433–455, 2001.

21. Chen, M. S., X. L. Wu, Z. X. Huang, and W. Sha, “Accurate computation of wideband response
of electromagnetic scattering problems via Maehly approximation,” Microw. Opt. Technol. Lett.,
Vol. 49, No. 5, 1144–1146, 2007.

22. Chen, M. S., X. L. Wu, W. Sha, and Z. X. Huang, “Fast and accurate radar cross-section
computation over a broad frequency band using the best uniform rational approximation,” IET
Microw. Antennas Propag., Vol. 2, 200–204, Feb. 2008.


