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The Equivalent Self-Inductance of N Coupled Parallel Coils

Guo-Quan Zhou*

Abstract—Based on Faraday’s law of electromagnetic induction and the existence condition of non-
trivial solution to a homogeneous and linear differential system of equations, the equivalent self-
inductance of N coupled parallel coils has been derived by using some algebraic techniques. It can
be expressed as the ratio of the determinants of two matrices, with ranks of N and N − 1, respectively,
and constructed with the self and mutual inductance of those coils. In addition, special conclusions
are deduced and/or discussed in detail for three particular cases: 1. the completely uncoupled case,
2. the identical and symmetrical case, and 3. the completely coupled case, which are coincident with
the existing results in the references.

1. INTRODUCTION

The problem of coupled coils and their application, in parallel or in series, is one of the most important
subjects and permanent topics in the fields of electromagnetism and electro-technology [1–5]. In recent
years, renewed attention has been aroused [4, 5]. The equivalent self-inductance of N uncoupled coils,
whether for the series or the parallel case, can be calculated by using the corresponding formula for the
complex impedance of alternating current. For N coupled series coils, the equivalent self-inductance
can be easily calculated by the method of equivalent self-induction energy of magnetic field [6–10]. The
conclusion for the N = 2 case can be found in some references [6–8] and can be easily generalized into
N > 2 case. In contrast, the parallel coupled case has been paid little attention. References [6–8] have
deduced or given following formula for two coupled parallel coils with no internal DC resistance:

Le =
L1L2 −M2

L1 + L2 − 2M
(1)

where L1 and L2 denote the self-inductance of the two coils respectively, and M denotes the mutual-
inductance between the two coils. Reference [7] has also derived the equivalent decoupled circuit of
two coupled parallel coils with internal DC resistance. However, it is not easy to generalize them into
the N > 2 case by repeatedly using Formula (1) since self and mutual inductances coexist among
these coils simultaneously. Starting from the fundamental Faraday’s law of electromagnetic induction,
using some techniques of high-order determinants of matrices in linear algebra and considering the
existence condition of non-trivial solution to a homogeneous and linear differential system of equations,
the equivalent self-inductance of N coupled parallel coils with no internal DC resistance is derived. It
can be expressed as the ratio of determinants of two matrices of ranks N and N −1, respectively, which
are constructed with the self-inductance and mutual inductance of these coils. The rule of signs has also
been enacted to deal with the reversely-coupled cases. The concrete expressions of several particular
cases, especially for completely uncoupled N coils, are deduced, which agree with the existing results in
textbooks. In addition, the completely coupled parallel case and other cases have also been analyzed.
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2. A THEOREM ABOUT THE SELF-INDUCTANCE OF N COUPLED PARALLEL
COILS

Since the mutual inductance between the ith and jth coils obeys the so-called Neumann relation [9, 10],
i.e., Mij = Mji, considering the demand of brevity of theoretical derivation and symmetry of expression,
we re-label the self-inductance of the ith coil by Li ≡ Mii, i = 1, 2, . . . , N , which means the self-
inductance of a coil can be interpreted as the mutual inductance of itself. Thus we have the following
theorem.

Theorem: The equivalent self-inductance of N coupled parallel coils with no internal DC resistance
is the ratio of determinants of two matrices, M̃1 and M̃2, with ranks of N and N − 1, respectively.
These two matrices are constructed with their self and mutual inductance:

Le = det M̃1/det M̃2 (2)

The arbitrary elements of M̃1 and M̃2 are respectively defined by

(M̃1)ij = Mij , Li ≡ Mii, (i, j = 1, 2, . . . , N) (3)
and

(M̃2)ij = M11 + Mi+1,j+1 −Mi+1,1 −M1,j+1, (i, j = 1, 2, . . . , N − 1) (4)
Proof: The N = 3 case is shown in Figure 1 as a reference. In the light of the properties of a parallel
circuit, the total electromotive force, ε(t), equals each branch electromotive force, εi(t); and the total
instantaneous current, I(t), equals the sum of each branch instantaneous current, Ii(t). Meanwhile,
we should also note the simultaneous coexistence of self and mutual induction in the parallel coupled
circuit, neglect the internal DC resistance of each coil. Finally, we define Le to be the equivalent self-
inductance of N coupled parallel coils, apply Faraday’s law of electromagnetic induction and get the
following equations:

ε(t) = ε1(t) = ε2(t) = . . . = εN (t) ≡ −Le
dI

dt
(5)

I(t) = I1(t) + I2(t) + . . . IN (t) (6)

ε1 = −M11
dI1

dt
−M12

dI2

dt
− . . .−M1N

dIN

dt
= −Le

dI

dt
(7a)

ε2 = −M21
dI1

dt
−M22

dI2

dt
− . . .−M2N

dIN

dt
= −Le

dI

dt
(7b)

. . .

εN = −MN1
dI1

dt
−MN2

dI2

dt
− . . .−MNN

dIN

dt
= −Le

dI

dt
(7c)

According to Equations (5) and (6), the system of Equations (7a)–(7c) has the following matrix form:



M11 M12 . . . M1N

M21 M22 . . . M2N
...

... . . .
...

MN1 MN2 . . . MNN







dI1
dt
dI2
dt
...

dIN
dt


 =




Le Le . . . Le

Le Le . . . Le
...

... . . .
...

Le Le . . . Le







dI1
dt
dI2
dt
...

dIN
dt


 (8a)

Figure 1. Three coupled parallel coils.
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where the left hand matrix of (8) is the coefficient matrix M̃1 defined in (3). By translation,
Equations (7a)–(7c) or (8a) can be rewritten as a homogeneous and linear first-order differential system
of equations with N unknowns:





(M11 − Le)dI1
dt + (M12 − Le)dI2

dt . . . + (M1N − Le)dIN
dt = 0

(M21 − Le)dI1
dt + (M22 − Le)dI2

dt . . . + (M2N − Le)dIN
dt = 0

. . .

(MN1 − Le)dI1
dt + (MN2 − Le)dI2

dt . . . + (MNN − Le)dIN
dt = 0

(8b)

This differential system of equations has the following matrix form:



M11 − Le M12 − Le . . . M1N − Le

M21 − Le M22 − Le . . . M2N − Le
...

... . . .
...

MN1 − Le MN2 − Le . . . MNN − Le







dI1
dt
dI2
dt
...

dIN
dt


 = 0 (8c)

Notice that the coefficient matrix in the system of Equation (8c) is a real and symmetrical matrix,
due to Neumann’s relation Mij = Mji, i, j = 1, 2, . . . , N . If the system of Equations (8a)–(8c) have
non-trivial solutions, (trivial solutions correspond to the steady DC case), for arbitrary time-varying
currents such as alternating currents at any frequency, the determinant of coefficient matrix in (8c)
must vanish, i.e., ∣∣∣∣∣∣∣∣

M11 − Le M12 − Le . . . M1N − Le

M21 − Le M22 − Le . . . M2N − Le
...

...
...

MN1 − Le MN2 − Le . . . MNN − Le

∣∣∣∣∣∣∣∣
= 0 (9)

At a first glimpse of Equation (9), it is an N -degree equation with only one unknown Le, which seems
difficult to solve. However, it is actually a first-order linear equation with only one unknown Le. Using
some manipulation techniques of a determinant, it is actually completely solvable. We make use of the
properties of a determinant, that subtracting the first row from every other row, does not change the
value of the determinant, i.e.,

∣∣∣∣∣∣∣∣

M11 − Le M12 − Le . . . M1N − Le

M21 −M11 M22 −M12 . . . M2N −M1N
...

... . . .
...

MN1 −M11 MN2 −M12 . . . MNN −M1N

∣∣∣∣∣∣∣∣
= 0 (10)

Then, using the addition property of a determinant, we can decompose the above determinant into two
terms. By translating one term to the right hand side of the above equation and picking up the common
factor Le from its first row, we have:

∣∣∣∣∣∣∣∣

M11 M12 . . . M1N

M21−M11 M22−M12 . . . M2N−M1N
...

... . . .
...

MN1−M11 MN2−M12 . . . MNN−M1N

∣∣∣∣∣∣∣∣
=Le

∣∣∣∣∣∣∣∣

1 1 . . . 1
M21−M11 M22−M12 . . . M2N−M1N

...
... . . .

...
MN1−M11 MN2−M12 . . . MNN−M1N

∣∣∣∣∣∣∣∣
(11)

Therefore, using the property of a determinant once more and adding the first row to every other row
at the left hand of the above equation, the value of the left determinant does not change but the form
changes into the det M̃1 defined in Expressions (2)–(3):

det M̃1 ≡

∣∣∣∣∣∣∣∣

M11 M12 . . . M1N

M21 M22 . . . M2N
...

... . . .
...

MN1 MN2 . . . MNN

∣∣∣∣∣∣∣∣
(12)
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For the determinant at the right hand of Equation (11), subtracting the first column from every other
column, the value of the determinant does not change. Then we expand the right-hand determinant to
the summation of cofactors of the first row, and get a determinant of rank N − 1 in the following form:

det M̃2 =

∣∣∣∣∣∣∣∣

M11+M22−M12−M21 M11+M23−M13−M21 . . . M11+M2N−M1N−M21

M11+M32−M12−M31 M11+M33−M13−M31 . . . M11+M3N−M1N−M31
...

... . . .
...

M11+MN2−M12−MN1 M11+MN3−M13−MN1 . . . M11+MNN−M1N−MN1

∣∣∣∣∣∣∣∣
(13)

The matrix M̃2 in the above determinant is as defined in Expression (4). Clearly, Equation (11) can be
rewritten in the following form

det M̃1 = Le det M̃2 (14)

which leads to Equation (2) when detM̃2 6= 0. Our proof is thus completed. The physical meaning of
the special case, detM̃2 = 0, will be discussed in the seventh section.

3. THE RULE OF SIGNS WHEN REVERSE COUPLINGS EXIST

When Kirchhoff’s laws are applied to deal with AC circuits with self and mutual induction, the rule of
dot convention should be obeyed [6–8]. As shown in Figure 2, we are facing the same problem to deal
with the equivalent self-inductance of the N coupled parallel coils when reverse couplings exist.

Figure 2. Reversely coupled parallel coils.

Notice that the magnetic energy of mutual induction for two parallel coils which are co-directionally
coupled (reversely-coupled) is positive (negative), while the magnetic energy of self-induction for any
coil is always positive, whether for co-directional coupling or for reverse coupling. Considering the above
fact, we can multiply a sign factor εij before each mutual inductance in matrices (3)–(4). The value of
εij is dependent on the relative signs of the magnetic energy of mutual induction, in contrast to those
positive-definite magnetic energy of self-induction, just like in following formula of magnetic energy for
coupled coils:

Wm =
n∑

i=1

1
2
LiI

2
i +

n∑

i=1,j>i

(±)Mij IiIjWm =
n∑

i=1

1
2
εiiLiI

2
i +

n∑

i=1,j>i

εijMij IiIj (15)

where Wm is the total magnetic energy excited by the whole current system, and Ii is the electric current
of the ith coil, and εij = ±1, dependent on the sign of the magnetic energy of mutual induction. Hence
we can rewrite the elements of two matrices in (3)–(4) as

(
M̃1

)
ii

= Li, or εii = 1 (16)
(
M̃1

)
ij

= εijMij (17)
(
M̃2

)
ij

= M11 + εi+i,j+1Mi+1,j+1 − εi+1,1Mi+1,1 − ε1,j+1M1,j+1 (18)

for i, j = 1, 2, . . . , N . Due to Neumann’s relation Mij = Mji, we always have εij = εji. Our rule of
signs is actually equivalent to but slightly different from the rule of dot convention.
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4. SOME CONCLUSIONS FOR THE SPECIAL CASES OF N = 2, 3

When det M̃2 6= 0, Equation (2) can be applied to arbitrary N coupled parallel coils. To check the
equation, we can derive the equivalent self-inductances for some special cases.

When N = 2, corresponding to the case for two coupled parallel coils, M12 = M21 = M , det M̃1

and det M̃2 are determinants of order 2 and order 1, respectively:

det M̃1 =
∣∣∣∣

M11 M12

M21 M22

∣∣∣∣ = M11M22 −M12M21 = L1L2 −M2 (19)

det M̃2 = M11 + M22 −M12 −M21 = L1 + L2 − 2M (20)

When det M̃2 6= 0, substituting Expressions (19)–(20) into Formula (2), we immediately get Formula (1),
which is exactly the same result as found in literature [6–8]. When reverse coupling exists, as shown in
Figure 2, following the rule of signs in Section 2, we find the sign factor before M should be negative,
i.e., ε12 = ε21 = −1, thus det M̃1 is invariant, but

det M̃2 = L1 + L2 + 2M (21)

Then we have derived the formula of the equivalent self-inductance for two reversely coupled parallel
coils [8]:

Le =
L1L2 −M2

L1 + L2 + 2M
(22)

When N = 3, corresponding to the case for three coupled parallel coils, we have

det M̃1=

∣∣∣∣∣
M11 M12 M13

M21 M22 M23

M31 M32 M33

∣∣∣∣∣
=M11M22M33 + M12M23M31 + M21M32M13 −M31M22M13 −M21M12M33 −M32M23M11

=L1L2L3 + 2M12M23M31 − L1M
2
23 − L2M

2
31 − L3M

2
12 (23)

det M̃2=(L1 + L2 − 2M12) (L1 + L3 − 2M13)− (L1 + M32 −M21−M31) (L1 + M23 −M12−M13)

=(L1 + L2 − 2M12) (L1 + L3 − 2M13)− (L1 + M23 −M12 −M13)
2 (24)

Substituting Equations (23)–(24) into Formula (2), we get the formula of the equivalent self-inductance
for three co-directionally coupled parallel coils, which has not been found in existing references.

5. THE EQUIVALENT SELF-INDUCTANCE OF N COMPLETELY UNCOUPLED
PARALLEL COILS

When N coils are in parallel but completely uncoupled, note that every mutual inductance is zero, i.e.,
Mij = Mji = 0, (i, j = 1, 2, . . . , N , and i 6= j), det M̃1 is given by

det M̃1 = M11M22 . . . MNN = L1L2 . . . LN (25)

while det M̃2 satisfies following recursive relation in form

det M̃2 =

∣∣∣∣∣∣∣

L1 + L2 L1 . . . L1

L1 L1 + L3 . . . L1

. . . . . . . . . . . .
L1 L1 . . . L1 + LN

∣∣∣∣∣∣∣
≡ DN−1(L1;L2, L3, . . . , LN )

= L1 · L3L4 . . . LN + L2 ·DN−2(L1;L3, L4, . . . , LN ), (26)

with D1(L1; LN ) = L1 + LN . Finally it gives

det M̃2 = L2L3 . . . LN + L1L3 . . . LN + . . . + L1L2 . . . LN−1

=
N∑

i=1

L1L2L3 . . . LN

Li
= (L1L2L3 . . . LN )

N∑

i=1

1
Li

(27)
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Le = det M̃1/det M̃2 =

(
N∑

i=1

1
Li

)−1

(28a)

Namely,
1
Le

=
1
L1

+
1
L2

+ . . . +
1

LN
(28b)

This obviously agrees with the formula of the equivalent complex impedance for N decoupled parallel
coils in an alternating current circuit. Once again Equation (2) holds true.

6. THE EQUIVALENT SELF-INDUCTANCE OF N IDENTICAL AND
SYMMETRICAL COUPLED PARALLEL COILS

In the case about N identical and symmetrical coupled parallel coils, i.e., L1 = L2 = . . . = LN ≡ L,
Mij = Mji ≡ M , (i, j = 1, 2, . . . , N , and i 6= j), but L 6= M , some mathematical tricks are needed to
get the results of the two determinants detM̃1 and det M̃2. They can be converted into problems of
finding the general terms of two recursive sequences.

The N ×N determinant, det M̃1(≡ JN ), satisfies following recursive relation:

Jn ≡

∣∣∣∣∣∣∣

L M . . . M
M L . . . M
. . . . . . . . .
M M . . . L

∣∣∣∣∣∣∣
= M(L−M)n−1 + (L−M)Jn−1 (29)

where n = 2, 3, . . . , N ; J1 = L, J2 = L2 −M2, which leads to

det M̃1 = [L + (N − 1)M ](L−M)N−1 (30)

The (N − 1)× (N − 1) determinant, detM̃2, can be reduced to

det M̃2 =

∣∣∣∣∣∣∣∣

2(L−M) L−M . . . L−M
L−M 2(L−M) . . . L−M

. . . . . . . . .
L−M L−M . . . 2(L−M)

∣∣∣∣∣∣∣∣
= (L−M)N−1

∣∣∣∣∣∣∣∣

2 1 . . . 1
1 2 . . . 1

. . . . . . . . .
1 1 . . . 2

∣∣∣∣∣∣∣∣
≡ (L−M)N−1KN−1 (31)

where the recursion equation for Kn can be easily derived from Equation (29) with the substitution
L = 2, M = 1 and Jn = Kn, which leads to Kn = n + 1. Thus KN−1 = N , and

det M̃2 = N(L−M)N−1 (32)

Le = det M̃1/det M̃2 = [L + (N − 1)M ]/N (33)

For N = 2 case, according to Formula (33),

Le = det M̃1/det M̃2 = [L + (N − 1)M ]/N = (L + M)/2 (34)

This is obviously in agreement with the result calculated by using Formula (1) in an identical and
symmetrical case. For instance N = 3, we can directly calculate the following two determinants:

det M̃1 =

∣∣∣∣∣
L M M
M L M
M M L

∣∣∣∣∣ = (L + 2M)(L−M)2 (35)

det M̃2 = 3(L−M)2 (36)

then using Formula (2), we have

Le = det M̃1/ det M̃2 = (L + 2M)/3 (37)

This directly computed result agrees with the result from (33) for N = 3. Once again we are convinced
of the validity of Equations (2) and (33).
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7. DISCUSSION ON THE EQUIVALENT SELF-INDUCTANCE OF N COMPLETELY
COUPLED PARALLEL COILS

References [6–8] point out that if two coils are completely coupled, their mutual inductance must
be the geometric mean of their coefficients of self-inductance, i.e., M12 = M21 =

√
L1L2; but the

converse proposition is not always true. In other words, M21 = M12 =
√

L1L2 is a necessary but
not sufficient condition for two completely coupled coils [6–8]. It can be proved that, if any two coils
of equal turns are completely coupled, they must have an identical self-inductance. For two coils of
different turns but with the same shape, no matter whether the complete coupling between them can be
experimentally realized, at least it should be recognized that theoretically the two coils of different turns
can be completely coupled, although this has been the subject of much argument among scholars [10].
But once N coils are completely coupled, we can show the determinant detM̃1 in the numerator of
Formula (2) vanishes because any two different rows of this determinant are linearly correlated under
condition Mij = Mji =

√
LiLj , i, j = 1, 2, . . . , N , whereas the determinant detM̃2 in the denominator

of Formula (2) is zero for N identical and completely coupled parallel coils, and generally non-zero
for other instances. This causes the equivalent self-inductance to have two different results for the
completely coupled case. Concretely speaking, for the former instance, i.e., Mij = Mji =

√
LiLj , and

L1 = L2 = . . . = LN , Formula (2) has an indefinite form of 0/0, but starting from the conclusion
about the equivalent self-inductance of N identical and symmetrical partly-coupled parallel coils in
the sixth section, we can compute the equivalent self-inductance of N completely coupled coils. Setting
L1 = L2 = . . . = LN ≡ L, Mij = Mji ≡ M , (i, j = 1, 2, . . . , N), using Formulas (31) and (34)–(35) with
L 6= M , removing the same factors (L−M)N−1 from the numerator and denominator in Formula (2),
and finally letting M → √

LiLj = L in Formula (35), we can get the equivalent self-inductance of N
completely coupled parallel coils as follows

Le = L = L1 = L2 = . . . = LN (38)

The latter instance, i.e., detM̃1 = 0, but det M̃2 6= 0, due to possibility of Li 6= Lj or some other
circumstances, will cause Formula (2) to give a vanishing equivalent self-inductance.

8. CONCLUSION AND PERSPECTIVE

In general circumstances, the coupled coils might be in a mixed parallel-serial circuit. For N coupled
series coils, the equivalent self-inductance can be easily computed by the method of equivalent magnetic
energy of self-induction. The theorem (Equation (2)) solves the problem of the equivalent self-inductance
for N coupled parallel coils. Concrete expressions for several particular cases are also derived and
discussed in detail, which are in accordance with the existing proven results in the references and verify
the validity of Equation (2). Theorem given by this paper has laid the theoretical foundation for further
dealing with coupling problems involving mixed parallel-serial N coils as well as problems of coupled
coils with internal DC resistance, and it might benefit teaching and researching of electromagnetism,
circuit analysis and electro-technology.
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