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Space-Borne Hexagonal Array Element Failure Correction Using
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Abstract—Element failure distorts the main-lobe pattern and increases side-lobe power level, which is
almost impossible to be corrected artificially for space-borne array. It might be solved by redistributing
the excitations of the left functional elements; however, this is a nonlinear, non-convex, and NP-hard
problem. In this paper, two effective approaches are proposed for failure correction, which is performed
for space-borne hexagonal array using digital beamforming (DBF). One method, a modified real-code
genetic algorithm (RCGA), is employed that uses reinsertion and worst-elimination schemes, but it
pays the high computation complexity. The other approach based on convex optimization chooses the
excitations synthesized by RCGA as the initial points, and transforms the non-convex problem into
a sequence of second-order cone programming (SOCP) problem, which can be solved iteratively by
efficient optimization tool. Numerical results confirm that after the correction based on iterative convex
optimization, the average root-mean-square error (RMSE) is reduced by 36%, and the relative side-lobe
level (RSLL) is decreased by 6.7 dB, with respect to the RCGA-based correction pattern.

1. INTRODUCTION

Due to the advantage of high gain and wide coverage, space-borne array antenna has been employed in
the global satellite communication system, such as Iridium and Globalstar system [1–3]. Space-borne
array antenna is normally exposed to space environment that has extremely high/low temperatures and
strong cosmic radiations, wherefore array elements will have the rising probability of failure as time goes
by. Array symmetry may be destroyed by element failures, and sharp variations would be exerted in the
field intensity across the array aperture. Consequently, the shaped beam pattern may be distorted with
the increase of RSLL (the peak side-lobe level to the peak main-lobe level). To keep the availability
of the space-borne array, the simplest solution is reduplicating the elements, however, a corresponding
RF-channel is needed and both weight and complexity are increased.

So far, the methods of element failure correction can be classified into two categories: signal
reconstruction approach and excitation redistribution approach. Signal reconstruction approach is
that the output signals of some defective elements are reconstructed by output signals of the adjacent
functional elements. Maillous employed an iterative reconstruction method based on the constant time
delay between multiple array elements [4], and Levitas et al. developed a practical auto-compensation
technique for element failure in active phased array [5]. One of the limitations of the first approach
is that it must distinguish multiple arrival signal sources, and it becomes even more complicated for
planar array. The second approach is redistributing the excitations of the remaining functional elements
to form a new pattern, which approximates to the original pattern. Peters proposed a basic conjugate
gradient algorithm to recalculate the weights of hexagonal array with some element failed [6]; however, it
established an unconstrained optimization model, which only minimized the RSLL of failure array, and
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other key metrics such as main-lobe width may not be satisfied. Intelligent algorithm, such as Genetic
algorithm (GA) [7], particle swarm optimization (PSO) [8], bacteria foraging optimization (BFO) [9],
support vector machine (SVM) [10], has been applied to array failure correction, and the mean squared
error between the original pattern and correction pattern is typically selected as objective function of
these algorithms. The main problem of these works is the high computation complexity, and it is quite
difficult to implement them in the space-borne computer.

This paper adopts the excitation redistribution method based on iterative convex optimization,
which can implement multiple constraints of pattern and have fast solving speed via interior-point
algorithm [11]. In this paper, it is assumed that the output of defective element is zero, and all the
proposed algorithms are performed on a 19-element hexagonal receiving array antenna with DBF. The
outline of this study is listed below: Section 2 shows the gain pattern model of the hexagonal array,
and meanwhile the shaped beam pattern synthesized by RCGA is given before element failures. In
Section 3, element failure correction algorithm based on RCGA is firstly proposed, and then we develop
a novel iterative convex programming-based correction algorithm with the initial excitations of RCGA.
Section 4 provides the numerical simulation results. Finally, some meaningful conclusions are presented
in Section 5.

2. SYSTEM DESCRIPTION

2.1. The Gain Pattern Model of Hexagonal Array Antenna

The geometry of receiving hexagonal array antenna with 19 elements is depicted in Figure 1. Element
space is 0.545λ, where λ is the wavelength of the L-band sinusoidal wave. The array response E(θ, ϕ)
can be written as:

E(θ, ϕ) = wTa(θ, ϕ) =
19∑

i=1

Iie
jαiejk0ψiFi(θ, ϕ) (1)

where θ and ϕ are the elevation and azimuth angle in the spherical coordinate, respectively. k0 = 2π/λ
is the wave-number constant. ψi = xiu + yiv, where u = sin θ cosϕ and v = sin θ sinϕ. xi and yi are
x-coordinate and y-coordinate position of element i in Figure 1. Ii and αi are amplitude and phase
excitation of element i, respectively. w is complex excitation weight vector, and w = [w1, w2, . . . , w19]T .
a(θ, ϕ) is array manifold vector. Fi(θ, ϕ) is radiation pattern of individual element i, which is a dual-fed
and dual-layer stacked patch antenna. Figure 2 shows three actual patterns of element 2, 8 and 15
at ϕ=90◦, which is measured in spherical near-field anechoic chamber (Satimo) [12]. The space-borne
hexagonal receiving array antenna employs the left hand circularly polarized (LHCP) mode, and the

Figure 1. The geometry of hexagonal array. Figure 2. Measured pattern at ϕ = 90◦.
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normalized gain formula is given as follows:

G = η
|E(θ, ϕ)|2

1
4π

π∫
0

2π∫
0

|E(θ, ϕ)|2 sin θdθdϕ

(2)

where η ≈ 0.9 is radiation efficiency.

2.2. The Shaped Beam Pattern Formed by RCGA

We employ this hexagonal array antenna to form seven shaped beam patterns which are mentioned in
reference [13], and without loss of generality, failure correction is performed for the center beam pattern.
The desired pattern gain Gd1(θ, ϕ) of center beam is defined as:

Gd1(θ, ϕ) =
{

10.5 dB 0 ≤ θ ≤ 35◦, 0 ≤ ϕ ≤ 360◦
0 dB others (3)

Figure 3 shows the 3D desired gain pattern of center beam in u-v space. A RCGA-based pattern
synthesis method is applied to minimize the mean-squared error between formed pattern and the desired
pattern. The formed 3D pattern of center beam without element failure is depicted in Figure 4.

Figure 3. The 3D desired gain pattern. Figure 4. The shaped pattern from RCGA.

3. ELEMENT FAILURE CORRECTION ALGORITHM

3.1. RCCA-Based Element Failure Correction Algorithm

When the ith element is completely failed, it is equivalent to Ii = 0 , αi = 0 in formula (1). RCGA has
been applied to synthesize functional beam pattern, and naturally we employ RCGA to correct element
failures. The fitness function of RCGA-based failure correction algorithm is defined as:

f(I, α) =
Nθ∑

m=1

Nϕ∑

n=1

(G(θm, ϕn)−Gd1(θm, ϕn))2 (4)

where Nθ and Nϕ are the numbers of samples in the elevation plane and azimuth plane. G(θm, ϕn) is
the beam gain pattern formed by the remaining functional elements. I ′i and α′i are the excitations
of the functional ith element’s amplitude and phase, which is selected as a gene, and the float
value of element excitation is acted as gene encoding. The chromosome structure is defined as:
(I ′1, I

′
2, . . . , I

′
N , α′1, α

′
2, . . . , α

′
N ) , where N is the number of the left functional elements.

Besides the solving precision improvement via real code, we also use two improved methods in
RCGA-based failure correction algorithm: reinsertion and worst-elimination methods. Reinsertion
method was firstly proposed by De Jong [14], which assumes that a generation gap (GGAP) exists
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between parents and offspring and that fewer individuals are produced by GA operation than the size of
the original population. The individuals in the old population would be replaced by the new individual
with the better fitness, and then some elitist individuals will survive in the successive generations. The
second method is proposed by this paper, where the individuals are sorted with the fitness firstly, and
the last two individuals are eliminated by two new initialized individuals. The advantage of worst-
elimination method is that the inferior solution is removed and randomness increased. The flowchart
of RCGA-based element failure correction algorithm is depicted in Figure 5, where MAXG means
the maximum number of generations, and stochastic universal sampling (SUS) is selection operator.
Intermediate recombination (IntRec) is real code crossover operator in our algorithm.

Figure 5. The flowchart of RCGA-based failure correction algorithm.

3.2. Element Failure Corrected by Iterative Convex Programming

We remove the constant factor and do not normalize the gain in formula (2), and then the failure
correction problem is given as the following optimization problem:

min
w

ε

s.t.
∣∣∣
∣∣wTa′(θm, ϕn)

∣∣2 −G′
d(θm, ϕn)

∣∣∣ ≤ ε, (θm, ϕn) ∈ ML, m = 1, . . . , Mb, n = 1, . . . , Nb (5a)
∣∣wTa′(θs, ϕq)

∣∣ ≤ ζ (θs, ϕq) ∈ SL, s = 1, . . . , Sb, q = 1, . . . , Qb (5b)

where ζ is a fixed side-lobe level, and ε is a slack variable, which controls the error level. a′(θ, ϕ) is
the array manifold vector of the left functional elements. ML and SL are the regions of main-lobe and
side-lobe. ML region contains Mb sample points in θ and Nb sample points in ϕ , and the sample grid
in SL region is Sb ×Qb for (θ, ϕ). G′

d(θ, ϕ) is the non-failure gain pattern, which can be calculated by:
G′

d(θ, ϕ) = |wT
d a(θ, ϕ)|2. wd is the element excitation vector synthesized by RCGA algorithm without

element failures, as is mentioned in Section 2. The value of wd is given in Table 1.
The low bound of constraint (a) is non-convex, thus the optimization problem (5) cannot be

directly solved by convex optimization method. We use multiconvex inequality condition [15, 16], which
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Table 1. The excitations of pattern with no failure.

amplitude
excitations

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

4.9973 4.5119 4.9859 4.9961 2.7205 2.0448 2.4407 1.4833 1.2739 1.7414
I11 I12 I13 I14 I15 I16 I17 I18 I19

1.5280 1.3948 1.2859 1.0019 1.3746 1.3146 1.0400 1.0020 1.4544

phase
excitations

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10

3.7130 3.6252 3.6426 3.6616 3.6731 4.2518 3.3229 1.3419 4.0547 4.9868
α11 α12 α13 α14 α15 α16 α17 α18 α19

3.8680 1.7421 2.1513 6.2813 0.1182 0.2739 0.0212 6.2820 1.4264

introduces two optimization variables: w1 and w2, wherefore the re-synthesized gain pattern is expressed
as |wT

1 a′(θ, ϕ) + wT
2 a′(θ, ϕ)|2. The relaxing process of low bound is given as follows:
∣∣wT

1 a′(θ, ϕ) + wT
2 a′(θ, ϕ)

∣∣2 ≥ 4Re
{(

wT
1 a′ (θm, ϕn)

)∗ (
wT

2 a′ (θm, ϕn)
)}

⇒ 4Re
{(

wT
1 a′ (θm, ϕn)

)∗ (
wT

2 a′ (θm, ϕn)
)} ≥ max

{
G′

d(θm, ϕn) + ε, 0
}

. (6)

When w1 is fixed, the inequalities (6) is convex in variable w2, hence the problem (5) can be solved
alternately over w1 and w2 by convex programming method.

SOCP is a typical subclass of convex optimization method, and the problem (5) can be written
as the form of SOCP. It is assumed that w1 is fixed, and then we define the solution vector
y = [ε, Re(w2)T , Im(w2)T ]T , where Re(w2) and Im(w2) are real part and imaginary part vector of
w2, respectively. Let b = [−1,01×N ,01×N ]T , and then the primal SOCP problem of (5) is written as
the follow standard dual SOCP problem:

max
y

bTy

s.t. ci −AT
i y ∈ <+, i = 1, . . . , MN (7a)

c1+MN+j −AT
1+MN+jy ∈ Qcone4

j , j = 1, . . . ,MN (7b)

c1+2MN+k −AT
1+2MN+ky ∈ Qcone3

k+MN , k = 1, . . . , SQ (7c)

where constraint (7a) is a linear constraint, and <+ represents non-negative real number cone.
MN is the total number of linear constraint, and MN = Mb × Nb. Both ci and Ai have two
values conditioned by the size relation between G′

d(θi, ϕi) and ε. When G′
d(θi, ϕi) ≥ ε, ci =

−G′
d(θi, ϕi) and Ai = −[1, 4Re(u(θi, ϕi))T ,−4Im(u(θi, ϕi))T ]T , and otherwise ci = 0 and Ai =

−[0, 4Re(u(θi, ϕi))T ,−4Im(u(θi, ϕi))T ]T , where u(θ, ϕ) = (wT
1 a′(θ, ϕ))∗a(θ, ϕ).

Constraint (7b) is a quadratic constraint, and Qcone4 means the second-order cone with 4
dimensions. This constraint is derived from the upper bound constraint of (5a). c1+MN+j and A1+MN+j

are given by:

c1+MN+j =




G′
d (θj , ϕj) + 1

2Re
(
wT

1 a′ (θj , ϕj)
)

2Im
(
wT

1 a′ (θj , ϕj)
)

G′
d (θj , ϕj)− 1


 , A1+MN+j =−




1, 01×N 01×N

0, 2Re(a′ (θj , ϕj))
T , −2Im(a′ (θj , ϕj))

T

0, 2Im(a′ (θj , ϕj))
T , 2Re(a′ (θj , ϕj))

T

1, 01×N 01×N




T

.

Constraint (5b) can be formulated as constraint (7c). Qcone3 represents the quadratic cone with 3
dimensions. c1+2MN+k and A1+2MN+k are written as:

c1+2MN+k =




ζ

Re
(
wT

1 a′ (θk, ϕk)
)

Im
(
wT

1 a′ (θk, ϕk)
)


 , A1+2MN+k = −




0, 0, 0
0, Re(a′ (θk, ϕk))

T , −Im(a′ (θk, ϕk))
T

0, Im(a′ (θk, ϕk))
T , Re(a′ (θk, ϕk))

T




T

.
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Problem (7) can be directly solved by those highly efficient optimization software packages, such
as SeDuMi [17]. Note that we only seek the local minima by the iterative SOCP, and the initial point
highly affects the optimal solution. In (7), we set w1=w′

d/2, where w′
d is the excitations coefficients

listed in Table 1 except the excitations of failed elements. The reason is that the beamforming weights
of the left remaining elements have been stored in memory previously, and no extra computation
complexity is added for initialization, and moreover RCGA-based pattern synthesis algorithm is a
global optimization pattern synthesis algorithm and offers a promising initial points even though some
elements fail. Additionally, two conditions lie in constraint (7a), and ε must be initialized in the iterative
optimization process. In the first iteration, ε is calculated as:

ε = max
∣∣∣∣
∣∣∣(w′

d)
Ta′(θ, ϕ)

∣∣∣
2
−G′

d(θ, ϕ)
∣∣∣∣ . (8)

And in the next step, ε is initialized by y(1), which is the first component of the solution vector. The
flowchart of iteration convex programming-based failure correction algorithm is given as in Figure 6,
where MAXI represents the maximal number of the iterations.

Figure 6. The flowchart of iterative convex programming-based failure correction algorithm.

4. NUMERICAL RESULTS

This paper only takes the effect of one element failure into account, and comparing the values of RMSE
between the pattern with an element failure and the functional pattern, the gain decrease after element
2 failure is greater than that of other element failure, so the corrected algorithm is used in view of the
failure of element 2.

The parameters used in RCGA-based correction algorithm are given as follows: a) the population
size is 200, and the maximum number of generations is 250. b) GGAP factor is 0.96. c) the crossover
probability is 0.9. d) the mutation probability is 0.15. e) Nθ = 180 and Nϕ = 360. In iterative convex
programming (ICP)-based failure correction algorithm, the parameters are set as: a) the SLL threshold
ζ = −9 dB. b) the constraint domain of the main-lobe width is 0◦ ≤ θ ≤ 65◦ and 0◦ ≤ ϕ ≤ 360◦,
wherefore Mb = 65 and Nb = 360. The side-lobe constraint domain is 66◦ ≤ θ ≤ 180◦ and 0◦ ≤ ϕ ≤ 360◦,
and hence Sb = 115, Qb = 360.
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Figure 7 and Figure 8 present the 3D pattern corrected by RCGA and ICP, respectively. From
these two figures, we can see that the 3D shape of the ICP-based correction (ICPC) pattern is closer
to the pattern with no element failure depicted in Figure 4, with respect to 3D pattern after RCGA
correction. The sectional gain patterns are compared at ϕ = 0◦, ϕ = 90◦ and ϕ = 120◦, which are shown
in Figure 9, Figure 10 and Figure 11, respectively. It is apparent from the three figures that after element
2 failure, the main-beam width is broadened and the side-lobe level elevated. Both the RCGA-based
correction (RCGAC) pattern and ICPC pattern improve the performance of failure pattern; however,
the ICPC algorithm achieves a lower RSLL and smaller difference, than the RCGAC algorithm.

Figure 7. 3D pattern corrected by RCGA. Figure 8. 3D pattern corrected by ICP.

Figure 9. The sectional patterns at ϕ = 0◦. Figure 10. The sectional patterns at ϕ = 90◦.

The comparison of RMSE is performed for the failure pattern, RCGAC pattern, and the ICPC
pattern, depicted in Figure 12. It is indicated that the RMSE value of failure pattern across the whole
azimuth domain is greater than that of ICPC pattern, and meanwhile the RMSE fluctuation range of
ICPC pattern is less than that of RCGAC pattern. Figure 13 and Figure 14 present the comparison for
the RSLL and the half power beam-width in θ dimension (θ-HPBW) towards different patterns. Clearly,
the best performance of side-lobe suppression for correction pattern is achieved by ICPC algorithm, and
RCGAC algorithm barely improves the value of RSLL. θ-HPBW is fluctuated dramatically after the
element failure, and both the correction algorithms narrow the fluctuation range of θ-HPBW, but the
fluctuation is more stationary for ICPC algorithm.

The mean RMSE (MRMSE) across the whole azimuth domain is expressed as:

MRMSE =

Mϕ∑
i=1

√√√√
(

Mθ∑
j=1

(G(θj , ϕi)−Gi(θj , ϕi))
2

)/
Mθ

Mϕ

where ϕi ∈ [0◦, 360◦] and θj ∈ [−55◦, 55◦]. As shown in Table 2, four pattern’s quantitative metrics,
MRMSE, the mean RSLL (MRSLL) and the mean θ-HPBW, are listed. It is clearly seen that the
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Figure 11. Sectional patterns at ϕ′ = 120◦. Figure 12. The comparison of RMSE.

Figure 13. The comparison of RSLL. Figure 14. The comparison of θ-HPBW.

MRMSE value after ICPC algorithm is improved by as much as 55% and 36%, compared to the one
without correction and the one from RCGAC algorithm, respectively. The decrease of the mean RSLL
of ICPC algorithm is 6.77 dB and 6.71 dB, with respect to the value from failure pattern and RCGAC
pattern. The improvement of θ-HPBW is almost equal for the two correction algorithms. Although the
HPBW’s domain of the desired pattern is 0◦ ≤ θ ≤ 35◦, the practical requirement for 7-beam coverage
is 0◦ ≤ θ ≤ 30◦ due to the gain overlap among multiple beams. Overall, the performance of HBPW of
ICPC pattern is acceptable.

Table 2. The performance comparison of different pattern.

Pattern MRMSE (dB) MRSLL (dB) Mean HPBW (◦)

Pattern with no failure 0 −20.66 31.18

Pattern with an failure 2.78 −19.29 32.42

RCGAC pattern 1.97 −19.35 29.53

ICPC pattern 1.26 −26.06 29.68

5. CONCLUSION

This paper focuses on the adverse effects of element failure for space-borne hexagonal array antenna.
RCGA-based correction algorithm is firstly employed and proved to narrow the difference between the
desired pattern and the re-synthesized pattern with an element failure. However, it is a computation-
intensive algorithm and unpractical to implement on the poor space-borne computer. Initializing with
the stored beamforming weights of the left functional elements, iterative convex programming-based
correction algorithm abandons the time-consuming computation, and decomposes the complex non-
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convex problem into a sequence of fast solved SOCP problem. The results show that the correction
pattern from iterative convex programming is superior to that from RCGA correction, which provides
a feasible method of element failure correction implemented on board. The current work depends
on desktop software, future research might implement the interior point algorithm on space-borne
computer.
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