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Enhanced the Complete Photonic Band Gaps for Three-Dimensional
Photonic Crystals Consisting of Epsilon-Negative Materials

in Pyrochlore Arrangement

Hai-Feng Zhang1, 2, *, Shao-Bin Liu1, and Hui-Chao Zhao1, 3

Abstract—In this paper, the properties of photonic band gaps (PBGs) for three-dimensional (3D)
photonic crystals (PCs) composed of isotropic positive-index materials and epsilon-negative materials
with pyrochlore lattices are theoretically investigated by a modified plane wave expansion method. The
eigenvalue equations of calculating the band structures for such 3D PCs in the first irreducible Brillouin
zone (spheres with the isotropic positive-index materials inserted in the epsilon-negative materials
background) are theoretically deduced. Numerical simulations show that the PBG and a flatbands
region can be achieved. It is also found that larger PBG can be obtained in such PCs structure than
the conventional lattices, such as diamond, face-centered-cubic, body-centered-cubic and simple-cubic
lattices. The influences of the relative dielectric constant of spheres, filling factor, electronic plasma
frequency, dielectric constant of epsilon-negative materials and damping factor on the properties of
PBG for such 3D PCs are studied in detail, respectively, and some corresponding physical explanations
are also given. The calculated results also show that the PBG can be manipulated by the parameters
mentioned above except for the damping factor. Introducing the epsilon-negative materials into 3D
dielectric PCs can obtain the complete and larger PBG as such 3D PCs with pyrochlore lattices, and
also provides a way to design the potential devices.

1. INTRODUCTION

Since firstly proposed by Yablonovitch [1] and John [2], photonic crystals (PCs) have received ever-
increasing interest during the past 20 years. The conventional PCs are artificial materials, in which
different dielectrics are periodically arranged in spaces. PCs can produce special regions named photonic
band gaps (PBGs) originating from the interface of Bragg scattering [3, 4], which can control the
propagation of electromagnetic wave (EM wave). This feature makes PCs potentially be used to
design various applications due to their ability to control the propagation of light, such as defect
cavities [5], waveguide [6], defect-mode PCs lasers [7], filter [8], omnidirectional reflector [9, 10], and
band-edge lasers [11–13]. However, the PBGs of conventional PCs will suffer from high sensitivity to
the lattices and randomness, which means that PBGs cannot be changed as the dielectrics and topology
of PCs are certain, and may also be affected by the errors in manufacturing. To overcome these
drawbacks, researchers have to introduce metamaterials into the PCs to obtained tunable PBGs [14]
and zero-n̄ PBGs [15]. Obviously, the zero-refractive indices can be obtained by metamaterials [16, 17].
Metamaterials are firstly proposed by Veselago in 1967 [18], and can exhibit a negative index of refraction
in some frequency ranges. Due to this, metamaterials can exhibit some unusual physical properties, such
as inverse Snell’s law, Cherenkov effects and reversed Doppler effects. Metamaterials can be divided into
two categories. One is named double-negative metamaterials whose permittivity ε and permeability µ
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are simultaneously negative [19], and the other is called single-negative metamaterials [20]. The single-
negative metamaterials can also be divided into two types. One configuration, in which ε is negative,
but µ is positive, gives rise to so-called epsilon-negative (ENG) materials. The other is that ε is positive,
but µ is negative. In this case, mu-negative (MNG) materials can be obtained. It has been reported that
stacking alternating layers of ENG materials and MNG materials can obtain zero-n̄ PBGs and zero-
effective-phase PBGs [21]. Moreover, the double-negative metamaterials can hardly be found in nature,
but ENG materials can always be found easily in the practical applications in different frequency regions,
such as plasma [22–24], superconductors [25–27], semiconductors [28] and metals [29]. Compared to the
conventional PCs, the PCs containing ENG materials display strong spatial dispersion [30]. Thus, the
PCs containing ENG materials become a new research focus and have been extremely investigated.
The most extensive works to date on such kind of PCs are reported on the one-dimensional (1D) or
2D structures. Such 1D and 2D PCs structures can be used to design the omnidirectional mirrors [31],
omnidirectional filter [32], omnidirectional reflector [33], etc. However, the 1D and 2D PCs structures
cannot be found in the real applications for the finite periodic structures, and 3D PCs structure may be
closer to the actual situation. Compared to 1D and 2D cases, reports on 3D PCs with ENG materials are
few. For example, the 3D PCs containing metals have been investigated in theory and experiment [34–
36], and dispersive properties of 3D plasma PCs [37–39] have also been reported recently. From these
research results, we can know that the topology of 3D PCs is a key to obtain complete PBGs. If 3D
PCs contain ENG materials with high symmetry, such as face-centered-cubic (fcc) lattices [40], simple-
cubic (sc) lattices [38], and body-centered-cubic (bcc) lattices [41], the complete PBGs can hardly be
achieved, unless the dielectric constant of dielectric is sufficiently large so that the resonant scattering
of EM waves is prominent enough to open a complete band gap [42, 43]. Unfortunately, technological
difficulties can be found in fabricating such kind of high symmetry 3D PCs to achieve the complete
PBGs with the large dielectric constant of dielectric. To solve these problems, some methods have been
reported: the symmetry reduction [44], introducing anisotropy in dielectric [45], or fabricating in a new
topology [46]. As reported by Garcia-Adeva [47, 48], the pyrochlore lattice is a good candidate to obtain
complete PBGs for 3D PCs and can also be fabricated. Therefore, we can introduce ENG materials
into 3D PCs with pyrochlore lattice to achieve the larger complete PBGs as the filling factor and the
relative dielectric constant of filling dielectric are small.

The aims of this paper are to explore a better geometrical structure to obtain larger complete
PBGs and investigate the properties of PBG for 3D PCs composed of isotropic positive-index materials
and ENG materials with pyrochlore lattices, which are theoretically studied by a modified plane
wave expansion (PWE) method. The more general model of ENG materials and damping factor
are considered, and the periodic structures of PCs are infinite whose spheres with isotropic dielectric
inserted in the ENG materials background periodically with pyrochlore lattices. This paper is organized
as follows. The equations of computing the band structures for such 3D PCs are theoretically deduced
in Section 2. In Section 3, the influences of the relative dielectric constant of spheres, filling factor,
electronic plasma frequency, dielectric constant of ENG materials and damping factor on the properties
of PBG for are investigated, respectively. Finally, conclusions are drawn in Section 4. An e−jωt time-
dependence is implicit through the paper, with t the time, and j =

√−1. We also consider c as light
speed in vacuum.

2. THEORY AND NUMERICAL METHOD

The first irreducible Brillouin zone and schematic structure of 3D PCs containing ENG materials with
a spherical atom in pyrochlore lattice can be found in Fig. 1. We assume that the dielectric and
ENG materials are isotropic and homogeneous and that the relative dielectric functions are εa and εp,
respectively. We denote the radius of the spheres and lattice constant are R and a, respectively. In
the following numerical calculations, ENG material is assumed to be dispersive with effective dielectric
function εp which can be written as [40]

εp(ω) = εb −
ω2

p

ω(ω + jγ)
(1)

where εb, ωp and γ are the dielectric constant of ENG materials, the electronic plasma frequency and the
damping factor that contributes to the absorption and losses, respectively. In order to obtain the PBGs
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Figure 1. Schematic structure of such 3D PCs with pyrochlore lattices. (a) 3D PCs structure,
(b) rhombohedral axes with respect to the cubic unit cell, and (c) the first irreducible Brillouin zone
showing symmetry point used for computing the anisotropic PBGs, respectively.

of such 3D PCs, several efficient numerical methods have been reported [49–51]. Among these methods,
the PWE method is the most popular one to achieve the band structures. Especially, Zhang et al. [52],
and Kuzmiak and Maradudin [53] proposed a modified PWE method, which can successfully calculate
PBGs for the PCs composed of Drude-type medium. As mentioned in [52], a standard linearization
technique was used to solve the general nonlinear eigenvalue equation. Thus, the PCs composed of ENG
material can be calculated easily by such a method. In this paper, the same technique will also be used
to calculate the PBGs of such 3D PCs. As we know, the Maxwell’s equation for magnetic field in such
3D PCs can be expressed as:

∇×
[

1
ε(r)

∇×H
]

=
ω2

c2
H (2)

Since ε(r) is periodic, we can use Bloch’s theorem to expand the H field in term of plane wave,

H(r) =
∑

G

2∑

λ=1

hG,λ
_eλe[j(k+G)·r] (3)

where k is a wave vector in the Brillouin zone of lattice, G a reciprocal-lattice vector, and _e1, _e2 are
orthogonal unit vectors that are both perpendicular to wave vector k + G because of the transverse
character of magnetic field H (i.e., ∇ •H = 0). The 3D Bravais lattice is spanned by three primitive
vectors a1, a2 and a3, respectively. The dielectric structure satisfies the boundary conditions

ε(r + ai) = ε(r) (4)

The reciprocal lattice vectors b1, b2 and b3 are defined by

ai · bj = 2πδij (5)

where δij is the Kronecker delta symbol. The dielectric constant dyadic can also be expanded into its
Fourier form as

ε−1(r) = ε−1

G,G
′ =

∑

G

η(G)ejG·r (6)

where η(G) is the Fourier transform of the inverse of ε(r), and the sum is taken over every reciprocal
lattice vector G, which is a linear combination of b1, b2 and b3:

G = l1b1 + l2b2 + l3b3 (7)
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where l1, l2 and l3 are integers. The Fourier coefficient is expressed by

η(G) =
1
S1

∫

s1

dr
1

ε(r)
e−jG·r (8)

where S1 denotes the area of the unit cell. For a given lattice with a unit cell including ns scatters,
η(G) is given by [54]:

η(G) = ε−1
a δG,0 +

ns∑

i=1

η(i)(G)e−jG·ri (9)

and η(i)(G) is the Fourier transform of each scatter of lattice unit cell at position ri. ns is the number
of scatters in a unit cell with pyrochlore lattices. It is worth noting that the pyrochlore lattice (see
Fig. 1(a)) has a rhombohedral primitive unit cell with lattice vectors,

a1 = (0.5, 0.5, 0), a2 = (0.5, 0, 0.5), a3 = (0, 0.5, 0.5),
with a four-atom basis at positions, v1 = (0, 0, 0), v2 = a2/2, v3 = a3/2, v4 = a1/2, as shown in
Fig. 1(b). Substituting Eq. (3) and Eq. (6) into Eq. (2), the following linear matrix equations can be
obtained ∑

G′,λ′
Hλ,λ′

G,G′hG′,λ′ =
ω2

c2
hG,λ (10)

where

Hλ,λ′
G,G′ = |k + G| ∣∣k + G′∣∣

( _e2 · ε−1
G,G′ · _e2′ −_e2 · ε−1

G,G′ · _e1′

−_e1 · ε−1
G,G′ · _e2′

_e1 · ε−1
G,G′ · _e1′

)
(11)

where ε−1

G,G
′ = η(G−G′). In order to solve Eq. (11), we use the expansion of Eq. (4), and write hG,λ

in the form
hG,λ =

∑

G

A(k|G)ej(k+G)·r (12)

Assume that f = (4πR3)/(3Vm) is the filling factor of one sphere with the isotropic dielectric and
Vm the volume of unit cell. The Fourier coefficients ηG can be written as [38–41]:

ηG =





(
ω2 + jγω

εbω2 + jεbγω − ω2
p

)
4f +

(
1
εa

)
(1− 4f), G = 0

((
ω2 + jγω

εbω2 + jεbγω − ω2
p

)
− 1

εa

)
·

4∑

i=1

e−(G·vi) · 3f

(
sin(|G|R)− (|G|R) cos(|G|R)

(|G|R)3

)
, G 6= 0

(13)
We can obtain the equation for the coefficients {A(k|G)}

(
ω2 + jγω

εbω2 + jεbγω − ω2
p

)
4f +

(
1
εa

)
(1− 4f) · |k + G| ∣∣k + G′∣∣ · ↔F ·A(k|G)

+
∑

G′

((
ω2 + jγω

εbω2 + jεbγω − ω2
p

)
− 1

εa

)
·

4∑

i=1

e−(G·vi) · 3f

(
sin (|G|R)− (|G|R) cos(|G|R)

(|G|R)3

)

· |k + G| ∣∣k + G′∣∣ · ↔F ·A (k|G) =
ω2

c2
A (k|G) (14)

where the prime on the sum over G′ indicates that the term with G′ = G is omitted. We consider
↔
F =

(
_e2 · _e2′ −_e2 · _e1′

−_e1 · _e2′
_e1 · _e1′

)
. At this point we use the definition of a complex variable µ given by

µ = ω/c (15)
Eq. (13) yields

µ4
↔
I − µ3

↔
T− µ2

↔
U− µ

↔
V − ↔

W = 0 (16)
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↔
T(G|G′) = −j

γ

c
δG·G′ , (17a)

↔
U(G|G′) =

{
ω2

p

ε2
bc

2
+

(
1
εa

4f +
(1− 4f)

εb

)
· |k + G| ∣∣k + G′∣∣ · ↔F

}
δG·G′ +

(
1
εa
− 1

εb

)
↔
M (17b)

↔
V(G|G′) =

{(
j
γ

c

(
1
εa

4f +
(1− 4f)

εb

))
· |k + G| ∣∣k + G′∣∣ · ↔F

}
δG·G′ + j

γ

c

(
1
εa
− 1

εb

)
↔
M (17c)

↔
W(G|G′) =

{
−ω2

p

c2

1
εbεa

(1− f) · |k + G| ∣∣k + G′∣∣ · ↔F
}

δG·G′ +
ω2

p

c2

(
1
ε2
b

− 1
εbεa

)
↔
M (17d)

where
↔
M = |k + G| ∣∣k + G′∣∣ · ↔F ·

4∑
i=1

e−(G·vi) · 3f( sin(|G|R)−(|G|R) cos(|G|R)
(|G|R)3

), the element of the N × N

matrices are,
↔
T,

↔
U,

↔
V and

↔
W. This polynomial form can be transformed into a linear problem in 4N

dimension by
↔
Q that fulfills

↔
Qz = µz,

↔
Q =




0
↔
I 0 0

0 0
↔
I 0

0 0 0
↔
I

↔
W

↔
V

↔
U

↔
T




(18)

The complete solution of Eq. (16) is obtained by computing the eigenvalues of Eq. (18). Of course the
dispersion relation can be determined by the real part of such eigenvalues.

3. RESULTS AND DISCUSSION

In order to investigate the PBGs properties of 3D PCs with pyrochlore lattices composed of ENG
materials, the band structures are calculated in the first irreducible Brillouin zone as shown in Fig. 1(c).
As we know [46–48], the high symmetry points have the coordinate as Γ = (0, 0, 0), X = (2π/a, 0, 0),
W = (2π/a, π/a, 0), K = (1.5π/a, 1.5π/a, 0), L = (π/a, π/a, π/a), and U = (2π/a, 0.5π/a, 0.5π/a).
The convergence accuracy is better than 1% for the lower energy bands as a total number of 1331
plane waves can be used [38–41]. Without loss of generality, we plot ωa/2πc with the normalization
convention ωp0a/2πc = 1. With this definition, we can let a take any value as long as R is shifted
according to achieve the same filling factors. Thus, we can define the electronic plasma frequency as
ωp = ωpl = 0.05ωp0 to make the problem scale-invariant, and we also choose the damping factor as
γ = 0.02ωpl, µa = 1, and µp = 1, respectively. Here, we only focus on the properties of first (1st) PBG
for such 3D PCs. In order to investigate the PBG properties of such 3D PCs, the relative bandwidth
of PBG is defined as

∆ω/ωi = 2 (ω1 − ω2) / (ω1 + ω2) (19)

where ω1 and ω2 are the upper and lower limits of a PBG, respectively.
Firstly, we consider a simple case and assume εb = 1. In Fig. 2, we display the dispersive curves

for 3D PCs with pyrochlore lattices containing ENG materials as εb = 1, ωp = 0.15ωp0, γ = 0.02ωpl

and R = 0.19a but with different the electronic plasma frequency of the ENG material. The red-shaded
regions indicate the PBGs. As shown in Fig. 2(a), if ωp = 0, the ENG materials can be looked as the
air, and such 3D PCs become dielectric-air PCs. There is a PBG in the frequency region 0–2πc/a,
which presents itself at 0.3911–0.4510 (2πc/a). As ENG material is introduced into such 3D PCs, the
band diagram for ωp = 0.05ωp0 is also plotted in Fig. 2(b). It can be seen from Fig. 2(b) that one
PBG and one flatbands region can be found. The PBG covers 0.3922–0.4526 (2πc/a), and the region
of flatbands runs from 0 to 0.05 (2πc/a). There exists the flatbands region because of the existence of
surface plasmon modes, and the plasmon resonance bands are around the cutoff frequencies of the ENG
materials [40]. If the frequency of EM wave is located in the flatbands region, the real part of dielectric
function of ENG material is negative. However, the real part of dielectric function of dielectric sphere
is positive. Therefore, the surface plasmons can be found [55]. As we know, surface plasmons are waves
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(a) (b)

Figure 2. Calculated band structures for 3D PCs with pyrochlore lattices containing the ENG materials
as εb = 1, εa = 12, γ = 0.02ωpl and R = 0.19a but with different the electronic plasma frequency.
(a) ωp = 0; (b) ωp = 0.05ωp0, respectively.

that propagate along the surface of a conductor, due to collective oscillation of electric charges coupled
with the electromagnetic field. Under suitable condition, surface plasmons may appear at interface
across which the dielectric changes sign [55]. On the other hand, we consider a 3D case. The PBG for
such 3D PCs is a complete PBG (for TE and TM modes). This can be seen in Eq. (11). Thus, for
our case, the presence of the interface gives the field a longitudinal component due to discontinuity of
the dielectric function across the interface. The motions of the electrons and EM fields can be coupled
at the interface between the ENG materials and dielectric. However, because the fields inside the
ENG materials have no longitudinal components to couple with the plasma oscillations, they rapidly
decay away from interface. The surface plasmons are highly localized at the interface and evanescent
otherwise [55]. If frequency of EM wave is located in the flatbands region, surface plasma waves, which
are surface plasmon polaritions in the notation of 3D MPPCs, are present with very localized field
around a dielectric sphere. Thus, the flatbands can be obtained. Compared to Fig. 2(a), the edges of
PBG are upward to higher frequency region, and the bandwidth of PBG is increased by 0.0005 (2πc/a).
Thus, the PBG of 3D dielectric PCs can be enlarged by introducing the ENG materials. As we know,
the 3D PCs containing the ENG materials with simpler lattices including the diamond, fcc, bcc and
sc lattices can also produce the PBGs. As a comparison, we plot the photonic band structures of 3D
PCs containing the ENG materials in various lattices as εb = 1, εa = 12, ωp = 0.05ωp0, γ = 0.02ωpl

and R = 0.19a in Fig. 3. As we know, the high-symmetry points in the Brillouin zone for fcc and
diamond lattices are the same as in the pyrochlore structure [46–48]. For the bcc lattices, the high-
symmetry points are Γ = (0, 0, 0), H = (0, 0, 2π/a), N = (0, π/a, π/a) and P = (π/a, π/a, π/a). For
the sc lattices, the high-symmetry points are Γ = (0, 0, 0), X = (π/a, 0, 0), M = (π/a, π/a, 0), and
R = (π/a, π/a, π/a). It is clearly seen that the complete PBGs cannot be found in Figs. 3(a) and (d)
due to band degeneracy at some high-symmetry points, which are H and P points for a bcc lattice, and
M and R points for a sc lattice. This can be explained by the high symmetry of those lattices, and the
dielectric constant of immersed dielectric sphere is not large enough to open a band gap [41]. It can also
be seen from Figs. 3(b) and (c) that there are the PBGs of 3D PCs with fcc and diamond lattices, the
1st PBGs span 0.8131–0.8161 (2πc/a) and 0.5956–0.6106 (2πc/a), respectively. Obviously, the 3D PCs
with pyrochlore lattices containing the ENG materials have a larger bandwidth of PBG than these PCs
with the conventional simpler lattices, such as the diamond, fcc, sc and bcc structures. As mentioned
above, the ENG materials introduced into the 3D dielectric PCs can enlarge the frequency range of
PBG, and the larger PBG can be obtained as the 3D PCs with pyrochlore lattices.

In Fig. 4(a), we plot the dependences of the properties of 1st PBG for such 3D PCs on the filling
factor of spheres as εb = 1, εa = 12, ωp = 0.05ωp0 and γ = 0.02ωpl, respectively. The shaded region
indicates the PBG. Fig. 4(a) reveals that the edges of 1st PBG are downward to lower frequency region,
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(a) (b)

(c) (d)

Figure 3. Calculated band structures for 3D PCs with four different conventional lattices containing
the ENG materials as εb = 1, εa = 12, ωp = 0.05ωp0, γ = 0.02ωpl and R = 0.19a. (a) sc lattices,
(b) diamond lattices, (c) fcc lattices, and (d) bcc lattices, respectively.
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Figure 4. The effects of the radius of the dielectric spheres R/a on the PBG and relative bandwidth
for such 3D PCs with εb = 1, εa = 12, ωp = 0.05ωp0 and γ = 0.02ωpl, respectively. The shaded region
indicates the PBG. (a) The PBG, and (b) relative bandwidth.
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and the bandwidth of 1st PBG increases first and then decreases with increasing the value of R/a.
If the value of R/a is less than 0.148, there does not exist the 1st PBG, and it will disappear as the
value of R/a is larger than 0.235. As R/a is increased from 0.05 to 0.48, the maximum bandwidth
of 1st PBG is 0.0674 (2πc/a), which can be found in the case of R/a = 0.18. Compared to the case
of R/a = 0.19, the maximum frequency range of 1st PBG is increased by 0.007 (2πc/a). Thus, the
1st PBG can be tuned by the filling factor of dielectric sphere. This can also be explained in physics
that increasing the radius of the dielectric spheres means the space averaged dielectric constant of such
3D PCs becomes larger, and the PBG can be manipulated [38–41]. In Fig. 4(b), we plot the relative
bandwidth (∆ω/∆ωi) as a function of R/a. Fig. 4(b) shows that the relative bandwidth of 1st PBG
increases first and then decreases with increasing the value of R/a. The maximum relative bandwidth
of 1st PBG is 0.147, which can be found in the case of R/a = 0.18. Compared to the case of R/a = 0.15,
the relative bandwidth of such a PBG is increased by 0.124. As mentioned above, the filling factor of
dielectric spheres is an important parameter which needs to be chosen. It is also noticed that if the
radius of the dielectric spheres is small enough and close to null, such 3D PCs can be looked as an ENG
material block. The flatbands will disappear.

In Fig. 5(a), we plot the 1st PBG for such 3D PCs as a function of the relative dielectric constant
of spheres εa. The parameters of 3D PCs are εb = 1, ωp = 0.05ωp0, γ = 0.02ωpl and R = 0.19a. The
shaded region indicates the PBG. As show in Fig. 5(a), the edges of 1st PBG for such 3D PCs shift
to lower frequency region, and the bandwidth increases first and then decreases with increasing εa. If
εa is less than 5, the 1st PBG will never appear. As εa is increased from 5 to 50, the 1st PBG runs
from 0.1983 to 0.246 (2πc/a), and the bandwidth is 0.0477 (2πc/a). The frequency range is increased
by 0.0184 (2πc/a) compared to the case of εa = 5. In Fig. 5(b), the relative bandwidth of 1st PBG is
plotted. Fig. 5(b) illustrates that the general trend for 1st PBG is relative bandwidth which increases
with increasing εa, and the maximum relative bandwidth is 0.215, which can be found in the case of
εa = 50. This can be explained by that the bandwidths of PBGs are governed by refractive contrast for
the dielectrics which compose such 3D PCs, and the positions of the PBGs are governed by the average
refractive index of such 3D PCs [38–41]. As mentioned above, the frequency range of 1st PBG for such
3D PCs can be tuned by εa. The central frequency of 1st PBG shifts to lower frequency region, and
the frequency bandwidth can be enlarged with increasing εa.
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Figure 5. The effects of relative dielectric constant εa on the 1st PBG and relative bandwidth for
such 3D PCs with εb = 1, ωp = 0.05ωp0, γ = 0.02ωpl and R = 0.19a, respectively. The shaded region
indicates the PBG. (a) The PBG, and (b) relative bandwidth.

In Fig. 6(a), we plot the effects of the electronic plasma frequency ωp on the 1st PBG for such 3D
PCs with εb = 1, εa = 12, γ = 0.02ωpl and R = 0.19a, respectively. The shaded region indicates the
PBG. As shown in Fig. 6(a), the edges of 1st PBG shift to higher frequency region with increasing the
value of ωp/ωp0. The bandwidth of 1st PBG increases first and then decreases as the value of ωp/ωp0 is
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Figure 6. The effects of electronic plasma frequency ωp on the 1st PBG and relative bandwidth for
such 3D PCs with εb = 1, εa = 12, γ = 0.02ωpl and R = 0.19a, respectively. The shaded region indicates
the PBG. (a) The PBG, and (b) relative bandwidth.
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Figure 7. The effects of dielectric constant of ENG material εb on the 1st PBG and relative bandwidth
for such 3D PCs with εa = 12, ωp = 0.05ωp0, γ = 0.02ωpl and R = 0.19a, respectively. The shaded
region indicates the PBG. (a) The PBG, and (b) relative bandwidth.

increased. The 1st PBG will disappear as value of ωp/ωp0 is larger than 0.125. As the value of ωp/ωp0 is
increased from 0.01 to 0.125, the 1st PBG is located from 0.448 to 0.4575 (2πc/a), and frequency range
is 0.0049 (2πc/a). Compared to the case of ωp/ωp0 = 0.05, the bandwidth of 1st PBG is decreased by
0.0504 (2πc/a). The maximum frequency range of 1st PBG is 0.0626 (2πc/a), which can be found in the
case of ωp/ωp0 = 0.1. In Fig. 6(b), the relative bandwidth as a function of electronic plasma frequency
for 1st PBG is plotted. Fig. 6(b) shows that the relative bandwidth of 1st PBG increases first and then
decreases as the value of ωp/ωp0 is increased from 0.01 to 0.125. The maximum relative bandwidth
is 0.14712, which can be found in the case of ωp/ωp0 = 0.1. Compared to the case of ωp/ωp0 = 0.05,
the maximum relative bandwidth of 1st PBG is increased by 0.005. As mentioned above, PBG can be
tuned by the electronic plasma frequency. This can be explained by that the average refractive index
of such 3D PCs has been changed.

In Fig. 7(a), we plot the 1st PBG of such 3D PCs as a function of the dielectric constant of ENG
materials εb with εa = 12, ωp = 0.05ωp0, γ = 0.02ωpl and R = 0.19a, respectively. The shaded region
indicates the PBGs. One can see from Fig. 7(a) that the edges of 1st PBG are linearly downward to
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lower frequency region, and the bandwidth decreases with increasing εb. As εb is increased from 1 to
2.8, the 1st PBG presents itself at 0.3766–0.38 (2πc/a). Compared to the case of εb = 1, the bandwidth
for 1st PBG is decreased by 0.057 (2πc/a). The maximum frequency range of 1st PBG can be found
in the case εb = 1. In Fig. 7(b), the relative bandwidth of 1st PBG is also plotted. As shown in
Fig. 7(b), the general trend for 1st PBG is that relative bandwidth decreases linearly with increasing
εb. The maximum relative bandwidths for such PBG is 0.143, which can be found in the case of εb = 1.
Compared to the case of εb = 2.8, the relative bandwidth is increased by 0.134. Similar to changing εa

and ωp, the way to change the dielectric constant of ENG material means that the refractive contrast for
the dielectrics which compose such 3D PCs, and average refractive index of such 3D PCs are changed.
Therefore, the PBG for such 3D PCs can be tuned by εb.

In Fig. 8(a), we plot the effects of damping factor γ on the 1st PBG for such 3D PCs with εb = 1,
εa = 12, ωp = 0.05ωp0 and R = 0.19a, respectively. The shaded region indicates the PBG. As shown in
Fig. 8(a), the 1st PBG for such 3D PCs can hardly be tuned by the damping factor of ENG materials.
The frequency range of 1st PBG remains invariant, and the central frequencies also cannot be tuned
with increasing the value of γ/ωpl. The bandwidth of such PBGs runs from 0.3922 to 0.4526, as the
value of γ/ωpl is increased from 0.002 to 0.2. The bandwidth is 0.0604 (2πc/a) and will cease to change
with increasing the value of γ/ωpl. In Fig. 8(b), the relative bandwidth of 1st PBG is also plotted. It
can be seen from Fig. 8(b) that the relative bandwidth of such a PBG remains unchanged with changing
the value of γ/ωpl. The relative bandwidth is 0.0143. As mentioned above, the damping factor of the
ENG material has no effect on the properties of PBG for such 3D PCs. This can be explained by the
relationship between εp and the damping factor of ENG material γ [40, 56]. We can see from Eq. (1)
that the electronic plasma frequency ωp is much lager than the damping factor of ENG material. The
damping factor of ENG material determines only the degree of energy exchange. Thus, the damping
factor of ENG material has almost no effects on the real part of εp. On the other hand, we can see from
Eq. (17) that the damping factor of ENG material obviously has no effect on computing the eigenvalue
from a mathematical perspective.
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Figure 8. The effects of damping factor γ on the 1st PBG and relative bandwidth for such 3D PCs
with εb = 1, εa = 12, ωp = 0.05ωp0 and R = 0.19a, respectively. The shaded region indicates the PBG.
(a) The PBGs, and (b) relative bandwidths.

On the other hand, such PCs structure can also be realized. The details of realization can be found
in the work reported by Garcia-Adeva [46, 47]. Obviously, the models of such 3D PCs as mentioned
in our manuscript not only can be realized in the experiment but also can bring the convenience to
the theoretical research, because the Fourier form of dielectric constant dyadic of such 3D PCs can be
obtained easily. If we want to do the experiment about such 3D PCs, we can also use the layer-by-layer
structure to realize the PCs as mentioned in [57]. Obviously, the proposed PCs have an application in
realizing the optical devices, such as optical switching, wavelength division multiplexers and filter.
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4. CONCLUSIONS

In summary, the properties of PBG for 3D PCs with pyrochlore lattices composed of isotropic positive-
index materials and ENG materials which are the dielectric spheres immersed in the uniform ENG
materials background are theoretically investigated by the PWE method. The equations for calculating
the band structures in the first irreducible Brillouin zone are theoretically deduced. Based on the
numerical results, some conclusions can be drawn. Compared to the same structure composed by
isotropic dielectrics, the complete PBG and a flatbands region can be obtained as ENG material is
introduced. The flatbands are caused by the existence of surface plasmon modes which stem from the
coupling effects between the ENG materials. Compared to the conventional topology, such as diamond,
fcc, bcc and sc lattices, 3D PCs with pyrochlore arrangement can obtain a larger PBG. The PBG of
such 3D PCs can be manipulated by the relative dielectric constant of immersed dielectric, and the
general trend for PBG is that relative bandwidth increases with increasing εa. The PBG can also be
tuned obviously by the dielectric constant of ENG materials. The bandwidth and central frequency
of PBG will decrease linearly with increasing εb. On the other hand, PBG can be tuned notably
by the electronic plasma frequency of ENG material. Increasing the electronic plasma frequency, the
bandwidth will increase first and then decrease. The maximum relative bandwidth can be obtained
at low-ωp region. With increasing the filling factor of dielectric spheres, the relative bandwidth and
frequency range of PBG will increase first and then decrease. It is also noticed that if filling factor is
small enough and close to null, such 3D PCs can be seen as an ENG material block. The flatbands will
disappear. The damping factor of ENG material has no effect on the PBG of such PCs. As mentioned
above, we can take advantage of the ENG material to form 3D PCs with pyrochlore lattices for obtaining
larger complete PBGs as the PCs with low filling factor and dielectric constant.
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