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RCS Reduction of Open-Ended Circular Waveguide Cavity with
Corrugations Using Mode Matching and Scattering Matrix Analysis

Young Dam Kim*, Ho Lim, Jung Hoon Han, Won Young Song, and Noh Hoon Myung

Abstract—A scattered radar signal by a jet engine inlet involves engine information of the target. The
jet engine RCS due to the engine inlet is therefore significant in radar target recognition. Accordingly,
several accurate analyses of the jet engine RCS have been reported. Reduction of the jet engine RCS
is also required for stealth technology. We suggest a new approach for jet engine RCS reduction that
involves the insertion of many small corrugations into the jet engine inlet. The proposed jet engine
structure is assumed to be a circular waveguide cavity with many corrugations. The structure is analyzed
by combining a mode matching technique with a scattering matrix analysis. The proposed closed-form
RCS solutions of the corrugated engine structure are validated with a MoM simulation using FEKO. The
proposed closed-form solution has numerical efficiency and rapid convergence. Using the characteristics
of the solution, we simply apply a genetic algorithm (GA) to optimize the structure of the corrugations
in terms of minimizing the RCS.

1. INTRODUCTION

The radar cross section (RCS) of a jet engine is important in that it plays a key role in radar target
recognition. If a transmitted radar signal is scattered from the interior of the jet engine, the radar signal
is modulated by rotating jet engine blades. The modulated signal referred to jet engine modulation
(JEM) provides significant information, such as the spool rate, blade length and blade number. By
interpreting the JEM signal, enemy troops are able to identify the fighter type [1]. Reduction of the jet
engine RCS is therefore important for stealth technology. For this reason, the jet engine RCS has been
extensively studied in many electromagnetic problems.

Three remarkable methods to analyze jet engine RCS have been reported. The first is an exact
solution using a mode matching method with a scattering matrix analysis [2–6]. In this method, the jet
engine is treated as a complex open-ended waveguide cavity structure. In order to analyze a structure
that has some obstacles, the scattering matrix method applies a modal analysis to each simple distinct
section composing the complex waveguide cavity structure. A scattering property of the entire structure,
represented in matrix form, is attained by cascading the modal coefficients of all sections. The second
is an asymptotic solution using high-frequency methods such as shooting and bouncing rays (SBR) [7],
geometrical theory of diffraction (GTD) [8], physical optics (PO) [9] and generalized ray expansion
(GRE) [10]. Because the size of jet engine is typically much larger than the wavelength and these
methods rely on the ray tracing method, they have good applicability to arbitrary and large structures.
The third is a hybrid solution combining an integral or differential of Maxwell equations with the two
methods described above [11–14]. The mode matching method or high-frequency method is utilized for
the front part of the jet engine due to its simple structure. Low-frequency methods using Maxwell’s
integral equations or differential equations are applied to the end part of the jet engine which has
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complex jet engine blades. By combining two methods, both computational efficiency in the front part
and solution accuracy in the end part are attainable.

Reduction of the jet engine RCS has been researched via two methods. The first is geometrical
modification of the jet engine structure, which backscatters incident radar waves to the opposite direction
of the incidence. For reduction of the jet engine RCS, the straight jet engine structure is commonly bent
into an S-shape [6, 7]. This method is quite effective but the whole structure of the jet engine requires
large modification relative to the straight jet engine. The second is using radar absorbing material
(RAM) coating on the surface of the jet engine [8]. Although the RAM has a simple property of absorbing
electromagnetic wave in the molecular level, large RCS reduction is attained by coating the RAM. In
order to obtain a better effect, many RAMs that have different permittivity and permeability should
be accumulated in a multilayered coating [15]. In the design of the multilayered coating, GA (Genetic
Algorithm) optimization of the multilayered RAM brings a significant reduction of the RCS [16, 17].
However, this method is quite expensive with respect to material cost and maintenance.

In this paper, we suggest a new method for engine RCS reduction where a corrugated open-ended
circular waveguide cavity is treated as the jet engine analysis model. Many small-sized corrugations
compared to the size of the jet engine are inserted into the waveguide cavity. The inserted corrugations
serve as a waveguide filter which suppresses surface current in the waveguide cavity, and the RCS of
the jet engine is consequentially reduced. This method can feasibly be realized without modification
of the whole engine structure, and it is also competitive in terms of cost and maintenance. In order
to analyze the structure, we used a mode matching technique combined with a scattering matrix to
obtain an analytic solution. To analyze the open-end of the structure, the mode-matching technique
was reciprocally able to convert a closed form equation of both incident and scattering waves to matrices
of the excited modal coefficients at the aperture [18]. For the complicated corrugations in the circular
waveguide [19], many unit scattering matrices matching the unit circular waveguide as part of the
whole corrugated waveguide were cascaded step by step [20]. Combining the mode matching and the
scattering matrix solutions, a closed-form RCS solution was finally obtained. Since the final solution has
the characteristics of a modal analysis, the solution rapidly converges and is numerically efficient. Using
these two characteristics, we suggested a simple cost function for optimizing the corrugation structure.
Applying the GA algorithm, we found an optimized corrugation design for minimizing RCS.

2. RCS ANALYSIS OF OPEN-ENDED CIRCULAR WAVEGUIDE CAVITY WITH
CORRUGATIONS

2.1. Analysis Structure and Methods

The suggested model for the RCS reduction is illustrated in Figure 1. We assume the jet engine model as
a large open-ended circular waveguide cavity. In order to reduce the RCS of the jet engine, small-sized
corrugations are inserted into the waveguide.

Figure 2 shows divided regions of the open-ended circular waveguide with corrugations and describes

Figure 1. Open-ended circular waveguide cavity with corrugation.
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Figure 2. Divided structure with three regions corresponding to each analysis method.

the analysis method according to each region. The aperture of the analysis structure is orthogonal to
the z axis, and the analysis structure is divided into three regions with respect to the analysis method,
as shown in Figure 2. First, we used mode-matching at the open-ended aperture, and the obtained
equations were transformed to matrix equations for connection with the scattering-matrix method.
Second, the corrugations were divided into many simple sections, and the scattering matrix method
was applied to each section. Cascading all sections, a scattering characteristic was obtained for all
corrugations. Third, a boundary condition by perfect electric conductor (PEC) termination was simply
applied. With the three conditions, the unknown coefficients of Fourier series and transform AI, BI,
AII, BII and BIII were obtained. Finally, the RCS of the analysis structure was evaluated.

2.2. Field Representation

We utilize normalized field equations for simplicity of the field expression in [19]. This normalization is
equal to assign both ε and µ to unity. With e−iωt time convention, the field is given by

Ē =
√

µĒ′ H̄ =
√

µH̄ ′ t =
√

µεt′ (1)
Maxwell’s equations for the normalized field expressions are as follows.

∇× Ē′ = in
∂H̄ ′

∂t′
∇× H̄ ′ = in

∂Ē′

∂t′
(2)

where n is the refractive index of the medium. The electric and magnetic fields are expressed with
combination of electric and magnetic Hertz potentials such that

Ē′ = ∇×∇× Π̄m + ω′n∇× Π̄e (3)
H̄ ′ = ∇×∇× Π̄e + ω′n∇× Π̄m (4)

where Π̄m and Π̄e are the magnetic Hertz potential and the electric Hertz potential, respectively. In
regions I and II (the corrugated circular waveguide), the tangential fields with respect to the waveguide
aperture are represented as

ĒI =
∞∑

v=−∞

2NI∑

u=1

[
A(v)

I (u)eikI
vuz + B(v)

I (u)e−ikI
vuz

]
ē(v)
I (u) (5)

H̄I =
∞∑

v=−∞

2NI∑

u=1

[
A(v)

I (u)eikI
vuz −B(v)

I (u)e−ikI
vuz

]
h̄(v)

I (u) (6)

ĒII =
∞∑

v=−∞

2NII∑

u=1

[
A(v)

II (u)e−ikII
vuz + B(v)

II (u)eikII
vuz

]
ē(v)
II (u) (7)
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H̄II =
∞∑

v=−∞

2NII∑

u=1

[
−A(v)

II (u)e−ikII
vuz + B(v)

II (u)eikII
vuz

]
h̄(v)

II (u) (8)

where the unknown modal coefficients of the Fourier series are defined as

A(v)
I,II =

[
AI,II(v)

m (1) , . . . , AI,II(v)
m (NI,II) , AI,II(v)

e (1) , . . . , AI,II(v)
e (NI,II)

]T
(9)

B(v)
I,II =

[
BI,II(v)

m (1) , . . . , BI,II(v)
m (NI,II) , BI,II(v)

e (1) , . . . , BI,II(v)
e (NI,II)

]T
(10)

and

ē(v)
I,II =

[
ēI,II(v)
m (1) , . . . , ēI,II(v)

m (NI,II) , ēI,II(v)
e (1) . . . , ēI,II(v)

e (NI,II)
]T

(11)

h̄(v)
I,II =

[
h̄I,II(v)

m (1) , . . . , h̄I,II(v)
m (NI,II) , h̄I,II(v)

e (1) , . . . , h̄I,II(v)
e (NI,II)

]T
(12)

ēI,II(v)
m = iβI,II

vn ∇Π̄I,II
m , ēI,II(v)

e = ωnI,II∇Π̄I,II
e × ẑ (13)

h̄I,II(v)
m = ωnI,II∇Π̄I

m × ẑ, h̄I,II(v)
e = iβ′I,IIvn ∇Π̄I,II

e (14)

Π̄I,II(v)
m = eivφJv

(
χvn

aI,II
r

)
, Π̄I,II(v)

e = eivφJv

(
χ′vn

aI,II
r

)
(15)

ēI,II(v)
m (u) = iβI,II

vu

[
r̂eiνφ χνu

aI,II
J ′ν

(
χνu

aI,II
r

)
+ φ̂

1
r
iνeiνφJν

(
χνu

aI,II
r

)]
(16)

ēI,II(v)
e (u) = ωnII

[
r̂
1
r
iνeiνφJν

(
χ′νu

aI,II
r

)
− φ̂eiνφ χ′νu

aI,II
J ′ν

(
χ′νu

aI,II
r

)]
(17)

h̄I,II(v)
m (u) = ωnII

[
r̂
1
r
iνeiνφJν

(
χνu

aI,II
r

)
− φ̂eiνφ χνu

aI,II
J ′ν

(
χνu

aI,II
r

)]
(18)

h̄I,II(v)
e (u) = iβ′I,IIvu

[
r̂eiνφ χ′νu

aI,II
J ′ν

(
χ′νu

aI,II
r

)
+ φ̂iνeiνφJν

(
χ′νu

aI,II
r

)]
a. (19)

Note that Jv(·) is the Bessel function of the first kind and order v, and J ′v(·) denotes differentiation
with respect to the argument. χvu is defined as the uth root of the v-order Bessel function Jv(·) and
χ′vu is defined as the uth root of the derivative of the v-order Bessel function J ′v(·). a is the radius of
the aperture in the relevant region. r̂ and φ̂ denote unit vectors in cylindrical coordinates. Propagation
constant for the transverse magnetic (TM) mode and transverse electric (TE) mode (magnetic Hertz
potential and electric Hertz potential) are respectively represented as

kI,II
vu =





βI,II
vu =

√
(ωnI,II)

2 −
(

χvu

aI,II

)2

β′I,IIvu =

√
(ωnI,II)

2 −
(

χ′vu
aI,II

)2
. (20)

In the region III (the open-ended region) the outer scattered fields by the inlet of the waveguide
are represented as

ĒIII =
∞∑

v=−∞

∫ ∞

0
B(v)

III(ζ)eiκzē(v)
III(ζ)dζ (21)

H̄III =
∞∑

v=−∞

∫ ∞

0
B(v)

III(ζ)eiκzh̄(v)
III(ζ)dζ (22)

where B(v)
III(ζ) is the unknown spectral coefficient of the Fourier transform and

ē(v)
III(ζ) =

[
ēIII(v)
m (ζ) ēIII(v)

e (ζ)
]T

(23)

h̄(v)
III(ζ) =

[
h̄III(v)

m (ζ) h̄III(v)
e (ζ)

]T
(24)
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ēIII(v)
m = iκ∇Π̄III

m , ēIII(v)
e = ωnIII∇Π̄III

e × ẑ (25)

h̄III(v)
m = ωnIII∇Π̄III

m × ẑ, h̄III(v)
e = iκ∇Π̄III

e (26)

Π̄III(v)
m = Π̄III(v)

e = eiυφJυ (ζr) (27)

κ =
√

(ωnIII)
2 − ζ2 (28)

ēIII(v)
m (ζ) = iκ

[
r̂eiνφζJ ′ν (ζr) + φ̂

1
r
iνeiνφJν (ζr)

]
(29)

ēIII(v)
e (ζ) = ωnIII

[
r̂
1
r
iνeiνφJν (ζr)− φ̂eiνφζJ ′ν (ζr)

]
(30)

h̄III(v)
m (ζ) = ωnIII

[
r̂
1
r
iνeiνφJν (ζr)− φ̂eiνφζJ ′ν (ζr)

]
(31)

h̄III(v)
e (ζ) = iκ

[
r̂eiνφζJ ′ν (ζr) + φ̂

1
r
iνeiνφJν (ζr)

]
. (32)

We assume that the incidence plane wave impinges with the angle θi, as shown in Figure 2. For
convenience of offsetting in the calculation, we set arbitrary fields reflected by a virtual PEC plate, and
these fields are satisfied with the law of reflection. Although the offsetting only provides a valid θi range
from 0◦ to 50◦, the range is sufficient to observe scattering effect by the jet engine inlet because the
significant JEM emerges around the normal axis of the jet engine aperture (θi = 0◦). The two pairs of
the incidence and reflected plane wave according to the TM and TE polarization are represented as

(
H̄ i

)
TM

= ŷeikx sin θi+ikz cos θi = ŷe−ikz cos θi

∞∑
v=−∞

ivJv (kr sin θi) eivφ (33)

(
H̄r

)
TM

= ŷeikx sin θi−ikz cos θi = ŷe−ikz cos θi

∞∑
v=−∞

ivJv (kr sin θi) eivφ (34)

(
Ēi

)
TE

= ŷeikx sin θi−ikz cos θi = ŷe−ikz cos θi

∞∑
v=−∞

ivJv (kr sin θi) eivφ (35)

(
Ēr

)
TE

= −ŷeikx sin θi+ikz cos θi = −ŷeikz cos θi

∞∑
v=−∞

ivJv (kr sin θi) eivφ (36)

2.3. Mode Matching and Scattering Matrix Analysis

The incidence plane wave is represented as the sum of the Bessel function of the first kind, represented
as v. The entire fields are also represented in the same manner. Boundary conditions for the entire
fields are then individually valid with respect to the arbitrary v. Therefore, the final solution can be
obtained by superposition in terms of v. For an arbitrary v, tangential electric field continuity at the
aperture requires

Ē
(v)
II = Ē

(v)
III +

(
Ēi + Ēr

)(v)

TM,TE
(37)

For convenience, we apply power orthogonality described in [21] to (37), and the equations are
represented as (A1). In order to connect mode-matching equations with scattering matrix, the equations
are transformed into a matrix form such as

B(v)
III(ζ) =

(
Q(v)

o

)−1
P (v)

o

(
A(v)

II +B(v)
II

)
(38)

where Q
(v)
o and P

(v)
o are represented as (A3) and (A4), respectively. In the same manner, the tangential

magnetic field continuity at the aperture requires

H̄
(v)
II = H̄

(v)
III +

(
H̄ i + H̄r

)(v)

TM,TE
(39)
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The equation applied power orthogonality to (39) is represented as (A2), and the matrix form equation
yields

R(v)
o

(
B(v)

II −A(v)
II

)
= −

∫ ∞

0

(
P (v)

o

)H
B

(v)
III(ζ)dζ + V(v)

TE,TM (40)

where R
(v)
o and V(v)

TE,TM are represented as (A5) and (A6) respectively. Substituting (38) into (40), we
obtain

R(v)
o

(
B(v)

II −A(v)
II

)
= −X(v)

(
A(v)

II +B(v)
II

)
+ V(v)

TE,TM (41)

(a) (b)

(c)

Figure 3. Scattering matrix method (a) continuous structure, and (b) discontinuous structure, and
(c) cascading method between two structures.
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where
X(v) =

∫ ∞

0

(
P (v)

o

)H (
Q(v)

o

)−1
P (v)

o dζ. (42)

X(v) is represented as (A7), and the integrals in the X(v) are numerically evaluated by the adaptive
Gauss-Kronrod quadrature method in [22].

It is necessary to obtain another condition by using the scattering matrix of the corrugations with
the boundary condition of the PEC-termination. The PEC boundary condition is simply expressed as
B(v)

I = −A(v)
I . We then obtain

B(v)
II =

(
S

(v)
22 − S

(v)
21

(
I + S

(v)
11

)−1
S

(v)
11

)
A(v)

II (43)

where S
(v)
11 , S

(v)
12 , S

(v)
21 and S

(v)
22 are evaluated by using Figure 3 describing the scattering matrix method

case by case. The three cases are a continuous structure, a discontinuous structure and a cascading
method between two structures AI, AII, BI and BII are modal coefficient vectors of Fourier series
representing electromagnetic fields in the waveguide. These vectors have relation as

[
BI

BII

]
=

[
S11 S12

S21 S22

] [
AI

AII

]
. (44)

The P , Q and R matrices for calculating the scattering matrix are represented as (B1), (B2) and (B3)
respectively.

Using both (41) and (43), the unknown modal coefficients at the aperture A(v)
II + B(v)

II can be
evaluated as

A(v)
II +B(v)

II =
(
Ψ(v) + I

)(
R(v)

o

(
Ψ(v) − I

)
+ X(v)

(
Ψ(v) + I

))−1
V(v)

TE,TM (45)

where

Ψ(v) =
(

S
(v)
22 − S

(v)
21

(
I + S

(v)
11

)−1
S

(v)
11

)
. (46)

Defining Ω(v)
TM,TE = A(v)

II + B(v)
II and Ω(v)

TM,TE = [Ω(v)
m Ω(v)

e ]TTM,TE, the unknown spectral coefficient of

the scattering field B(v)
III(ζ) is represented as

B(v)
III(ζ) =

(
Q(v)

o

)−1
P (v)

o Ω(v)
TM,TE (47)

2.4. Closed-Form RCS Solution

The scattered electric and magnetic fields are obtained by substituting (47) into (21) and (22),
respectively. In the far field observation, the stationary phase method can be applied to the semi-
infinite bounded integrals about ζ. The obtained fields with respect to the incidence polarization are
then substituted into the definition of the RCS, represented as

σTM = lim
rs→∞

(
4πr2

s

|Eθ|2 + |Eφ|2
|Ei|2

)
, σTE = lim

rs→∞

(
4πr2

s

|Hθ|2 + |Hφ|2
|Hi|2

)
. (48)

Finally we can express the closed-form RCS solution of the analysis structure as

σTM=4π





∣∣∣∣∣∣∣

∞∑
v=−∞

NII∑
u=1

eivφe−i( v
2 )π




Ω(v)
m (u) iβvuχvu

k2 sin θi cos 2θiJ
′
v(χvu )[

(k sin θi)
2−

(
χvu
aII

)2
]

+Ω(v)
e (u) ωnII (iv) (cot θi − sin θi) Jv(χ′vu)


Jv (kaII sin θi)

∣∣∣∣∣∣∣

2

+

∣∣∣∣∣∣
∞∑

v=−∞

NII∑
u=1

eivφe−i( v
2 )π


Ω(v)

e (n)ω nII
nIII

χ′2vu
aII

(k cos θi)Jv(χ′vu )[
(k sin θi)

2−
(

χ′vu
aII

)2
]


J ′v (kaII sin θi)

∣∣∣∣∣∣

2





(49)



64 Kim et al.

σTE=4π





∣∣∣∣∣∣
∞∑

v=−∞

NII∑
u=1

eivφe−i( v
2 )πΩv

e (u) i nII
nIII

χ′2vu
aII

Jv(χ′vu)(
k2 cos θi)J ′v(kaII sin θi)[
(k sin θi)

2−
(

χ′vu
aII

)2
]

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣∣

∞∑
v=−∞

NII∑
u=1

eivφe−i( v
2 )π




Ωv
m (u) ωβvuχvuJ ′v (χvu) (k sin θi)[

(k sin θi)
2−

(
χvu
aII

)2
]

+Ωv
e (u) ω2nIIvJv(χ′vu) 1

(k sin θi)


Jv (kaII sin θi)

∣∣∣∣∣∣∣

2





(50)

3. NUMERICAL COMPUTATIONS AND GA OPTIMIZATION

For numerical calculation from the point of convergence, the limitation of v must be determined as a
finite number, not an infinite number. The limit is proportional to the aperture size of the cylinder, and
v having a finite range from −11 to 11 is appropriate for the case aII = 5λ. When v is determined, the
maximum modal order at the aperture NII is automatically determined by (20). Because of the rapidly
convergent series in the equations, the calculation is numerically efficient.

Figure 4 shows the specific structure employed for verification. The monostatic RCS calculation
by (49) and (50) for the structure in Figure 4 was evaluated and verified through comparison with a
FEKO simulation by the method of moments (MoM). Figure 5 and Figure 6 show the RCS comparison
in terms of an incident plane wave, respectively. The results of the proposed solution agreed well with
the MoM simulated results for θi range from 0◦ to 35◦, while a slight error occurred with the proposed
solution for θi range more than 35◦. The reason of the error was using a pair of an incidence and reflected
plane wave, as discussed above. The reflected plane wave by the virtual PEC plate were assumed to
apply the mode-matching method to the aperture. The assumed PEC plate improperly converted a rim
edge into a 90◦ half-plane wedge, and resulted in an error which was proportional to the θi. For a small
θi, the scattered field by the inside of the circular waveguide cavity is dominant in comparison with an
edge diffracted field, therefore the error due to the edge is negligible value. In contrast, the effect of the
edge diffraction is noticeable for θi more than 35◦, thus an accuracy of the proposed solution gradually
decrease with increasing θi. The proposed solution provides correct analysis of a RCS for an strong
JEM effect occur with θi range from 0◦ to 30◦. In order to analyze the RCS for an weak JEM effect
occur with θi more than 30◦, the rim edge diffraction must be supplementary considered for accuracy.

For improved reduction of the RCS, the structure of the corrugations requires optimization. We
applied GA optimization to the number and unit cell shape of the corrugations. A cost function was
defined as

f =
∣∣∣∣sT

[(
R(1)

o

(
Ψ(1) − I

)
+ X(1)

(
Ψ(1) + I

))−1
]
s
∣∣∣∣ (51)

where s = [1, 1, . . . , 1]T .

Figure 4. Verification design of the open-ended circular waveguide cavity with corrugations.
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(a)
(b)

Figure 5. θ-θ pol. RCS of the open-
ended corrugated circular waveguide in Figure 4.
(a) RCS calculated by the mode-matching and
scattering matrix. (b) Simulated result by the
MoM.

(a)
(b)

Figure 6. φ-φ pol. RCS of the open-
ended corrugated circular waveguide in Figure 4.
(a) RCS calculated by the mode-matching and
scattering matrix. (b) Simulated result by the
MoM (FEKO).

Figure 7. Optimized design of the circular waveguide cavity with corrugations.

 

(a) (b)

Figure 8. RCS comparison among the three structures. (a) θ-θ pol. (b) φ-φ pol.
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The cost function is proportional to the sum of the modal coefficients (45) at the aperture, and
only the dominant order of v = 1 is used for convenience. The reduction of the cost function leads to
reduction of the scattered wave intensity. Utilizing the GA to minimize the cost function, we obtained
the optimized design of the corrugations for the RCS reduction, as shown in Figure 7.

Figure 8 shows the RCS comparison results among the three structures. The first is the non-
corrugated circular waveguide cavity with aII = 5λ. The second is the circular waveguide cavity with
non-optimized corrugations in Figure 4. The third is the circular waveguide cavity with optimized
corrugations using GA in Figure 7. The RCS results of all structure were evaluated by the proposed
solution (49) and (50). Finally, we confirmed that the RCS is reduced by adding the corrugations to
the jet engine inlet.

4. CONCLUSION

For the first time, we analyzed the RCS of the open-ended circular waveguide cavity with corrugations
by using mode-matching and scattering matrix methods. We validated the suggested RCS solution
with a MoM simulation. The suggested solution with a scattering matrix analysis can be applied to
an arbitrary corrugated structure. The suggested modal solution with rapidly converging series also
provides computational efficiency. Using these two characteristics, we applied the GA to reconfigure
the shape of the corrugations to reduce the RCS. Finally, we obtained the optimized design of the
corrugations. The optimized design led to improved RCS reduction. In future work, we will select the
best optimization algorithm, variables and cost function for advanced reduction of the jet engine RCS.

APPENDIX A. APPLYING POWER ORTHOGONALITY TO THE BOUNDARY
CONDITIONS
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APPENDIX B. P , Q, R MATRICES FOR SCATTERING MATRIX ANALYSIS
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