
Progress In Electromagnetics Research M, Vol. 36, 23–37, 2014

A Complete Analytical Analysis and Modeling of Few Mode
Non-Uniform Fiber Bragg Grating Assisted

Sensing Waveguide Devices

Sanjeev K. Raghuwanshi* and Debi P. Panda

Abstract—In this paper, we develop and present a complete analytical method to analyze the spectral
response of a non-uniform multimode fiber Bragg grating assisted devices supporting a few modes. We
present the analytical solution while taking into account the two forward and two backward propagating
even or odd normal modes of the grating using the matrix method of multimode coupled grating
assisted coupler, for sensing application. Earlier, these types of numerical technique based analysis
were presented by other researchers, but no one seems to present a complete analytical solution for the
given case. The present analytical analysis can simulate a single mode to multimode coupled sensing
waveguide devices based on non-uniform grating assisted operation in a coupled structure. The potential
applications of our findings will be mostly in sensing devices.

1. INTRODUCTION

Nowadays, Fiber Bragg Grating (FBG) sensors have great advantages over other types of sensors in
the field of structural health monitoring. The FBG sensors are immune to EMI (Electromagnetic
Interference), high voltage and current, and harsh environments as stated in [1]. A Bragg grating has
great advantages and a wide range of applications in optical communication and sensing systems as
stated in [2–6]. The grating-assisted coupler also has different applications as stated in [7–10]. The
FBG fabrication was possible due to the discovery of photosensitivity property of optical fibers. The
mechanism of FBG is the reflection at the Bragg wavelength and coupling of power from the forward-
propagating mode to the backward-propagating mode. This coupling phenomenon is very important
in the case of optical fiber sensors or any other types of devices [11, 12]. The widely established
approach for the simulation of waveguide devices and grating assisted coupled waveguide devices is
the coupled mode theory (CMT), which combines a deep insight into the problem together with a much
greater computational simplicity than other numerical methods such as Finite Difference (FD), Finite
Element (FE), and Beam Propagation Methods (BPM). There are a number of different coupled mode
formulations which have been developed from the early 1980s until today [13–21]. There are two main
representative formulations, the orthogonal CMT and rigorous non-orthogonal CMT. The first one is
a simple approach, which can model devices with weakly coupled waveguides. The later can model a
variety of problems such as strongly coupled waveguides involving grating assisted couplers. A more
rigorous coupled mode approach uses exact composite modes such as normal modes of the waveguide
structure. This approach is more accurate and can be applied equally to taper waveguide structure too.
These methods have been applied previously to the modeling of strongly coupled waveguide structures
with a very good agreement with the experimental results [22–24]. For the modeling and simulation of
the grating assisted devices, we use the local normal mode analysis in this paper as discussed before.
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It has been proved as a very effective method for strongly coupled case [25–28]. In our formulation,
the coupling in a two-mode Bragg grating structures is analyzed. Our CMT deals with the coupling
between two forward- and backward-propagating normal modes. This technique can be extended to
more number of modes, by taking the self-coupling and cross-coupling phenomena into consideration.
The present analysis is extremely useful for analyzing the performance parameters of active coupled
sensing devices. In Section 2, the coupled mode equations will be derived by a well-known perturbation
theory, followed by a complete analytical model for the analysis of Bragg grating assisted devices in
Section 3. Finally, the results are simulated for a few mode cases in Section 4.

2. ANALYSIS OF NON-UNIFORM BRAGG GRATING USING PERTURBATION
TECHNIQUE

In this section, we develop and present the perturbation theory for the calculation of spectral response
of a non-uniform Bragg grating. Here we consider two (even and odd) forward and two backward
propagating normal modes of the grating for the special case of uniform grating as shown in Fig. 1.
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Figure 1. Model of FBG with two propagating modes along z.

In the grating region, Fi(z) (i = 1, 2) are the amplitudes of the two forward-propagating normal
modes and Gi(z) (i = 1, 2) the amplitudes of the two backward-propagating normal modes.

The electric field in the grating can be expressed as:

Eg =
[{

F1 (z) e−jβg1z + G1 (z) ejβg1z
}

Ψβg1 (x, y)+
{

F2 (z) e−jβg2z+G2 (z) ejβg2z
}

Ψβg2 (x, y)
]
ejωt (1)

where Ψβgi are the normal modes of the refractive index-averaged waveguide, because of the grating
perturbation, which correspond to the propagation constant βgi (i = 1, 2). The normal modes in the
above equation are normalized according to the following equation:∫∫ ∞

−∞
Ψβgi (x, y)Ψβgj (x, y) dxdy =

2ωµ0

|βgi | δij (for i, j = 1, 2) (2)

Here for i = j, δij = 1 & for i 6= j, δij = 0 and

∇2
t Ψβgi +

[
ω2µ0ε0εr (x, y)− β

2
i

]
Ψβgi = 0 (3)

Here ∇2
t = ∇2 − ∂2

∂z2 = ∂2

∂x2 + ∂2

∂y2 . The wave equation for the electric field component is given by:

∇2Eg + ω2µ0ε0 [εr (x, y) + ∆εr(x, y, z)]Eg = 0 (4)

where εr is the relative permittivity and ∆εr the perturbation of the dielectric permittivity because
of the grating presence, which is periodic in the z-direction with zero average over a period. This
perturbation can be expanded in Fourier series:

∆εr (x, y, z) =
∑

m6=0

∆εm(x, y)e−jm2 π
Λ

z (5)

where Λ is the period of the perturbation. Here only the fundamental harmonic (m = 1) is retained.
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From Eq. (1),

∂2Eg

∂x2
=

(
F1 (z) e−jβg1z + G1(z)ejβg1z

) ∂2Ψβg1

∂x2 ejωt +
(
F2 (z) e−jβg2z + G2(z)ejβg2z

) ∂2Ψβg2

∂x2 ejωt (6)

∂2Eg

∂y2
=

(
F1 (z) e−jβg1z + G1(z)ejβg1z

) ∂2Ψβg1

∂y2 ejωt +
(
F2 (z) e−jβg2z + G2(z)ejβg2z

) ∂2Ψβg2

∂y2 ejωt (7)

∂2Eg

∂z2
=

[
∂2F1

∂z2
e−jβg1z − 2jβg1

∂F1

∂z
e−jβg1z − β2

g1F1e
−jβg1z +

∂2G1

∂z2
ejβg1z + 2jβg1

∂G1

∂z
ejβg1z

−β2
g1G1e

jβg1z
]
Ψβg1e

jωt +
[
∂2F2

∂z2
e−jβg2z − 2jβg2

∂F2

∂z
e−jβg2z − β2

g2F2e
−jβg2z +

∂2G2

∂z2
ejβg2z

+2jβg2
∂G2

∂z
ejβg2z − β2

g2G2e
jβg2z

]
Ψβg2e

jωt (8)

In the above equation, using Slowly Varying Envelope Approximation, the double derivatives of Fi and
Gi (for i, j = 1, 2) is neglected. After this approximation, using the above three equations in Eq. (4)
and taking Eq. (3) into consideration, we get:

(
2jβg1

∂G1

∂z
ejβg1z − 2jβg1

∂F1

∂z
e−jβg1z

)
Ψβg1 +

(
2jβg2

∂G2

∂z
ejβg2z − 2jβg2

∂F2

∂z
e−jβg2z

)
Ψβg2

+ω2µ0ε0∆εr (x, y, z)
[(

F1e
−jβg1z + G1e

jβg1z
)

Ψβg1 +
(
F2e

−jβg2z + G2e
jβg2z

)
Ψβg2

]
= 0 (9)

Multiplying Ψβg1 in Eq. (9), and integrating w.r.t. x, y:

2jβg1

[
∂G1

∂z
ejβg1z − ∂F1

∂z
e−jβg1z

] ∫∫
Ψβg1Ψβg1dxdy

=−ω2µ0ε0

[(
F1e

−jβg1z + G1e
jβg1z

) ∫∫
Ψβg1∆εr (x, y, z)Ψβg1dxdy

+
(
F2e

−jβg2z + G2e
jβg2z

)∫∫
Ψβg2∆εr (x, y, z)Ψβg1dxdy

]
(10)

Now using Eqs. (2) & (5), in the above equation,
[

∂G1

∂z
ejβg1z − ∂F1

∂z
e−jβg1z

]
= jk11

(
F1e

−j(βg1+ 2π
Λ )z + G1e

j(βg1− 2π
Λ )z

)
+ jk21

(
F2e

−j(βg2+ 2π
Λ )z + G2e

j(βg2− 2π
Λ )z

)
(11)

Similarly, multiplying Ψβg2 in Eq. (9), and integrating w.r.t. x, y:

2jβg2

[
∂G2

∂z
ejβg2z − ∂F2

∂z
e−jβg2z

] ∫∫
Ψβg2Ψβg2dxdy

=−ω2µ0ε0

[(
F1e

−jβg1z + G1e
jβg1z

) ∫∫
Ψβg1∆εr (x, y, z)Ψβg2dxdy

+
(
F2e

−jβg2z + G2e
jβg2z

)∫∫
Ψβg2∆εr (x, y, z)Ψβg2dxdy

]
(12)

Now using Eqs. (2) & (5), in the above equation,
[

∂G2

∂z
ejβg2z − ∂F2

∂z
e−jβg2z

]
= jk12

(
F1e

−j(βg1+ 2π
Λ )z + G1e

j(βg1− 2π
Λ )z

)
+ jk22

(
F2e

−j(βg2+ 2π
Λ )z + G2e

j(βg2− 2π
Λ )z

)
(13)

By multiplying ejβg1z, e−jβg1z in Eq. (11), and ejβg2z, e−jβg2z in Eq. (13), and substituting Eqs. (1)
& (5) in Eq. (4), with some assumptions, we obtain the following set of differential equations:

dF1

dz
= −jk11G1 (z) ej2∆β1z − jk12G2(z)ej(∆β1+∆β2)z (13a)
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dF2

dz
= −jk12G1 (z) ej(∆β1+∆β2)z − jk22G2(z)ej2∆β2z (13b)

dG1

dz
= jk∗11F1 (z) e−j2∆β1z + jk∗12F2(z)e−j(∆β1+∆β2)z (13c)

dG2

dz
= jk∗12F1 (z) e−j(∆β1+∆β2)z + jk∗22F2(z)e−j2∆β2z (13d)

where ∆βi are the phase detuning from the Bragg condition:

∆βi = βgi −KB = βgi − π/Λ (14)

And kij are the coupling coefficients [16]:

k11 =
ωε0

4

∫∫
∆ε+1Ψ2

1dxdy (15a)

k12 = k21 =
ωε0

4

∫∫
∆ε+1Ψ1Ψ2dxdy (15b)

k22 =
ωε0

4

∫∫
∆ε+1Ψ2

2dxdy (15c)

The system of differential equations can be rewritten from Eqs. (13a)–(13d) as:

d

dz

(
F
G

)
= S(z)

(
F
G

)
(16)

where S(z) is the following complex 4× 4 matrix

S(z) =




0 0 −jk11e
j2∆β1z −jk12e

j(∆β1+∆β2)z

0 0 −jk12e
j(∆β1+∆β2)z −jk22e

j2∆β2z

jk∗11e
−j2∆β1z jk∗12e

−j(∆β1+∆β2)z 0 0
jk∗12e

−j(∆β1+∆β2)z jk∗22e
−j2∆β2z 0 0


 (17)

And F & G are vectors with components [F1(z), F2(z)] and [G1(z), G2(z)], respectively. i.e.,

F (z) =
(

F1(z)
F2(z)

)
and G (z) =

(
G1(z)
G2(z)

)

The solution of this system of equations which we are interested in is the matrix P (0, L) such that:
(

F (L)
G(L)

)
= P (0, L)

(
F (0)
G (0)

)
=

(
PFF PFG

PGF PGG

)(
F (0)
G(0)

)
(18)

where Pij are 2 × 2 matrices [21]. The solution matrix can be found by numerical integration of the
differential equation system (Eq. (16)), between 0 and L for four different initial conditions such that
each initial vector has one component equal to 1, and the others are zero (using Appendix A).

3. ANALYTICAL SOLUTION FOR THE COUPLED EQUATIONS

In the previous section, the coupled mode equations are derived by perturbation techniques. It is
apparent from the nature of coupled equations that an analytical solution does not seem feasible.
However, we would like to mention that the solution for single mode (even and odd) has been well
established, but not found for many modes which have explicit applications in grating based sensing
devices. Our main contribution in this paper is to present the above all four coupled equations in
analytical form for the case of non-uniform fiber Bragg gratings. Let’s proceed to the analytical solution
which can be written in the form (using Appendix B as in [17])

P (0, L) = exp(S1L) exp(S2L) (19)
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and S1, S2 are 4× 4 complex matrices, independent of z (using Appendix B):

S1 =




j∆β1 0 0 0
0 j∆β2 0 0
0 0 −j∆β1 0
0 0 0 −j∆β2


 (20)

S2 = S(0)− S1 =



−j∆β1 0 −jk11 −jk12

0 −j∆β2 −jk12 −jk22
jk∗11 jk∗12 j∆β1 0
jk∗12 jk∗22 0 j∆β2


 (21)

actually, Eq. (19) is of the form:

P (La, Lb) = exp(S1∆L) exp(S2∆L), ∆L = Lb − La (22)

But here we have taken P (0, L), that means ∆L = L− 0. So the length varies from 0 to L. With the
help of Appendix A, let p1(λ) be given by:

p1(λ) = det{S1 − λI} (23)
and p2(λ) = det{S2 − λI} (24)

Then from Eq. (23),

p1(λ) = det




(j∆β1 − λ) 0 0 0
0 (j∆β2 − λ) 0 0
0 0 (−j∆β1 − λ) 0
0 0 0 (−j∆β2 − λ)


 (25)

By evaluating the determinant defined above, the eigenvalues are given by:

p1(λ) = λ4 + λ2[(∆β1)2 + (∆β2)2] +
[
(∆β1)2(∆β2)2

]
(26)

Therefore, the polynomial coefficients are:

C0 =
[
(∆β1)2(∆β2)2

]
(27a)

C1 = 0 (27b)
C2 =

[
(∆β1)2 + (∆β2)2

]
(27c)

C3 = 0 (27d)
C4 = 1 (27e)

Now exp(S1L) can be written as:

exp(S1L) = f1(z)I + f2(z)S1 + f3(z)S2
1 + f4(z)S3

1 (28)

where,

C4
d4f

dz4
+ C3

d3f

dz3
+ C2

d2f

dz2 + C1
df

dz
+ C0f = 0 (29)

Here the above equation will be:

d4f

dz4
+ C2

d2f

dz2
+ C0f = 0

⇒ (D4 + C2D
2 + C0)f = 0

⇒ D2 = −(∆β1)2 or − (∆β2)2

⇒ D = ±j∆β1 or ± j∆β2 (30)

Then:

f(z) = a1 cos(∆β1z) + a2 sin(∆β1z) + a3 cos(∆β2z) + a4 sin(∆β2z) (31)

Using Appendix A, the conditions for f1(z) are:

a1 + a3 = 1, a2(∆β1) + a4(∆β2) = 0, −a1(∆β1)2 − a3(∆β2)2 = 0, −a2(∆β1)3 − a4(∆β2)3 = 0



28 Raghuwanshi and Panda

Solving these equations we get:

a2 = a4 = 0 (32a)

a3 =
(∆β1)

2

(∆β1)
2 − (∆β2)

2 (32b)

a1 =
− (∆β2)

2

(∆β1)
2 − (∆β2)

2 (32c)

Hence,

f1(z) = a1 cos(∆β1z) + a3 cos(∆β2z) (33)

Conditions for f2(z) are:

a1 + a3 = 0, a2(∆β1) + a4(∆β2) = 1, −a1(∆β1)2 − a3(∆β2)2 = 0, −a2(∆β1)3 − a4(∆β2)3 = 0

Solving these sets of equations we get:

a1 = a3 = 0 (34a)

a2 =
− (∆β2)

2

(∆β1)
[
(∆β1)

2 − (∆β2)
2
] (34b)

a4 =
(∆β1)

2

[
(∆β1)

2 (∆β2)− (∆β2)
3
] (34c)

Hence,

f2(z) = a2 sin(∆β1z) + a4 sin(∆β2z) (35)

Conditions for f3(z) are:

a1 + a3 = 0, a2(∆β1) + a4(∆β2) = 0, −a1(∆β1)2 − a3(∆β2)2 = 1, −a2(∆β1)3 − a4(∆β2)3 = 0

The solutions of these sets of equations are:

a2 = a4 = 0 (36a)

a3 =
1

(∆β1)
2 − (∆β2)

2 (36b)

a1 =
−1

(∆β1)
2 − (∆β2)

2 (36c)

Hence,

f3(z) = a1 cos(∆β1z) + a3 cos(∆β2z) (37)

Similarly, conditions for f4(z) are:

a1 + a3 = 0, a2(∆β1) + a4(∆β2) = 0, −a1(∆β1)2 − a3(∆β2)2 = 0, −a2(∆β1)3 − a4(∆β2)3 = 1

The solutions for these sets of equations are:

a1 = a3 = 0 (38a)

a2 =
−1

(∆β1)
[
(∆β1)

2 − (∆β2)
2
] (38b)

a4 =
1[

(∆β1)
2 (∆β2)− (∆β2)

3
] (38c)

Hence,

f4(z) = a2 sin(∆β1z) + a4 sin(∆β2z) (39)
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Let
f1(z) = A1, f2(z) = B1, f3(z) = C1, f4(z) = D1

Then from Eq. (28) we can get the solution of exp(S1L) as:

exp(S1L) =




Υ11 0 0 0
0 Υ22 0 0
0 0 Υ33 0
0 0 0 Υ44


 (40)

where

Υ11 = A1 + jB1(∆β1)− C1(∆β1)2 − jD1(∆β1)3 (40a)

Υ22 = A1 + jB1(∆β2)− C1(∆β2)2 − jD1(∆β2)3 (40b)

Υ33 = A1 − jB1(∆β1)− C1(∆β1)2 + jD1(∆β1)3 (40c)

Υ44 = A1 − jB1(∆β2)− C1(∆β2)2 + jD1(∆β2)3 (40d)

Again from Eq. (24),

p2(λ) = det




(−j∆β1 − λ) 0 −jk11 −jk12

0 (−j∆β2 − λ) −jk12 −jk22

jk∗11 jk∗12 j∆β1 − λ 0
jk∗12 jk∗22 0 j∆β2 − λ


 (41)

By evaluating the determinant defined above, the eigenvalues are given by:

p2(λ) = C4λ
4 + C3λ

3 + C2λ
2 + C1λ + C0 (42)

where

C0 =
[
(∆β1)

2 (∆β2)
2 − 2 |k12|2 ∆β1∆β2 − |k22|2 (∆β1)

2 − |k11|2 (∆β2)
2 + |k11|2 |k22|2

−k11k22k
∗
12k

∗
12 − k12k12k

∗
11k

∗
22 + |k12|4

]
(43a)

C1 = 0 (43b)

C2 = (∆β1)
2 + (∆β2)

2 − 2 |k12|2 − |k22|2 − |k11|2 (43c)
C3 = 0 (43d)
C4 = 1 (43e)

Now exp(S2L) can be written as:

exp(S2L) = f1(z)I + f2(z)S2 + f3(z)S2
2 + f4(z)S3

2 (44)

where,

C4
d4f

dz4
+ C3

d3f

dz3
+ C2

d2f

dz2 + C1
df

dz
+ C0f = 0 (45)

Here the above equation can be written as:

d4f

dz4
+ C2

d2f

dz2
+ C0f = 0 ⇒ (D4 + C2D

2 + C0)f = 0 ⇒ D = K, L, M, N (46)

where:

K =

√
−C2 +

√
C2

2 − 4C0

2
, L = −

√
−C2 +

√
C2

2 − 4C0

2
= −K (46a)

M =

√
−C2 −

√
C2

2 − 4C0

2
, N = −

√
−C2 −

√
C2

2 − 4C0

2
= −M (46b)
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Then,

f(z) = a1 exp(Kz) + a2 exp(Lz) + a3 exp(Mz) + a4 exp(Nz) (47)

Using Appendix A, the conditions for f1(z) are given by set of following equations

a1 + a2 + a3 + a4 = 1, Ka1 + La2 + Ma3 + Na4 = 0,

K2a1 + L2a2 + M2a3 + N2a4 = 0, and K3a1 + L3a2 + M3a3 + N3a4 = 0

Again by simplifying

⇒ a1 + a2 + a3 + a4 = 1,K(a1 − a2) + M(a3 − a4) = 0,

K2(a1 + a2) + M2(a3 + a4) = 0, and K3(a1 − a2) + M3(a3 − a4) = 0

The solutions for the above set of equations are:

a1 =
−M2

2 [K2 −M2]
= a2 (48a)

a3 =
K2

2 [K2 −M2]
= a4 (48b)

Hence,

f1(z) = a1 exp(Kz) + a2 exp(Lz) + a3 exp(Mz) + a4 exp(Nz) (49)

Conditions for f2(z) are:

a1 + a2 + a3 + a4 = 0,K(a1 − a2) + M(a3 − a4) = 1,

K2(a1 + a2) + M2(a3 + a4) = 0, and K3(a1 − a2) + M3(a3 − a4) = 0

Then the solutions for the above set of equations are:

a1 =
−M3

2K [K2M −M3]
= −a2 (50a)

a3 =
K2

2 [K2M −M3]
= −a4 (50b)

Hence,

f2(z) = a1 exp(Kz) + a2 exp(Lz) + a3 exp(Mz) + a4 exp(Nz) (51)

Conditions for f3(z) are:

a1 + a2 + a3 + a4 = 0, K(a1 − a2) + M(a3 − a4) = 0

K2(a1 + a2) + M2(a3 + a4) = 1, K3(a1 − a2) + M3(a3 − a4) = 0

The solutions are:

a1 =
−1

2 [M2 −K2]
= a2 (52a)

a3 =
1

2 [M2 −K2]
= a4 (52b)

Hence,

f3(z) = a1 exp(Kz) + a2 exp(Lz) + a3 exp(Mz) + a4 exp(Nz) (53)

Conditions for f4(z) are:

a1 + a2 + a3 + a4 = 0,K(a1 − a2) + M(a3 − a4) = 0,

K2(a1 + a2) + M2(a3 + a4) = 0 and K3(a1 − a2) + M3(a3 − a4) = 1.
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The solutions for the above set of equations are:

a1 =
−M

2K [M3 −K2M ]
= −a2 (54a)

a3 =
1

2 [M3 −K2M ]
= −a4 (54b)

Hence,
f4(z) = a1 exp(Kz) + a2 exp(Lz) + a3 exp(Mz) + a4 exp(Nz) (55)

Let
f1(z) = A2, f2(z) = B2, f3(z) = C2, f4(z) = D2

Then from Eq. (44) we can get the solution of exp(S2L) as:

exp(S2L) = A2I + B2S2 + C2S
2
2 + D2S

3
2 (56)

Now from Eq. (40) & (56), we can get the solution given in Eq. (16)

P (0, L) = exp(S1L) exp(S2L) =




Υ11 0 0 0
0 Υ22 0 0
0 0 Υ33 0
0 0 0 Υ44







Γ11 Γ12 Γ13 Γ14

Γ21 Γ22 Γ23 Γ24

Γ31 Γ32 Γ33 Γ34

Γ41 Γ42 Γ43 Γ44


 (57)

where Υ11, Υ22, Υ33,Υ44 are given by Eqs. (40a)–(40d) and

Γ11 = A2−jB2(∆β1)+C2[|k11|2+|k12|2−(∆β1)2]+D2

[
j(∆β1)

3+j|k12|2(∆β2−2∆β1)−j∆β1|k11|2
]
(57a)

Γ12 = C2 [k11k
∗
12+k12k

∗
22]+D2 [−jk12k

∗
22∆β1 − jk11k

∗
12∆β2] (57b)

Γ13 =−jB2k11+D2

[
jk11

{
(∆β1)2 − |k11|2 − 2|k12|2

}− jk∗22k12k12

]
(57c)

Γ14 =−jB2k12+C2 [k12 (∆β2 −∆β1)]+D2

[
(−jk12)

{
|k11|2+|k12|2 − (∆β1)

2
}

−jk22{k11k
∗
12+k12k

∗
22}+j∆β2 {k12(∆β2 −∆β1)}] (57d)

Γ21 = C2 [k12k
∗
11+k22k

∗
12]+D2 [−jk22k

∗
12∆β1 − jk12k

∗
11∆β2] (57e)

Γ22 = A2−jB2(∆β2)+C2

[
|k22|2+|k12|2−(∆β2)

2
]
+D2

[
j(∆β2)3+j|k12|2(∆β1−2∆β2)−j∆β2|k22|2

]
(57f)

Γ23 =−jB2k12+C2[k12(∆β1 −∆β2)]+D2

[
(−jk12)

{
|k22|2+|k12|2 − (∆β2)

2
}

−jk11 {k12k
∗
11+k22k

∗
12}+j∆β1 {k12 (∆β1 −∆β2)}

]
(57g)

Γ24 =−jB2k22+D2

[
jk22

{
(∆β2)2 − |k22|2 − 2|k12|2

}− jk∗11k12k12

]
(57h)

Γ31 = jB2k
∗
11+D2

[
jk∗11{−(∆β1)2+|k11|2+2|k12|2}+jk∗12k

∗
12k22

]
(57i)

Γ32 = jB2k
∗
12+C2 [k∗12(∆β2 −∆β1)]+D2

[
(jk∗12)

{|k11|2+|k12|2 − (∆β1)2
}

+jk∗22{k12k
∗
11+k22k

∗
12} − j∆β2 {k∗12(∆β2 −∆β1)}

]
(57j)

Γ33 =A2+jB2(∆β1)+C2

[
|k11|2+|k12|2−(∆β1)

2
]
+D2

[−j(∆β1)3+j|k12|2(2∆β1−∆β2)+j∆β1|k11|2
]
(57k)

Γ34 = C2 [k12k
∗
11+k22k

∗
12]+D2 [jk22k

∗
12∆β1+jk12k

∗
11∆β2] (57l)

Γ41 = jB2k
∗
12+C2 [k∗12(∆β1 −∆β2)]+D2

[
(jk∗12)

{|k22|2+|k12|2 − (∆β2)2
}

+jk∗11 {k11k
∗
12+k12k

∗
22} − j∆β1 {k∗12 (∆β1 −∆β2)}

]
(57m)

Γ42 = jB2k
∗
22+D2

[
jk∗22{−(∆β2)2+|k22|2+2|k12|2}+jk∗12k

∗
12k11

]
(57n)

Γ43 = C2 [k11k
∗
12+k12k

∗
22]+D2 [jk11k

∗
12∆β2+jk12k

∗
22∆β1] (57o)

Γ44 = A2+jB2(∆β2)+C2

[
|k22|2+|k12|2−(∆β2)

2
]
+D2

[−j(∆β2)3+j|k12|2(2∆β2−∆β1)+j∆β2|k22|2
]
(57p)
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4. RESULTS OF SIMULATION

There are several types of numerical methods (Matrix method being the easiest one) for the analysis
of non-uniform grating. The Matrix method has certain limitations, despite which it is widely applied
to the analysis of single-mode co-directional and contra-directional coupling cases. However, we have
tried to develop an analytical method based on a few theorems for similar constraints, but considering
two-mode coupling effect which is a more realistic and practical model in various applications of grating
assisted devices based on sensors application. To be specific about its benefit, our mathematical model
gives an analytical solution for multimode grating assisted structure which has many applications in
sensing devices such as the taper assisted coupler, tunable Bragg grating filters, optical add-drop filters
to mention a few. After analytical formulation and finding each element of transfer matrix, we can
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Figure 2. Output Power at the ports (a) F1(L), (b) F2(L), (c) G1(0), and (d) G2(0), respectively when
inputs are taken as F1(0) = F2(0) = G1(L) = G2(L) = 1 in the CMT formulation shown in this paper.
Expanded view of the output power at (e) G1(0), and (f) G2(0) is shown which is the output power due
to the effect of both self-coupling and cross-coupling. Reflectivity at (g) G1(0), and (h) G2(0).
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calculate the effect of cross coupling of the modes for the present case, provided that we have known
coupling coefficients. For the above relation between the two forward- and backward-propagating modes,
we can consider that the grating is excited from both the right and left side as in [16], and the spectral
response is obtained as shown in Fig. 2. By some calculation as in [16], the relation will be as follows:




F1(L)
F2(L)
G1(0)
G2(0)


 =

((
PFF − PFG · P−1

GG · PGF

)
2×2

(
PFG · P−1

GG

)
2×2

− (
P−1

GG · PGF

)
2×2

(
P−1

GG

)
2×2

)


F1(0)
F2(0)
G1(L)
G2(L)


 (58)

In the above simulation, neff was taken as 1.455, the Bragg wavelength taken as 1550 nm, k11 = k22 =
0.0012µm−1, and k12 = k21 = 0.002µm−1. Using these parameter values, the output power was
calculated for the two-mode FBG assumed in this paper. The proper derivation of self and cross-
coupling coefficients can be obtained which will give perfect shape of the reflected and transmitted
power. From the simulation result, it is also apparent that the spectral response improves in terms of
the bandwidth reduction. As the response at the Bragg wavelength has a narrower bandwidth, it can
be used as a filter with better tuning capacity. The quality factor is also increased as it has an inverse
relation with the bandwidth. By varying the mode numbers, the response can be changed as per the
application.

5. CONCLUSION

An analytical modeling method for analyzing non-uniform Bragg grating assisted devices based on
coupled waveguide structures has been described. The presented analytical method is based on local
normal mode analysis and is a powerful tool, which can be applied to a wide variety of problems
and structures. It does not use weak coupling approximation as the traditional coupled mode theory
does, thus this method is directly applicable to even strongly coupled waveguides. Also the shape of
the structure is taken directly into consideration through two-mode formulation, which is important
when the device is parameterized by its branch shape. In fact, our results are valid for more than one
mode coupling cases. For these cases, there are many variables in coupled mode formulation. Hence
for so many coupled variables, it is very tedious to derive an exact analytical expression for coupling
coefficients and finally the power at each mode. Moreover, our analytical formulation can be converted
into single-mode grating assisted coupler case as we remove the parameters associated with the second
mode from the formulation process. Here in our analysis, the reflected and transmitted powers at the
outputs differ from the ones in the single-mode FBG case, because here the effects of both self-coupling
and cross-coupling coefficients are present.

APPENDIX A.

Theorem:

Let A be a constant n× n matrix with characteristic polynomial
p(λ) = det(λI −A) = λn + cn−1λ

n−1 + . . . + c1λ + c0;
then

eAt = x1(t)I + x2(t)A + x3(t)A2 + . . . + xn(t)An−1,

where xk(t), 1 ≤ k ≤ n, are the solutions to the nth order scalar differential equation

x(n) + cn−1x
(n−1) + . . . + c1x

′ + c0x = 0,

satisfying the following initial conditions:
x1 (0) = 1
x′1(0) = 0

...
x

(n−1)
1 (0) = 0





x2(0) = 0
x′2(0) = 1

...
x

(n−1)
2 (0) = 0





. . .

x3 (0) = 0
x′3(0) = 0

...
x

(n−1)
3 (0) = 1
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APPENDIX B.

Theorem:

If S(z) is a matrix such that:
d

dz
S (z) = S1S (z)− S(z)S1 (B1)

Then the fundamental matrix Υ(z) for the system of equations
d

dz
x = S (z) x

is given by:

Υ(z) = exp(S1z) exp(S2z) (B2)

where
S2 = S(0)− S1

The fundamental matrix is such that if x(0) is the vector of initial conditions at z = 0, the system’s
solution vector at zf is:

x(zf ) = Υ(zf )x(0) (B3)

Proof:

Given that differential equation is:
d

dz
x = S (z) x

⇒ ln(x) =
∫

S(z)dz + lnC (where C is a constant)

⇒ x(z) = C exp
( ∫

S(z)dz

)
(B4)

Then

x(0) = C exp
( ∫

S(z)dz|z=0

)
⇒ C =

x(0)

exp
( ∫

S(z)dz|z=0

) (B5)

Now Eq. (B4) will be:
x(z) =

x(0)

exp
(∫

S(z)dz|z=0

) exp
(∫

S(z)dz

)
(B6)

From Eqs. (B2), (B3) & (B6), we can conclude that:

exp
(∫

S(z)dz

)

exp
(∫

S(z)dz

∣∣∣∣
z=0

) = exp(S(0)z) ⇒
∫

S(z)dz −
∫

S(z)dz

∣∣∣∣
z=0

= S(0)z (B7)

In our case, S(z) is a 4× 4 matrix. If we take an element to prove Eq. (B7), then it can be confirmed
about the theorem.

Let’s take an element from our S(z) matrix, i.e., S13 = −jk11e
j2∆β1z.

Putting it into Eq. (B7), we will get:

−jk11e
j2∆β1z

j2∆β1
+

jk11

j2∆β1
= −jk11z (B8)
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Proof:

LHS =
−jk11e

j2∆β1z

j2∆β1
+

jk11

j2∆β1
=

jk11(1− ej2∆β1z)
j2∆β1

=
jk11(1− 1− j2∆β1z − . . .)

j2∆β1
(By Series expansion of ex)

Neglecting higher terms, we will get:
LHS = −jk11z = RHS (Proved)

That is why here P (0, L) is taken as [exp(S1L) exp(S2L)] which is equal to exp[S(0)z].
In our case, matrix S(z) also obeys the relation given in Eq. (B1)

Proof:

S(z) =




0 0 −jk11e
j2∆β1z −jk12e

j(∆β1+∆β2)z

0 0 −jk12e
j(∆β1+∆β2)z −jk22e

j2∆β2z

jk∗11e
−j2∆β1z jk∗12e

−j(∆β1+∆β2)z 0 0
jk∗12e

−j(∆β1+∆β2)z jk∗22e
−j2∆β2z 0 0


 (B9)

S1 =




j∆β1 0 0 0
0 j∆β2 0 0
0 0 −j∆β1 0
0 0 0 −j∆β2


 (B10)

dS(z)/dz =




0 0 k112∆β1e
j2∆β1z k12 (∆β1+∆β2)

ej(∆β1+∆β2)z

0 0
k12 (∆β1+∆β2)

ej(∆β1+∆β2)z 2∆β2k22e
j2∆β2z

2∆β1k
∗
11e

−j2∆β1z k∗12 (∆β1+∆β2)
e−j(∆β1+∆β2)z 0 0

k∗12 (∆β1+∆β2)
e−j(∆β1+∆β2)z 2∆β2k

∗
22e

−j2∆β2z 0 0




(LHS)

S1S(z) =




0 0 k11∆β1e
j2∆β1z k12 (∆β1)

ej(∆β1+∆β2)z

0 0
k12 (∆β2)

ej(∆β1+∆β2)z ∆β2k22e
j2∆β2z

∆β1k
∗
11e

−j2∆β1z k∗12 (∆β1)
e−j(∆β1+∆β2)z 0 0

k∗12 (∆β2)
e−j(∆β1+∆β2)z ∆β2k

∗
22e

−j2∆β2z 0 0




S(z)S1 =




0 0 −k11∆β1e
j2∆β1z −k12 (∆β2)

ej(∆β1+∆β2)z

0 0
−k12 (∆β1)
ej(∆β1+∆β2)z −∆β2k22e

j2∆β2z

∆β1k
∗
11e

−j2∆β1z −k∗12 (∆β2)
e−j(∆β1+∆β2)z 0 0

−k∗12 (∆β1)
e−j(∆β1+∆β2)z −∆β2k

∗
22e

−j2∆β2z 0 0




Now S1S(z)− S(z)S1 =




0 0 k112∆β1e
j2∆β1z k12 (∆β1+∆β2)

ej(∆β1+∆β2)z

0 0
k12 (∆β1+∆β2)

ej(∆β1+∆β2)z 2∆β2k22e
j2∆β2z

2∆β1k
∗
11e

−j2∆β1z k∗12 (∆β1+∆β2)

e−j(∆β1+∆β2)z 0 0

k∗12 (∆β1+∆β2)

e−j(∆β1+∆β2)z 2∆β2k
∗
22e

−j2∆β2z 0 0




(RHS)
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From the above matrix we can prove Eq. (B1), as LHS & RHS are equal.
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