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Interaction of Electromagnetic Waves with a Moving Slab:
Fundamental Dyadic Method

Atieh Kashaninejad-Rad, Ali Abdolali*, and Mohammad M. Salary

Abstract—This paper concerns with the interaction of electromagnetic waves with a moving slab.
Consider a homogeneous isotropic slab moving uniformly in an arbitrary direction surrounded by an
isotropic medium (free space). In this paper a new simple and systematic method is proposed for
analyzing reflection and transmission of obliquely incident electromagnetic waves by a moving slab
based on the concept of propagators. In the previous works complex relations were arrived but using
this novel method those complexities will not appear thus the method may be extended to more complex
structures. In this method, first, electric and magnetic fields are decomposed into their tangential
and normal components then each constitutive dyadic is decomposed into a two-dimensional dyadic
in transverse plane and two two-dimensional vectors in this plane. Substituting these dyadics into
Maxwell’s equations gives a first order differential equation which contains fundamental dyadic of the
medium. From the solution of this equation, fields inside the slab may be expressed in terms of fields at
the front surface of the slab and the propagator matrix which is an exponential function of fundamental
dyadic. Using this method the up-going and down-going tangential electromagnetic fields may be
obtained at the same time. As a limiting case a slab with vanishing velocity is discussed using this
method, and reflection and transmission coefficients of this slab are derived, which ends in Fresnel’s
equations. At last, several typical examples are provided to exemplify the applicability of the proposed
method. Moreover, the results are compared with the method of Lorentz transformation. A good
agreement is observed between the results which verifies the validity of the proposed method.

1. INTRODUCTION

The problem of interaction of electromagnetic waves with moving media has long been a subject of
interest due to its wide application in various areas such as optics, radio sciences, and astrophysics
and numerous investigations have been carried out in this area [1–20]. Two methods are mainly used
to analyze scattering from such structure: Lorentz transformation [2] and transformed constitutive
relations [1]. Using these methods, we will arrive at complicated relations. In a moving slab it is not
possible to decompose the fields inside the slab into TE and TM polarizations. Moreover electric and
magnetic fields are coupled in the constitutive relations and thus dealing with such problem is difficult
using the common approaches. In this contribution we propose a new method based on the concept of
propagators, which is simple and more systematic. Moreover the application scope of the method may
be expanded to include more complex structures.

In [21, 22] the concept of propagators is introduced to obtain the fields inside a stationary
bianisotropic stratified medium excited by an arbitrary electromagnetic wave incidence. In [21] an
exact solution is given for the fields at the front surface of the structure and then an exponential
function propagates the field in the correct way from front surface to other positions. In [22] it is shown
that all the wave propagation properties of a bianisotropic slab may be expressed by a propagator which
is a function of thickness and electromagnetic parameters of slab. The propagator maps the tangential
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electric and magnetic fields at one position to the other positions so it is enough to obtain the fields at
the front surface of the structure.

In this paper, we use the same approach to analyze scattering of electromagnetic waves by a
homogeneous isotropic slab moving uniformly in an arbitrary direction surrounded by an isotropic
medium (free space). It is noteworthy that constitutive relations pertaining to an isotropic slab
transform into constitutive relations of a bi-isotropic slab if the slab is moving with a constant velocity,
so using the concept of propagators will ease the solution. At last, several examples are provided to
show the applicability of the proposed method. Moreover, the results are compared with method of
Lorentz transformation. A good agreement is observed between the results, which verifies the validity
of the proposed method.

2. THEORY

2.1. Dispersion Relation

The geometry of the problem is shown in Fig. 1. Consider a homogeneous isotropic slab moving
uniformly in an arbitrary direction surround by free space. A uniform plane electromagnetic wave is
incident at an angle θi from free space on the front surface of the slab.

By matching the phases of incident, reflected, and transmitted waves at the boundaries between
the two media, noting that the boundaries are at z = vzt and z = vzt − d when t > 0, one can obtain
the equalities for the wave vectors k and the frequencies ω of incident (i), reflected (r), and transmitted
(t) waves and the waves inside the slab (a, b):

kx
i (x + vxt) + ky

i (y + vyt) + kz
i (vzt)− ωit = kx

r (x + vxt) + ky
r (y + vyt) + kz

r (vzt)− ωrt

= kx
a,b(x + vxt) + ky

a,b(y + vyt) + kz
a,b(vzt)− ωa,bt

= kx
t (x + vxt) + ky

t (y + vyt) + kz
t (vzt)− ωtt (1)

As Equation (1) holds for all x, y, and t, it yields:

kx
r = kx

a,b = kx
t = kx

i (2)

ky
r = ky

a,b = ky
t = ky

i (3)

kz
rvz − ωr = kz

avz − ωa = kz
bvz − ωb = kz

t vz − ωt = kz
i vz − ωi (4)

As it is shown in Fig. 1, the plane of incidence is xz and so kx
i = k0 sin(θi), ky

i = 0 and kz
i = −k0 cos(θi),

in which k0 = ωi
c0

and c0 = 1/
√

ε0µ0. According to dispersion relation for the reflected wave k2
r = ω2

rε0µ0

Figure 1. Structure of the problem.
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and (4), we have:

kz
r = k0

(
2βz + cos(θi) + β2

z cos(θi)
)
/

(
1− β2

z

)
(5)

ωr = ωi

(
1 + 2βz cos(θi) + β2

z

)
/

(
1− β2

z

)
(6)

In which β = v
c0

.
Constitutive relations of a moving isotropic medium is similar to that of a stationary bianisotropic

medium. According to [2] these relations may be expressed as below:
~D = ε ¯̄A · ~E + ~Ω× ~H (7)
~B = µ ¯̄A · ~H − ~Ω× ~E (8)

in which:

¯̄A =
1− β2

1− n2β2

[
¯̄I − n2 − 1

1− β2
~β~β

]
(9)

~Ω =
n2 − 1

1− n2β2

~β

c0
(10)

In the above relations n =
√

εrµr is relative index of refraction of the stationary slab. Due to
simplification we can write:

~Ω× ≡ ¯̄Ω. (11)

¯̄Ω =
(

n2 − 1
1− n2β2

)
1
c2
0

[ 0 −vz vy

vz 0 −vx

−vy vx 0

]
(12)

Using (7), (8), (12), the dispersion relation of a moving medium may be obtained, as follows:

(
1−n2β2

)(
~ka,b · ~N

)2
+2

ωa,b

c0
β

(
n2−1

)(
~ka,b · ~N

)
+

(
1−β2

) (
~ka,b× ~N

)2
+

(
ωa,b

c0

)2(
β2−n2

)
= 0 (13)

In which ~N = ~v/v is the unit vector along the velocity vector. Using (4) and (13), we have:

kz
a = k0(βz(1 + βz cos(θi))− q)/(1− β2

z ) (14)
kz

b = k0 (βz(1 + βz cos(θi)) + q) /
(
1− β2

z

)
(15)

ωa = ωi (1 + βz cos(θi)− βzq) /
(
1− β2

z

)
(16)

ωb = ωi (1 + βz cos(θi) + βzq) /
(
1− β2

z

)
(17)

in which:

q =
(
1− β2

z

) (
γ2(n2 − 1)(1− βx sin(θi) + βz cos(θi))2 − sin2(θi)

)
+ (1 + βz cos (θi))

2 )1/2 (18)

γ = 1
/(

1− β2
)1/2 (19)

According to the dispersion relation for the transmitted wave k2
t = ω2

t ε0µ0 and (4) we have:
kz

t = −k0 cos(θi) (20)
ωt = ωi (21)

2.2. Extension of the Fundamental Dyadic Method for a Moving Slab

For the purpose of obtaining the fundamental equation, the fundamental dyadic ( ¯̄M) and the wave
propagator for a moving slab, we will use Maxwell equations and the constitutive relations in moving
media.

For a general bianisotropic medium, the constitutive parameters are given by:

~D = ε0

(
¯̄εr

~E + η0
¯̄ξr

~H
)

(22)

~B =
1
c0

(
¯̄ζr

~E + η0 ¯̄µr
~H

)
(23)
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η0 =
√

µ0

ε0
, c0 =

1√
ε0µ0

, k0 =
ω

c0
, ¯̄ξr = ¯̄χ− j ¯̄κ, ζr = ¯̄χ + j ¯̄κ (24)

By comparing above relations with (7)–(10) for a moving slab it can be deduced:
¯̄εr = εr

¯̄A (25)

¯̄ξr =
¯̄Ω√
ε0µ0

(26)

¯̄ζr = −
¯̄Ω√
ε0µ0

(27)

¯̄µr = µr
¯̄A (28)

Assuming time dependence convention as ejωt, Maxwell equations inside the moving slab can be written
as:

~E2 = ~E02e
−jkxx−jkyy−jkz

2z · ejω2t = ~E02e
−jkxx−jkyy · e−j(kz

2vz−ω2)t

z = vzt
(29)

∇× ~E2 = −∂ ~B2

∂t
(30)

~H2 = ~H02e
−jkxx−jkyy−jkz

2z · ejω2t = ~H02e
−jkxx−jkyy · e−j(kz

2vz−ω2)t (31)

−jkyE
z
2 −

dEy
2

dz
= j(kz

2vz − ω2)Bx
2 (32)

jkxEz
2 +

dEx
2

dz
= j(kz

2vz − ω2)B
y
2 (33)

−jkxEy
2 + jkyE

x
2 = j(kz

2vz − ω2)Bz
2 (34)

∇× ~H2 =
∂ ~D2

∂t
(35)

−jkyH
z
2 −

dHy
2

dz
= −j(kz

2vz − ω2)Dx
2 (36)

jkxHz
2 +

dHx
2

dz
= −j(kz

2vz − ω2)D
y
2 (37)

−jkxHy
2 + jkyH

x
2 = −j(kz

2vz − ω2)Dz
2 (38)

Then the fundamental equation for one-dimensional propagation becomes:

d

dz

[
~Exy(z)

η0J · ~Hxy(z)

]
= −j




kx 0
ky 0
0 −ky

0 kx


 ·

[
Ez(z)

η0Hz(z)

]
− j(kz

2vz − ω2)



−By

Bx

η0Dx

η0Dy


 (39)

Two dimensional rotation dyadic is defined as:

J =
[
0 −1
1 0

]
(40)

J · ~kt = J ·
[
kx

ky

]
=

[−ky

kx

]
(41)

J · ~Bxy =
[−By

Bx

]
(42)

It should be noted that kz
2 is identical to kz

a and is the propagation constant of up-going wave in the
slab. Thus by substituting kz

2vz − ω2 = kz
i vz − ωi according to Equation (4), we can write:

d

dz

[
~Exy(z)

η0J · ~Hxy(z)

]
= −j




kx 0
ky 0
0 −ky

0 kx


 ·

[
Ez(z)

η0Hz(z)

]
− j

(
kz

i

vz

c0
− ωi

c0

)


−c0By

c0Bx

η0c0Dx

η0c0Dy






Progress In Electromagnetics Research B, Vol. 60, 2014 5

= −j

[
~kt 0
0 J · ~kt

]
·
[

Ez(z)
η0Hz(z)

]
− j(kz

i βz − k0)
[
c0J · ~Bxy

η0c0
~Dxy

]
(43)

(kz
i βz − k0)

[
c0η0Dz(z)
c0Bz(z)

]
= −

[
0 ~kt

J · ~kt 0

] [
~Exy(z)

η0J · ~Hxy(z)

]
(44)

It is appropriate to decompose each constitutive dyadic as:

¯̄ε =

[
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

]
=

[
ε⊥⊥ ε⊥
εz εzz

]
(45)

The dyadic ε⊥⊥ is a two-dimensional dyadic in the x-y plane, and the vectors εz, and ε⊥ are two
two-dimensional vectors in this plane. εzz is a scalar.

[
c0J · ~Bxy

c0η0
~Dxy

]
=

[
J · ζ⊥⊥ −J · µ⊥⊥ · J

ε⊥⊥ −ξ⊥⊥

]
·
[

~Exy(z)
η0J · ~Hxy(z)

]
+

[
J · ζ⊥ J · µ⊥

ε⊥ ξ⊥

]
·
[

Ez(z)
η0Hz(z)

]
(46)

[
εzz ξzz

ζzz µzz

]
·
[

Ez(z)
η0Hz(z)

]
=

[
c0η0Dz(z)
c0Bz(z)

]
+

[−εz ξzz · J
−ζz µz · J

]
·
[

~Exy(z)
η0J · ~Hxy(z)

]
(47)

d

dz

[
~Exy(z)

η0J · ~Hxy(z)

]
=−j(kz

i βz − k0)
[
J · ζ⊥⊥ −J · µ⊥⊥ · J

ε⊥⊥ −ξ⊥⊥ · J
]
·
[

~Exy(z)
η0J · ~Hxy(z)

]

−j(kz
i βz − k0)




~kt
kz

i βz−k0
+ J · ζ⊥ J · µ⊥

ε⊥ J ·~kt
kz

i βz−k0
+ ξ⊥


 ·

[
Ez(z)

η0Hz(z)

]
(48)

[
εzz ξzz

ζzz µzz

]
·
[

Ez(z)
η0Hz(z)

]
=


 −εz

−~kt
kz

i βz−k0
+ ξzz · J

−J ·~kt
kz

i βz−k0
− ζz µz · J


 ·

[
~Exy(z)

η0J · ~Hxy(z)

]
(49)

d

dz

[
~Exy(z)

η0J · ~Hxy(z)

]
=−j(kz

i βz − k0)

{[
J · ζ⊥⊥ −J · µ⊥⊥ · J

ε⊥⊥ −ξ⊥⊥ · J
]

+

[
kt

kz
i βz−k0

+ J · ζ⊥ J · µ⊥
ε⊥ J ·kt

kz
i βz−k0

+ ξ⊥

]
·
[
εzz ξzz

ζzz µzz

]−1

·
[

−εz
−kt

kz
i βz−k0

+ ξzz · J
−J ·kt

kz
i βz−k0

+−ζz µz · J

]}
·
[

~Exy(z)
η0J · ~Hxy(z)

]
(50)

d

dz

[
~Exy(z)

η0J · ~Hxy(z)

]
=−j(kz

i βz − k0) ¯̄M
[

~Exy(z)
η0J · ~Hxy(z)

]
(51)

[
~Exy(z)

η0J · ~Hxy(z)

]
= ¯̄P ·

[
~Exy(z = vzt)

η0J · ~Hxy(z = vzt)

]
(52)

¯̄P = exp
(
−j(kz

i βz − k0)z ¯̄M
)

(53)

In Equations (51)–(53), the fundamental equation, the fundamental dyadic, ¯̄M , and the wave
propagator, ¯̄P , are obtained.

2.3. Obtaining the EM Waves on the Front Surface of the Moving Slab (z = vzt)

To obtain
[

~Exy(z = vzt)
η0J · ~Hxy(z = vzt)

]
(fields on the front surface of the moving slab) we employ boundary

conditions of a moving slab. The boundaries are at z = vzt and z = vzt − d when t > 0 (Fig. 1). A
uniform plane electromagnetic wave is incident at an angle θi from free space on the front surface of the
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slab. The plane of incidence is xz. By splitting incident wave into two orthogonal polarizations TE y,
TM y we have:

~Einc (r̄) =
[
−ETE

inc ŷ + ETM
inc

(
k̂inc × ŷ

)]
e−jk0k̂inc ·r̄ = ~Eince

−jk0k̂inc ·r̄ (54)

~H inc (r̄) =
1
η0

[
−ETM

inc ŷ − ETE
inc

(
k̂inc × ŷ

)]
e−jk0k̂inc ·r̄ = ~Hince

−jk0k̂inc ·r̄ (55)

~Binc = µ0
~H inc , ~Dinc = ε0

~Einc (56)

k̂inc · r̄ = x sin θi − z cos θi (57)∣∣∣~kinc
∣∣∣ = k0 (58)

k̂inc × ŷ = ẑ sin θi + x̂ cos θi (59)

From the boundary condition of tangential components and phase matching, it can be concluded that
kx = k0 sin θi and ky = 0. By taking the Fourier transform with respect to x, we have:

~Einc (kx, z) = ~Einc · ejk0 cos θi · δ(kx − k0 sin θi) (60)
~H inc (kx, z) = ~Hinc · ejk0 cos θi · δ (kx − k0 sin θi) (61)

The reflected wave may be expressed as:

~Er (r̄) =
[
−ETE

r ŷ + ETM
r

(
k̂r × ŷ

)]
.e−j~kr·r̄ = ~Er · e−j~kr·r̄ (62)

~Hr (r̄) =
1
η0

[
−ETE

r

(
k̂r × ŷ

)
− ETM

r ŷ
]
· e−j~kr·r̄ = ~Hr · e−j~kr·r̄ (63)

~Br = µ0
~Hr, ~Dr = ε0

~Er (64)

in which:
~kr · r̄ = xk0 sin θi + zkz

r (65)∣∣∣~kr
∣∣∣ =

ωr

c0
(66)

k̂r × ŷ = ẑ
k0

ωr/c0
sin θi − x̂

kz
r

ωr/c0
(67)

Notice that the fields inside the moving isotropic slab may be obtained from (52).
The moving boundary conditions require the continuity of ẑ× ~Etotal − (ẑ ·~v) ~Btotal and ẑ× ~Htotal +

(ẑ · ~v) ~Dtotal at the both boundaries. Total fields in region 1 are obtained as the sum of incident and
reflected waves as ~Etotal = ~Ei + ~Er and ~Htotal = ~H i + ~Hr. By applying cross product, we have:

ẑ × ~E − (ẑ · ~v) ~B = (−Ey − vzBx)x̂ + (Ex − vzBy)ŷ − vzBz ẑ (68)

ẑ × ~H + (ẑ · ~v) ~D = (−Hy + vzDx)x̂ + (Hx + vzDy)ŷ + vzDz ẑ (69)

Boundary conditions for tangential components require the continuity of
[
(−Ey − vzBx)x̂
(Ex − vzBy)ŷ

]
and

[
(−Hy + vzDx)x̂
(Hx + vzDy)ŷ

]
on both boundaries. On the other hand, according to the form of decomposition of

the fields in the fundamental equation, the fundamental dyadic and the wave propagator it is appropriate

to arrange the fields in the form of
[

~Exy(z)
η0J · ~Hxy(z)

]
. Thus we express the first boundary condition in

the form of
[

(Ex − vzBy)ŷ
−1× (−Ey − vzBx)x̂

]
and the second one in the form of

[
η0(−Hy + vzDx)x̂
η0(Hx + vzDy)ŷ

]
. Then the
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moving boundary conditions at z = vzt may be expressed as:



(Ex − vzBy)
−1× (−Ey − vzBx)

η0(−Hy + vzDx)
η0(Hx + vzDy)




(1)

z=vzt

=




(Ex − vzBy)
−1× (−Ey − vzBx)

η0(−Hy + vzDx)
η0(Hx + vzDy)




(2)

z=vzt

(70)

By substituting relations (54)–(67), the left-hand side of (70) can be written as follows:



(Ex − vzBy)
−1× (−Ey − vzBx)

η0(−Hy + vzDx)
η0(Hx + vzDy)




(1)

z=vzt

=




(
cos θiE

TM
inc + vz

µ0

η0
ETM

inc

)
ejk0vzt·cos θi +

(
− kz

r
ωr/c0

ETM
r + vz

µ0

η0
ETM

r

)
e−jvzt·kz

r

(
−ETE

inc − vz
µ0

η0
cos θiE

TE
inc

)
ejk0vzt·cos θi +

(
−ETE

r + vz
µ0

η0

kz
r

ωr/c0
ETE

r

)
e−jvzt·kz

r

(
ETM

inc + vzη0ε0 cos θiE
TM
inc

)
ejk0vzt·cos θi +

(
ETM

r − vzη0ε0
kz

r
ωr/c0

ETM
r

)
e−jvzt·kz

r

(
− cos θiE

TE
inc − vzη0ε0E

TE
inc

)
ejk0vzt·cos θi +

(
kz

r
ωr/c0

ETE
r − vzη0ε0E

TE
r

)
e−jvzt·kz

r




=





 0

(
cos θi + vz

µ0

η0

)
ejk0vzt·cos θi

(
−1− vz

µ0

η0
cos θi

)
ejk0vzt·cos θi 0




[
0 (1 + η0vzε0 cos θi) ejk0vzt·cos θi

(− cos θi − η0vzε0) ejk0vzt·cos θi 0

]



·
[
ETE

inc

ETM
inc

]

+





 0

(
− kz

r
ωr/c0

+ vz
µ0

η0

)
e−jvzt.kz

r

(
−1 + vz

µ0

η0

kz
r

ωr/c0

)
e−jvzt.kz

r 0





 0

(
1− η0vzε0

kz
r

ωr/c0

)
e−jvzt·kz

r

(
kz

r
ωr/c0

− η0vzε0

)
e−jvzt·kz

r 0






·
[
ETE

r

ETM
r

]

=
[
Q
U

]
·
[
ETE

inc

ETM
inc

]
+

[
V
W

]
·
[
ETE

r

ETM
r

]
(71)

And for the right-hand side of (70) we have:



(Ex − vzBy)
−1× (−Ey − vzBx)

η0(−Hy + vzDx)
η0(Hx + vzDy)




(2)

z=vzt

=




Ex

Ey

−η0Hy

η0Hx


 +

vz

c0



−c0By

c0Bx

c0η0Dx

c0η0Dy


 =

[
~Exy(z)

η0J · ~Hxy(z)

]
+

vz

c0

[
c0J · ~Bxy

η0c0
~Dxy

]

=

(
¯̄I4 +

vz

c0

{[
J · ζ⊥⊥ −J · µ⊥⊥ · J

ε⊥⊥ −ξ⊥⊥ · J
]

+
[
J · ζ⊥ J · µ⊥

ε⊥ ξ⊥

]
·
[
εzz ξzz

ζzz µzz

]−1

·

 −εz

−~kt
kz

i βz−k0
+ ξzz · J

−J ·~kt
kz

i βz−k0
+−ζz µz · J









 ·

[
~Exy(z)

η0J · ~Hxy(z)

]

z=vzt

= ¯̄A3 ·
[

~Exy(z)
η0J · ~Hxy(z)

]

z=vzt

(72)

[
~Exy(z)

η0J · ~Hxy(z)

](2)

z=vzt

= ¯̄A−1
3 ·

([
Q
U

]
·
[
ETE

inc

ETM
inc

]
+

[
V
W

]
·
[
ETE

r

ETM
r

])
(73)
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Now is the time to apply boundary conditions at z = vzt− d:



(Ex − vzBy)
−1× (−Ey − vzBx)

η0(−Hy + vzDx)
η0(Hx + vzDy)




(2)

z=vzt−d

=




(Ex − vzBy)
−1× (−Ey − vzBx)

η0(−Hy + vzDx)
η0(Hx + vzDy)




(3)

z=vzt−d

(74)

The left-hand side of (73) can be written as:

¯̄A3 ·
[

~Exy(z)
η0J · ~Hxy(z)

](2)

z=vzt−d

= ¯̄A3 · ¯̄P (z = vzt− d) ·
[

~Exy(z)
η0J · ~Hxy(z)

](2)

z=vzt

= ¯̄A3 · ¯̄P (z = vzt− d) · ¯̄A−1
3 ·

([
Q
U

]
·
[
ETE

inc

ETM
inc

]
+

[
V
W

]
·
[
ETE

r

ETM
r

])
(75)

And for the right-hand side of (74) we have:




 0

(
− kz

t
ωt/c0

+ vz
µ0

η0

)
e−j(vzt−d)kz

t

(
−1 + vz

µ0

η0

kz
t

ωt/c0

)
e−j(vzt−d)kz

t 0





 0

(
1− η0vzε0

kz
t

ωt/c0

)
e−j(vzt−d)kz

t(
kz

t
ωt/c0

− η0vzε0

)
e−j(vzt−d)kz

t 0







.
[
ETE

t

ETM
t

]
=

[
L
N

]
·
[
ETE

t

ETM
t

]
(76)

By combination of (75) and (76), we have:
(
− ¯̄A3 · ¯̄P (z = vzt− d) · ¯̄A−1

3

)
·
[
V
W

]
·
[
ETE

r

ETM
r

]
+

[
L
N

]
·
[
ETE

t

ETM
t

]
=

(
¯̄A3 · ¯̄P (z=vzt− d)· ¯̄A−1

3

)[
Q
U

]
·
[
ETE

inc

ETM
inc

]
(77)

(
− ¯̄A3 · ¯̄P (z = vzt− d) · ¯̄A−1

3

)
·
[

V
W

]
=

[
V ′
W ′

]
(78)

(
− ¯̄A3 · ¯̄P (z = vzt− d) · ¯̄A−1

3

)
·
[
Q
U

]
=

[
Q′
U ′

]
(79)

[
V ′ L
W ′ N

]
·




ETE
r

ETM
r

ETE
t

ETM
t


 =

[
Q′
U ′

]
·
[
ETE

inc

ETM
inc

]
(80)

In (80) ETE
r , ETM

r , ETE
t , ETM

t are unknowns of the problem from which we can obtain reflection and
transmission coefficients. For this purpose, we have:

[
ER

ET

]
=

[
V ′ L
W ′ N

]−1

·
[
Q′
U ′

]
·
[
ETE

inc

ETM
inc

]
=

[
S
Z

]
·
[
ETE

inc

ETM
inc

]
(81)

ER=
[
ETE

r

ETM
r

]
= S ·

[
ETE

inc

ETM
inc

]
(82)

ET =
[
ETE

t

ETM
t

]
= Z ·

[
ETE

inc

ETM
inc

]
(83)

R=
|Er|
|Einc |=

√
(Ex

r )2 + (Ey
r )2 + (Ez

r )2√
(Ex

inc)
2+(Ey

inc)
2+(Ez

inc)
2
=

√((
kz

r
ωr/c0

)2
+

(
k0

ωr/c0
sin θi

)2
)
·(ETM

r )2+(ETE
r )2

√(
ETM

inc

)2+
(
ETE

inc

)2
(84)

T =

∣∣Et
∣∣

|Einc | =

√
(Ex

t )2 + (Ey
t )2 + (Ez

t )2√
(Ex

inc)2 + (Ey
inc)2 + (Ez

inc)2
=

√
(ETM

t )2 + (ETE
t )2√

(ETM
inc )2 + (ETE

inc )2
(85)
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Moreover, the fields inside the slab can be obtained from (52) and (73).
The above said was for a moving slab in the free space. For a moving slab in an arbitrary isotropic

homogeneous medium with parameters εr1, µr1, the following points should be considered:
1. In all the relations c1, k1 should be used instead of c0, k0. For example: β = v

c1
, ~Ω = n2−1

1−n2β2

~β
c1

,
kx

i = k1 sin(θi) and kz
i = −k1 cos(θi). In which k1 = ωi

c1
and c1 = 1/

√
ε1µ1. Using dispersion relations

for the reflected and transmitted waves k2
r = ω2

rε1µ1 and k2
t = ω2

t ε1µ1 and according to (4) we have:
kz

r = k1(2βz + cos(θi) + β2
z cos(θi))/(1− β2

z ) (86)
kz

t = −k1 cos(θi) (87)

It is noteworthy that the relations in fundamental dyadic method turn into
[

~Exy(z)
η1J · ~Hxy(z)

]
and

[
c1J · ~Bxy

η1c1
~Dxy

]
.

2. In relations (9)–(10) we have: n =
√

(εr2µr2)/(εr1µr1). In which εr2, µr2 are electromagnetic
parameters of the slab in the stationary case.

3. Constitutive relations of a stationary bianisotropic slab in this medium are:

~D = ε0εr1

(
¯̄εr2

εr1

~E + η0ηr1

¯̄ξr2

εr1ηr1

~H

)
(88)

~B =
1

c0cr1

(
cr1

¯̄ζr2
~E + η0ηr1

cr1 ¯̄µr

ηr1

~H

)
(89)

ηr1 =
√

µr1

εr1
, cr1 =

1√
εr1µr1

, k1 =
ω

c1
(90)

And thus:

~D = ε1

(
¯̄εr2

εr1

−→
E + η1

¯̄ξr2

εr1ηr1

−→
H

)
(91)

~B =
1
c1

(
cr1

¯̄ζr2
~E + η1

cr1 ¯̄µr

ηr1

~H

)
(92)

By comparing these relations with the relation of a moving slab (7)–(10), we have:

¯̄εr =
εr2

εr1

¯̄A (93)

¯̄ξr =
¯̄Ω√
ε0µ0

· 1√
εr1µr1

(94)

¯̄ζr = −
¯̄Ω√
ε0µ0

· 1√
εr1µr1

(95)

¯̄µr =
µr2

µr1

¯̄A (96)

3. DISCUSSION

Here, in order to verify the validity of our method, the limiting case of a slab with vanishing velocity, is
considered and a comparison is made between the obtained expressions for reflection and transmission
coefficients with Fresnel’s equations [23].

In this case we have:
vx = vy = vz = 0 (97)

¯̄A = =
1− β2

1− n2β2

[
¯̄I − n2 − 1

1− β2
~β~β

]
= ¯̄I (98)
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~Ω =
n2 − 1

1− n2β2

~β

c0
= 0 (99)

Thus, the constitutive relations of (7) and (8) reduce to:

~D = ε ~E (100)
~B = µ ~H (101)

According to (53) and (72), we have:
¯̄A3 = ¯̄I4 (102)
¯̄P = exp

(
jk0z

¯̄M
)

(103)

¯̄M may be obtained as [22] in Section 7.1:

¯̄M =

(
0 −µI2 + 1

εk2
0
ktkt

−εI2 − 1
µk2

0
J · ktkt · J 0

)
(104)

For this case, the eigenvalues are given by:

λ2
+ = λ2

− = λ2 = εµ− k2
t /k2

0 (105)

and ¯̄P may be derived as [22] in Section 7.1:

¯̄P = exp(jk0d
¯̄M) = I4 cos(k0dλ) +

j

λ
M sin(k0dλ) (106)

The propagator may be rewritten in the {ê‖, ê⊥} system as:

¯̄P = exp
(
jk0d

¯̄M
)

=




(
ê‖ê‖ + ê⊥ê⊥

)
cos(k0dλ) −j

(
ê‖ê‖ λ

ε2
+ ê⊥ê⊥ µ2

λ

)
sin(k0dλ)

−j
(
ê‖ê‖ ε2

λ + ê⊥ê⊥ λ
µ2

)
sin(k0dλ)

(
ê‖ê‖ + ê⊥ê⊥

)
cos(k0dλ)


 (107)

where λ2 = ε2µ2 − k2
t /k2

0. Calculations show that principal of blocks of the scattering dyadic are:



2T11 = ê‖ê‖
(
2 cos(k0dλ) + j

(
λ

ε2 cos θi
+ ε2 cos θi

λ

)
sin(k0dλ)

)

+ê⊥ê⊥
(
2 cos(k0dλ) + j

(
λ

µ2 cos θi
+ µ2 cos θi

λ

)
sin(k0dλ)

)

2T22 = ê‖ê‖
(
2 cos(k0dλ)− j

(
λ

ε2 cos θi
+ ε2 cos θi

λ

)
sin(k0dλ)

)

+ê⊥ê⊥
(
2 cos(k0dλ)− j

(
λ

µ2 cos θi
+ µ2 cos θi

λ

)
sin(k0dλ)

)
(108)

and {
2T12 = j

(
ê‖ê‖

(
− λ

ε2 cos θi
+ ε2 cos θi

λ

)
+ ê⊥ê⊥

(
λ

µ2 cos θi
− µ2 cos θi

λ

))
sin(k0dλ)

T21 = −T12

(109)

Consequently, the reflection and transmission dyadics are:
{

r = ê‖ê‖r‖‖ + ê⊥ê⊥r⊥⊥
t = ê‖ê‖t‖‖ + ê⊥ê⊥t⊥⊥

(110)

where 



r‖‖ =
j
(
− λ

ε2 cos θi
+ ε2 cos θi

λ

)
sin(k0dλ)

2 cos(k0dλ)− j
(

λ
ε2 cos θi

+ ε2 cos θi
λ

)
sin(k0dλ)

= r1‖‖
1− exp(2jk0λd)

1− r2
1‖‖ exp(2jk0λd)

r⊥⊥ =
j
(

λ
µ2 cos θi

− µ2 cos θi

λ

)
sin(k0dλ)

2 cos(k0dλ)− j
(

λ
µ2 cos θi

+ µ2 cos θi
λ

)
sin(k0dλ)

= r1⊥⊥
1− exp(2jk0λd)

1− r2
1⊥⊥ exp(2jk0λd)

(111)



Progress In Electromagnetics Research B, Vol. 60, 2014 11





t‖‖ =
2

2 cos(k0dλ)− j
(

λ
ε2 cos θi

+ ε2 cos θi
λ

)
sin(k0dλ)

=

(
1− r2

1‖‖
)

exp(2jk0λd)

1− r2
1‖‖ exp(2jk0λd)

t⊥⊥ =
2

2 cos(k0dλ)− j
(

λ
µ2 cos θi

+ µ2 cos θi

λ

)
sin(k0dλ)

=

(
1− r2

1⊥⊥
)
exp(2jk0λd)

1− r2
1⊥⊥ exp(2jk0λd)

(112)

and 



r1‖‖ =
1
2

(
λ

ε2 cos θi
− ε2 cos θi

λ

)

1 + 1
2

(
λ

ε2 cos θi
+ ε2 cos θi

λ

) =
λ− ε2 cos θi

λ + ε2 cos θi

r1⊥⊥ =
1
2

(
µ2 cos θi

λ − λ
µ2 cos θi

)

1 + 1
2

(
µ2 cos θi

λ + λ
µ2 cos θi

) =
µ2 cos θi − λ

µ2 cos θi + λ

(113)

Equations (112) are recognized as Fresnel’s equations for reflection and transmission coefficients of a
static slab [23].

4. NUMERICAL RESULTS

In this section, we illustrate the analysis presented in the previous sections through some numerical
examples. The results of the presented method are compared by the method of Lorentz
transformation [2] for TE waves. A great agreement is observed between the results, which confirms
the validity of our method. For TM waves similar results are obtained.

The programming task can be easily done in a language that supports matrix manipulations, e.g.,
MATLAB.

4.1. Example 1

Consider a dielectric slab with electromagnetic parameters εr2 = 2, µr2 = 1 and a thickness of d = 10 cm
moving with constant velocity of 0.01c0(̂i+ĵ+k̂) in free space. A TE wave with ωi = 100 MHz is incident
on the front surface of the slab with angle of θi. Fig. 2 presents the reflectance versus angle of incidence
obtained by Fundamental method and Lorentz transformation. As it can be seen great agreement is
observed between the results.

4.2. Example 2

Consider a slab with electromagnetic parameters εr2 = 2, µr2 = 3 and a thickness of d = 10 cm
moving with constant velocity of c0(0.02̂i + 0.03ĵ + 0.01k̂) in free space illuminated by a TE wave with
ωi = 100MHz and the angle of θi. Fig. 3 presents the reflectance versus angle of incidence obtained by
Fundamental method and Lorentz transformation. A great agreement is observed between the results.

4.3. Example 3

Consider a slab with electromagnetic parameters εr2 = 2, µr2 = 3 and a thickness of d = 10 cm
moving with constant velocity of c0(0.2̂i + 0.1ĵ + 0.5k̂) in a medium with electromagnetic parameters
εr2 = 3, µr2 = 5 excited by a TE wave with ωi = 100 MHz and the angle of θi. Fig. 4 presents the
reflectance versus angle of incidence obtained by Fundamental method and Lorentz transformation.
A great agreement is observed between the results which verifies that the method holds true for the
velocities near to the speed of light.
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Figure 2. Reflectance of a dielectric slab with
electromagnetic parameters εr2 = 2, µr2 = 1
and a thickness of d = 10 cm moving with
constant velocity of 0.01c0(̂i + ĵ + k̂) in free space
illuminated by a TE wave with ωi = 100MHz
versus the angle of incidence.
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Figure 3. Reflectance of a slab with electromag-
netic parameters εr2 = 2, µr2 = 3 and a thickness
of d = 10 cm moving with constant velocity of
c0(0.02̂i + 0.03ĵ + 0.01k̂) in free space illuminated
by a TE wave with ωi = 100 MHz versus the angle
of incidence.
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Figure 4. Reflectance of a slab with electromagnetic parameters εr2 = 2, µr2 = 3 and a thickness of
d = 10 cm moving with constant velocity of c0(0.2̂i + 0.1ĵ + 0.5k̂) in a medium with electromagnetic
parameters εr2 = 3, µr2 = 5 excited by a TE wave with ωi = 100 MHz versus the angle of incidence.

5. CONCLUSION

In this paper we have presented a new method for analyzing reflection and transmission of obliquely
incident electromagnetic waves by a moving slab based on the concept of propagators. The propagators
map the total field at any point inside the slab, to the fields on the left-hand side boundary of the slab.
This method is simple and systematic and easily gives the reflection and the transmission dyadics of the
slab. Moreover the method can be employed to analyze more complicated structures. By considering
the limiting case of a slab with vanishing velocity, we have arrived at well-known Fresnel’s equations for
reflection and transmission coefficients. Furthermore, several numerical examples show the applicability
of the analysis and comparison of the results with the method of Lorentz transformation verifies the
validity of the method.
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