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Linear Momentum Density of a General Lorentz-Gauss
Vortex Beam in Free Space

Yiqing Xu and Guoquan Zhou*

Abstract—Based on the Collins integral, an analytical expression of a general Lorentz-Gauss vortex
beam propagating in free space is derived, which allows one to calculate the linear momentum density
of a general Lorentz-Gauss vortex beam in free space. The linear momentum density distribution of
a general Lorentz-Gauss vortex beam propagating in free space is graphically demonstrated. The x-
and y-components of the linear momentum density are composed of two lobes with the equivalent
area and the opposite sign. Therefore, the overall x- and y-components of the linear momentum in
an arbitrary reference plane are equal to zero. The longitudinal component of the linear momentum
density is proportional to the intensity distribution. The influences of the Gaussian waist, the width
parameters of the Lorentzian part, the axial propagation distance, and the topological charge on the
linear momentum density distribution of a general Lorentz-Gauss vortex beam in free space are examined
in detail.

1. INTRODUCTION

Due to the highly angular spread, Lorentz-Gauss beams have been introduced to describe the
radiation emitted by a single mode diode laser [1, 2]. The symmetry properties, the focal shift, the
beam propagation factor, and the Wigner distribution function of Lorentz-Gauss beams have been
investigated, respectively [3–7]. Propagation of Lorentz-Gauss beams in uniaxial crystals orthogonal
to the optical axis, through an apertured fractional Fourier transform optical system, in a turbulent
atmosphere, and in Kerr medium has also been examined [8–11]. The virtual source for generation
of the rotationally symmetric Lorentz-Gauss beam has been identified [12]. The Lorentz-Gauss beam
can be used to trap the particles with a refractive index larger than that of the ambient [13]. Also,
Lorentz-Gauss beams have been extended to the partially coherent case [14–16].

If the radiation emitted by a single mode diode laser goes through a spiral phase plate, it becomes
a Lorentz-Gauss vortex beam [17]. The wave-front phase of the Lorentz-Gauss vortex beam can be
modulated by the spiral phase plate. The advantage of a Lorentz-Gauss vortex beam over the Loretnz-
Gauss beam is that it has a twisted phase front and zero intensity in the centre region of the beam profile.
The fractional Fourier transform of a Lorentz-Gauss vortex beam has been investigated [18]. Focusing
properties of the linearly polarized Lorentz-Gauss beam with one on-axis optical vortex has been studied
by means of the vector diffraction theory [19]. Nonparaxial propagation of Lorentz-Gauss vortex beams
has been demonstrated in uniaxial crystals orthogonal to the optical axis [20]. The propagation
properties of a Lorentz-Gauss vortex beam has been also investigated in a turbulent atmosphere
[21]. The linear momentum density is one of the most significant mechanical parameters [22, 23]. A
couple of simple quasistatic electromagnetic systems in which the density of electromagnetic linear
momentum can be easily computed have been discussed in Ref. [24]. The linear momentum of the
electromagnetic field has been examined in magnetic media, and an interesting result of the analysis

Received 21 February 2014, Accepted 27 April 2014, Scheduled 30 April 2014
* Corresponding author: Guoquan Zhou (zhouguoquan178@sohu.com).
The authors are with the School of Sciences, Zhejiang A & F University, Lin’an 311300, China.



258 Xu and Zhou

is the identification of an “intrinsic” mechanical momentum density analogous to the electromagnetic
momentum density [25]. The acquisition of the linear momentum density distribution contributes to
the understanding of the vortex dynamics characteristics. As to a practical vortex especially having
complex topological structure, it is difficult to accurately measure the spatial distribution of the linear
momentum through the experimental method. In the remainder of this paper, therefore, we depict the
linear momentum density distribution of a general Lorentz-Gauss vortex beam in free space by means
of numerical calculations.

2. LINEAR MOMENTUM DENSITY OF A GENERAL LORENTZ-GAUSS VORTEX
BEAM IN FREE SPACE

In the Cartesian coordinate system, the z-axis is taken to be the propagation axis. The general Lorentz-
Gauss vortex beam in the source plane z = 0 is described by
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where w0 is the waist of the Gaussian part. w0x and w0y are the width parameters of the Lorentzian
part in the x- and y-directions, respectively. M is the topological charge and is assumed to be a positive
integer. The Lorentz distribution can be expanded into the linear superposition of Hermite-Gaussian
functions [26]:

1
(w2

0x + x2
0)(w

2
0y + y2

0)
=

π

2w2
0xw2

0y

N∑

m=0

N∑

n=0

σ2mσ2nH2m

(
x0

w0x

)
H2n

(
y0

w0y

)
exp

(
− x2

0

2w2
0x

− y2
0

2w2
0y

)
, (2)

where N is the term number of the expansion. H2m and H2n are the 2m-th and 2n-th order Hermite
polynomials, respectively. The weight coefficients σ2m and σ2n are given by [26]
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where erfc(.) is the complementary error function. With increasing the even number 2m, σ2m

dramatically decreases, which is shown in Table 1 [26].
Using the following expansion [27]:
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the Lorentz-Gauss vortex beam in the source plane can be rewritten as follows:
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with ux and uy being given by
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where j = x or y. The propagation of a Lorentz-Gauss vortex beam in free space is described by the
Collins integral formula:

U(x, y, z) =
exp(ikz)

iλz

∫ ∞

−∞

∫ ∞

−∞
U(x0, y0, 0) exp

{
ik

2z

[
(x2

0 + y2
0)− 2(xx0+yy0)+(x2+y2)

]}
dx0dy0, (7)



Progress In Electromagnetics Research B, Vol. 59, 2014 259

Table 1. Values of the weight coefficient σ2m.

m σ2m

0 0.7399

1 0.9298×10−2

2 0.5382×10−2

3 0.1112×10−3

4 0.1356×10−4

5 0.3008×10−6

6 0.1769×10−7

7 0.3773×10−9

8 0.1415×10−10

9 0.2782×10−12

10 0.7633×10−14

11 0.1361×10−15

12 0.2958×10−17

13 0.4764×10−19

14 0.8608×10−21

15 0.1255×10−22

16 0.1948×10−24

17 0.2578×10−26

18 0.3522×10−28

19 0.4264×10−30

20 0.5270×10−32

where k =2π/λ is the wave number with λ being the optical wavelength. Using the following
mathematical formulae [27]:
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where [n/2] gives the greatest integer less than or equal to n/2, one can obtain the analytical expression
of a general Lorentz-Gauss vortex beam in free space
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with the auxiliary parameters bx and by being defined as follows:
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The linear momentum density of a general Lorentz-Gauss vortex beam yields [24]

P = Pxex + Pyey + Pzez, (12)

with Px, Py, and Pz being given by [28]
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where ex, ey, and ez are three unit vectors in the x-, y-, and z-directions, respectively. ω is the circular
frequency, and ε0 is the electric permittivity of vacuum. The asterisk denotes the complex conjugation.
Inserting Eq. (10) into Eqs. (13)–(15), one can calculate the linear momentum density distribution of a
general Lorentz-Gauss vortex beam in free space.

3. NUMERICAL CALCULATIONS AND ANALYSES

The linear momentum density of a general Lorentz-Gauss vortex beam in free space are determined by
the Gaussian waist, the width parameters of the Lorentzian part, the axial propagating distance, and
the topological charge. First, we investigate the effects of the Gaussian waist, the width parameters of
the Lorentzian part, and the axial propagating distance. The linear momentum density distributions
of a general Lorentz-Gauss vortex beam in free space are shown in Figs. 1–6. The optical wavelength
is set to be λ = 0.8µm. The topological charge M is fixed and is equal to 3 in Figs. 1–6. w0 = 2mm,
w0x = w0y = 1mm, and the reference plane is the near field plane z = zr in Fig. 1. zr = kw2

0/2 is
the confocal parameter of the Gaussian part. The x-component of the linear momentum density is
composed of two lobes, which somewhat deviate from the horizontal direction. The areas of the two
lobes are equivalent. However, the signs of the linear momentum density in the two lobes are opposite.
Therefore, the overall x-component of the linear momentum in the reference plane z = zr is zero. The
y-component of the linear momentum density is also comprised of two lobes, which somewhat deviate
from the vertical direction. Also, the overall y-component of the linear momentum in the reference plane
z = zr is zero. The two lobes in the x- and y-components of the linear momentum density are irregular.
The y-component of the linear momentum density distribution can be viewed as the x-component of
the linear momentum density distribution rotating 90◦ counterclockwisely. Eq. (15) denotes that the
longitudinal component of the linear momentum density is proportional to the intensity distribution.
The longitudinal component of the linear momentum density takes on the Lorentzian distribution with
a cross-shape dark region, and the bright ring around the dark region is not uniform. Moreover, the
Lorentzian distribution tilts to the right. In this case, the effect of the Lorentzian part is predominant.
Fig. 1 corresponds to the case of the Gaussian waist being larger than the width parameters of the
Lorentzian part. Now, we consider the other case of the Gaussian waist being smaller than the width
parameters of the Lorentzian part. In Fig. 2, w0 = 1 mm, w0x = w0y = 2 mm, and other parameters
are the same as those in Fig. 1. The two lobes of the x- and y-components of the linear momentum
density in Fig. 2 are regular and are similar to the crescent. The two lobes of the x-component of the
linear momentum density are oriented in the 135◦ diagonal direction with respect to the x-axis. The
two lobes of the y-component of the linear momentum density are oriented in the 45◦ diagonal direction
with respect to the x-axis. Of course, the overall traversal components of the linear momentum are
verified to be zero. The longitudinal component of the linear momentum density takes on the Gaussian
distribution with a central dark region. In this case, the influence of the Gaussian part is predominant.

The results of the reference plane z = 3zr are shown in Fig. 3, where the other paramors are
the same as those in Fig. 1. Compared to Fig. 1, the linear momentum density distribution rotates
counterclockwisely with increasing the axial propagation distance. The two lobes of the x-component of
the linear momentum density are oriented in the horizontal direction. The two lobes of the y-component
of the linear momentum density are oriented in the vertical direction. The two lobes become more
regular upon propagation. With increasing the axial propagation distance, the magnitude of the linear
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(a)

(b)

(c)

Figure 1. The linear momentum density distributions of a general Lorentz-Gauss vortex beam in the
near field z = zr. w0 = 2mm, w0x = w0y = 1mm, and M = 3.

momentum density decreases. The non-uniformity in the bright ring of the longitudinal component of
the linear momentum density has been improved. The results of the reference plane z =3zr is shown
in Fig. 4, where the other parameters are the same as those in Fig. 2. Compared to Fig. 2, the linear
momentum density distribution rotates counterclockwisely for some degree. However, the two lobes of
the x-component of the linear momentum density still seriously deviate from the horizontal direction,
and the two lobes of the y-component of the linear momentum density seriously deviate from the vertical
direction. The reference plane in Fig. 5 is the far field z =15zr, and the rest of the parameters are the
same as those in Fig. 1. The two lobes of the x-component of the linear momentum density are oriented
in the horizontal direction. The two lobes of the y-component of the linear momentum density are
oriented in the vertical direction. The lobes are very regular. The tilt of longitudinal component of the
linear momentum density disappears. The reference plane in Fig. 6 is also the far field z =15zr, and
the rest of the parameters are the same as those in Fig. 2. The two lobes of the x- and y-components
of the linear momentum density are oriented in the horizontal and the vertical directions, respectively.

Finally, we investigate the influence of the topological charge on the linear momentum density
distribution of Lorentz-Gauss vortex beams propagating in free space. M = 4 in Fig. 7, and the rest
of the parameters are the same as those in Fig. 1. In the near field, however, a faint lobe appears
in the central region of the longitudinal component of the linear momentum density. With increasing
the topological charge, the non-uniformity in the bright ring around the dark region of the longitudinal
component of the linear momentum density increases. The reference plane in Figs. 8 and 9 is z =3zr and
z =15zr, respectively. Other parameters besides the axial propagation distance are the same as those in
Fig. 7. With increasing the axial propagation distance, the magnitude of the lobe in the central region
of the longitudinal component of the linear momentum density is enhanced, and the non-uniformity in
the bright ring of the longitudinal component of the linear momentum density is also improved. When
the Gaussian waist is smaller than the width parameters of the Lorentzian part, the faint lobe will not
appear in the central region of the longitudinal component of the linear momentum density, and the
corresponding figure is omitted to save space.
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(a)

(b)

(c)

Figure 2. The momentum density distributions of a general Lorentz-Gauss vortex beam in the near
field z = zr. w0 = 1 mm, w0x = w0y = 2 mm, and M = 3.

(a)

(b)

(c)

Figure 3. The momentum density distributions of a general Lorentz-Gauss vortex beam in the reference
plane z = 3zr. w0 = 2mm, w0x = w0y = 1mm, and M = 3.
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Figure 4. The momentum density distributions of a general Lorentz-Gauss vortex beam in the reference
plane z = 3zr. w0 = 1mm, w0x = w0y = 2mm, and M = 3.

(a)

(b)

(c)

Figure 5. The momentum density distributions of a general Lorentz-Gauss vortex beam in the far field
z = 15zr. w0 = 2mm, w0x = w0y = 1mm, and M = 3.
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(a)

(b)

(c)

Figure 6. The momentum density distributions of a general Lorentz-Gauss vortex beam in the far field
z = 15zr. w0 = 1mm, w0x = w0y = 2mm, and M = 3.

(a)

(b)

(c)

Figure 7. The momentum density distributions of a general Lorentz-Gauss vortex beam in the near
field z = zr. w0 = 2 mm, w0x = w0y = 1 mm, and M = 4.
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(a)

(b)

(c)

Figure 8. The momentum density distributions of a general Lorentz-Gauss vortex beam in the reference
plane z = 3zr. w0 = 2mm, w0x = w0y = 1mm, and M = 3.

(a)

(b)

(c)

Figure 9. The momentum density distributions of a general Lorentz-Gauss vortex beam in the far field
z = 15zr. w0 = 2mm, w0x = w0y = 1mm, and M = 4.
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4. CONCLUSIONS

The analytical expression of general Lorentz-Gauss vortex beams propagating in free space is derived,
which allows one to calculate the linear momentum density of a general Lorentz-Gauss vortex beam
in free space. The influences of the Gaussian waist, width parameters of the Lorentzian part, axial
propagation distance, and topological charge on the linear momentum density distribution of Lorentz-
Gauss vortex beams propagating in free space are examined, respectively. The x- and y-components
of the linear momentum density is composed of two lobes with the equivalent areas. However, the
signs of the linear momentum density in the two lobes are opposite. Therefore, the overall x- and y-
components of the linear momentum in an arbitrary reference plane are equal to zero. When the width
parameters of the Lorentzian part are smaller than the Gaussian waist, the two lobes in the x- and y-
components of the linear momentum density are irregular, and the longitudinal component of the linear
momentum density takes on the Lorentzian distribution with a cross-shape dark region. Moreover, the
Lorentzian distribution tilts to the right, and the bright ring around the cross-shape dark region is not
uniform. When the Gaussian waist is smaller than the width parameters of the Lorentzian part, the
two lobes of the x- and y-components of the linear momentum density are regular and are similar to
the crescent. In this case, the longitudinal component of the linear momentum density takes on the
Gaussian distribution with a central dark region. With increasing the axial propagation distance, the
magnitude of the linear momentum density decreases, and the linear momentum density distribution
rotates counterclockwisely. In the far field, the two lobes of the x-component of the linear momentum
density are oriented in the horizontal direction, and the two lobes of the y-component of the linear
momentum density are oriented in the vertical direction. The tilt in the longitudinal component of the
linear momentum density disappears. In the case of the width parameters of the Lorentzian part being
smaller than the Gaussian waist and topological charge being larger than 3, a faint lobe appears in
the central region of the longitudinal component of the linear momentum density, and the magnitude
of the faint lobe increases upon propagation. With increasing the topological charge, moreover, the
non-uniformity in the bright ring of the longitudinal component of the linear momentum density is also
improved. The present research is useful to the decoding of the information in optical communications.
Also, it is beneficial to optical trapping, guiding, and manipulation of microscopic particles involving
the single mode diode laser beams.
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