
Progress In Electromagnetics Research, Vol. 145, 153–161, 2014

The Effect of Antenna Incident Field Distribution on Microwave
Tomography Reconstruction

Nozhan Bayat* and Puyan Mojabi

Abstract—For microwave tomography applications, we show that the utilized incident field distribution
can affect the achievable image quantitative accuracy and resolution. In particular, for the synthetic
cases considered here, it is shown that the use of a focused incident field distribution within the imaging
domain often results in either enhanced or equivalent image reconstruction as compared to the use of
an omnidirectional incident field distribution.

1. INTRODUCTION

In microwave tomography (MWT), the dielectric profile of the object of interest (OI) is to be found
using microwave scattering measurements collected outside the object. To this end, the OI is successively
illuminated by a number of antennas located around the OI. The scattering data emanating from the
OI is then used by an appropriate nonlinear inversion algorithm so as to generate quantitative images
from the dielectric profile of the OI. To make MWT a viable imaging method, specially for clinical
applications, its current achievable image quantitative accuracy and resolution need to be enhanced.

Broadly speaking, two general approaches have been suggested to increase the image quantitative
accuracy and resolution achievable from MWT: (1) collecting more scattering information, and
(2) interpreting the collected scattering information in a better way. Within the framework of these two
approaches, some of the utilized techniques are (i) increasing the number of antennas (or, probes) [1],
(ii) using multiple-frequency data sets [2], (iii) using different boundary conditions [3], (iv) using an
appropriate Green’s function [4], (v) simultaneous use of transverse magnetic and electric data sets [5],
(vi) using appropriate data calibration techniques [6], (vii) using more effective inversion algorithms
and regularization techniques [7, 8], (viii) accurate MWT system modeling [9], (ix ) using a priori
information [10], etc.

Herein, we investigate whether the utilized incident field distribution in MWT, defined as the
field distribution within the imaging chamber in the absence of the OI, can affect the achievable image
accuracy and resolution. This incident field distribution is usually governed by the near-field distribution
of the utilized transmitting antenna as MWT antenna systems usually operate in their near-field zones.
It should also be noted that the effect of antenna near-field distribution on the achievable image from
microwave radar-based imaging has been studied in [11]; however, to the best of our knowledge, it has
not yet been investigated for MWT. (A preliminary investigation of this topic has been presented by the
authors as a one-page abstract in [12].) In what follows, we first explain why the choice of the incident
field distribution can affect the achievable MWT image accuracy. The numerical model adopted for the
incident field distribution will then be described. We will then numerically show how an appropriate
choice of the incident field distribution can lead to enhanced image reconstruction.
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2. WHY CAN THE CHOICE OF INCIDENT FIELD DISTRIBUTION AFFECT THE
IMAGE ACCURACY?

To understand why the utilized incident field distribution can affect the final image accuracy, let’s
consider the so-called data equation in MWT:

measured data︷ ︸︸ ︷
Escat(p) = k2

b

∫

D

kernel︷ ︸︸ ︷
g(p,q)E(q)

unknown︷︸︸︷
ε(q) − εb

εb
dq. (1)

In this integral equation, Escat(p) is the measured scattered field at the receiving point p, which
is located outside the imaging domain D. The OI is immersed in a known background medium with a
relative complex permittivity of εb, and the Green’s function of g(p,q). The total field, defined as the
field distribution within the imaging domain in the presence of the OI, is denoted by E(q). The OI’s
relative complex permittivity profile, ε(q), is then to be found.

As can be seen from (1), the total field E(q) contributes to the kernel of the data equation integral.
In other words, E(q) affects the singular value spectrum of the discretized integral operator [13],
characterized by ui, vi, and σi for the ith left and right singular vectors, and the ith singular value
respectively. Therefore, for a given E(q), the discretized unknown permittivity, denoted by the vector
x, can be expanded within a subspace of right singular vectors, {v1,v2, · · · ,vk} as [13]

x =
K∑

i=1

weights ∈ C︷ ︸︸ ︷[uH
i b
σi

]
vi (2)

where b is the vector storing the measured data, and the superscript H denotes the Hermitian operator.
Due to the ill-posedness of the problem, the above summation is terminated early, say at the index K.
(Note that, in general, (2) can be written based on the generalized singular value decomposition [13]
which takes into account the effect of regularization terms.).

Based on the above discussion, it can be seen that E(q) contributes to both vi and the weights
thereof. This is important as (i) appropriate vi vectors provide a good basis for the expansion of the
unknown permittivity, and (ii) the values of the weights determine the truncation index K. Often, the
faster the singular values go to zero, the smaller the truncation index will be. An smaller truncation
index means using fewer vi vectors to expand the unknown permittivity. Noting that vi vectors with
large i indices contain high-spatial frequencies [14], the reconstructed permittivity can suffer from limited
resolution and accuracy if the above summation is terminated too early. That being said, there might
exist an E(q) that results in optimized singular value dynamics for this problem. One indication for
such an E(q) will be the one that maximizes the number of significant singular values of the discretized
integral equation.

The above discussion speculated that with an appropriate E(q) enhanced reconstruction might be
obtained. Now, the question to be answered is: what tools do we have to control E(q) within the
imaging domain? It is known that, for a given MWT configuration (i.e., a system with a fixed known
Green’s function), E(q) depends on both ε(q) and the incident field distribution Einc(q). However,
noting that ε(q) is the unknown of the problem, it cannot be used to control the total field distribution.
For the same reason, we can never completely control the total field distribution within the imaging
domain. However, with changing Einc(q), we can, to some extent, affect and change E(q) within the
imaging domain; thus, affecting the final MWT image. This completes our discussion on the possibility
of using the incident field distribution toward achieving an enhanced MWT image. In the rest of this
letter, we attempt to numerically demonstrate this idea.

3. NUMERICAL MODEL FOR INCIDENT FIELD DISTRIBUTION

As discussed above, the achievable image accuracy can be affected by changing the incident field
distribution within the imaging domain. To demonstrate this for a 2D transverse magnetic (TMz)
problem, we consider the following model for the incident field distribution (similar to that used in [15])

Einc(x, y) = ẑCH2
0 (kbρ) cosm ψ (3)
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where C is a constant, (x, y) the observation point within the imaging domain, and H2
0 (·) the zeroth-

order Hankel function of the second kind. The distance from the transmitting antenna to the observation
point is denoted by ρ. The angle ψ is the angle between the antenna boresight axis and the line
connecting the antenna to the observation point. The non-negative variable m represents the focusing
level of the incident field distribution: the larger m, the more focused the incident field distribution.
Also, as can be seen in (3), m = 0 represents an omni-directional incident field distribution (i.e., the
incident field due to a line source).

It should be noted that the practical implementation of such focused incident field distribution is
not within the scope of this paper. However, we envision three different methods to achieve such focused
near-field distribution. The first method relies on using antenna array techniques. This can be practical
as MWT setups usually utilize co-resident antenna elements ranging from 16 to 64 antennas [7, 16–19]
placed in an imaging chamber. Currently, these antennas are being used individually for illuminating
the OI. Therefore, there is an opportunity to collectively use all these antenna elements to create
sufficient number of appropriate incident field distributions. This can be pursued by proper simultaneous
excitation of these co-resident antenna elements using antenna array techniques. The second method
relies on modification of the individual antenna element to achieve a focused near-field distribution.
Within this framework, the use of microwave near-field plates, whose ability to achieve focusing in
near-field has been recently demonstrated [20], seems very promising. Also, the use of appropriate
modifications such as incorporating a dielectric director [21] into the individual antenna element is
another possibility. The third method could be simply based on the combination of the previous two
methods.

4. RECONSTRUCTION RESULTS

Three different OIs are considered. For a given OI, we collect several scattering data sets, each of
which corresponds to utilizing an incident field distribution with a certain focusing level. (3% white
noise is added to all data sets according to [22].) Each of these data sets will then be separately
inverted. The utilized incident field distribution in the inversion algorithm will be the same incident
field distribution that has been used to collect that scattering data set. Specifically, Sections 4.1 and
4.3 use the multiplicative-regularized Gauss-Newton inversion (MR-GNI) algorithm [23, 24] to invert
the data sets. Section 4.2, on the other hand, deals with shape and location reconstruction using the
binary implementation of the MR-GNI algorithm as presented in [25].

4.1. Resolution Test

We consider two lossless circular objects with the radius of 20.5mm and the relative permittivity of
εr = 4 at the frequency of operation f = 3 GHz which are separated by 15 mm, as shown in Figure 1(a).
In the first configuration, this target will be successively illuminated by 8 antennas equally distributed
on a circle of radius 0.1m. (Total number of data points will then be 8×7 data points; due to reciprocity,
half of which will be redundant.) For this configuration, we collect three different data sets, each of
which corresponds to using a certain focusing level for the utilized incident field distribution; namely,
m = 0, 30, 70. The inversion results for this configuration are shown in Figures 1(b)–(d). It can be seen
that (i) these inversion results are different, and (ii) the reconstructed permittivity is more accurate
and exhibit enhanced resolution when m = 70. In the second configuration, we repeat the previous
experiment while having 24 antennas; thus, having 24 × 23 data points. The reconstruction results
corresponding to the two extreme cases (m = 0, 70) are shown in Figure 2. This example clearly shows
that the use of different incident field distributions can result in images with different accuracies.

We speculate that by making the incident field distribution more focused within the imaging
domain, the kernel of (1) becomes less smooth; thus, making the problem less ill-posed [13, Section 2.2],
and consequently improving the final image. This can be better seen by comparing the singular values of
the Jacobian (sensitivity) matrix for different values of m at the last iteration of the MR-GNI algorithm
as shown in Figure 3: the singular values corresponding to m = 70 are larger than those corresponding
to smaller m values. We have also tried this example when the transmitters are located on a circle of
radius 1 m (i.e., 10λ at the frequency of operation). In this configuration, the reconstruction results for
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these different m values were almost identical. Noting that the imaging domain in this configuration is
located in the far-field zone of the transmitting antennas, these different m values do not significantly
change the incident field distribution within the imaging domain; thus, resulting in no considerable
changes in the reconstruction results.
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Figure 1. Resolution test using 8 antennas: (a) true dielectric profile (The zero imaginary part of the
permittivity is not shown.); (b)–(d) reconstructed dielectric profile using three different focusing levels
(m) for the utilized incident field distribution.
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Figure 2. Resolution test using 24 antennas: reconstructed dielectric profile using two different focusing
levels for the utilized incident field distribution.
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Figure 3. Resolution test using 8 and 24 antennas: singular values of the Jacobian matrix at the last
MR-GNI iteration for different m values.
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Figure 4. Concentric squares test case: (a)–(b) true dielectric profile; reconstructed dielectric profile
when (c)–(d) m = 0, and (e)–(f) m = 70.

4.2. E-Shape Object

We consider the so-called Semenov’s E-shape object [17], as shown in Figure 4(a). This object is chosen
to be lossless with the relative permittivity of 2.3. This object is illuminated with 16 antennas (thus,
having 16× 15 data points), located on a circle with the radius of 0.15 m with three different focusing
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levels: m = 0, 70, and 300. We then use the binary implementation of the MR-GNI algorithm [25] to
invert these data sets. As shown in Figures 4(b)–(c), the reconstruction results for m = 0 and m = 70
are not capable of reconstructing the three small fingers located at the bottom left part of the object.
However, with m = 300, the inversion algorithm is capable of capturing these three fingers. The singular
values of the Jacobian matrix in the last iteration of the inversion algorithm for different m values are
shown in Figure 6(a). As can be seen, the singular values corresponding to m = 300 decay more slowly
as compared to those for m = 0 and 70.
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Figure 5. Breast test case using 24 antennas: (a)–(b) true dielectric profile; reconstructed dielectric
profile when (c)–(d) m = 0, and (e)–(f) m = 70.
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4.3. Breast Model

In this example, we use a breast model that has been previously used in [3, 16]. As shown in Figures 5(a)–
(b), this model consists of three regions: fibroglandular (smallest circle), tumor (medium circle), and
fatty (largest circle) tissues. The background medium is chosen to be 23.4 + j18.5 at the frequency
of operation, which is 1GHz (similar to the background medium used for the breast cancer microwave
imaging system at Dartmouth College [16]). This numerical model is illuminated by 24 antennas, which
are located on a circle of radius 0.1 m. The inversion results for m = 0, 70 are shown in Figures 5(c)–(f).
As can be seen, the reconstructed image when m = 70 is more accurate than the reconstructed image
when m = 0. Specifically, the true tumor permittivity is 53.4 + j18.8, whereas the reconstructed tumor
permittivity at the center of inclusion is 63.4 + j15.4 when m = 0, and is 53.7 + j17.7 when m = 70.
As shown in Figure 6(b), the singular values of the Jacobian matrix at the last MR-GNI iteration when
m = 70 are larger than those when m = 0. We also attempted to reconstruct this profile using only
4 antennas; however, reconstruction was not successful for any m values that we tried. When using 4
antennas, we noticed that the singular values of the Jacobian (sensitivity) matrix at the last MR-GNI
iteration when m = 0 were larger than those when m = 70. This observation is not consistent with what
we observed in earlier examples. This inconsistency might be justified as follows. If only 4 antennas with
focused near-field distribution (m = 70) are used, we cannot sufficiently illuminate every part within the
imaging domain; thus, losing sensitivity to some imaging areas. On the other hand, if 4 antennas with
omnidirectional field distribution (m = 0) are used, it is more likely to illuminate everywhere within the
imaging domain sufficiently; thus, enhancing the sensitivity compared to the use of few focused beams.
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Figure 6. Singular values of the Jacobian matrix at the last MR-GNI iteration for different m values
for the last two targets.

5. CONCLUSION

We have shown that the choice of the incident field distribution can affect the achievable image
quantitative accuracy and resolution. For all the results shown here, the use of a focused incident field
distribution improved image accuracy and resolution. However, it should be noted that we have also
experienced no imaging improvements with the use of focused incident field distribution (not shown
here). Therefore, this paper demonstrates the idea that the proper choice of the incident field can
improve the image accuracy. This adds one more parameter to be optimized in the design of an MWT
system. Future work should address the conditions under which this improvement will occur as well as
the practical implementation of this idea.
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