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Inhomogeneous and Homogeneous Losses and Magnetic Field Effect
in Planar Undulator Radiation

Konstantin Zhukovsky*

Abstract—We construct an analytical model for the description of emission of undulator radiation
(UR) harmonics with account for several sources of line broadening, including the effect of a constant
magnetic constituent. We compare it with that of the beam energy spread, emittance and focusing
components. The analytical expressions obtained for the UR intensity and spectrum allow for profound
analysis of homogeneous and inhomogeneous losses in their explicit form. We analyse the contributions
to the fundamental frequency as well as to higher harmonics in long undulators. We study a possibility
to compensate for the off-axis effects in undulators by a properly imposed constant magnetic field
and obtain an expression for the intensity of such compensating effect. The results obtained are
discussed in the context of their possible applications to free electron lasers (FEL). Recommendations
for improvement of an UR harmonic line quality, profitable for FEL, are also proposed.

1. INTRODUCTION

Sources of synchrotron radiation (SR) and of undulator radiation (UR) are nowadays commonly used
when the interaction of radiation and matter is studied. Synchrotron radiation was predicted in 1944 by
Ivanenko and Pomeranchyk [1] and discovered three years later in Brookhaven National Laboratory [2].
Angular and spectral properties of SR were explored in [3]. At that time Schwinger worked out his
seminal papers (see [4]), repeating much of Schott’s early studies [5], put in a useful formalism and
completed with numerical calculations. The developed formulation of Schwinger’s works can be found,
for example, in [6, 7]. The physical nature of undulator radiation that arises in periodic magnetic
structures is similar to that of SR, since both are due to photon emission by accelerated ultra-relativistic
electrons [8]. This idea was first advanced by Ginzburg [9], and several years later a first undulator
was built and tested by Motz et al. [10]. More theoretical studies of radiation of fast particles in
magnetic fields can be found, for example, in [11–14]. Theoretical studies and technological development
drove each other to the best and yielded great improvement in the design of wigglers and undulator
magnets [13]. Numerical and analytical methods were proposed to model properties of UR, accounting
for the complex of physical phenomena in undulators [15]. SR and UR are known for high beam
intensity and narrow cone of radiation emission. They provided an impulse for the appearance and
the development of free electron lasers (FEL). FEL contain undulators and make use of the UR. In
the simplest case, an undulator is placed in an optical resonator, consisting of two mirrors. One of
the problems with exploiting such a device consists in the deterioration of reflecting mirrors by the
hard component of the emission. More sophisticated FEL constructions are used nowadays, working
in Röntgen range with ultra fast and high coherent electron beams. All that maintains interest to
undulator radiation studies and, in particular, to undulators of non-standard configurations [16, 17].
Modern undulators allow for efficient regulation of harmonic emission. However, distortions of the
periodic magnetic field (that are due to non-homogeneity of the periodic structure, but not only)
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can significantly affect operation of such devices. In particular, it concerns undulators with complex
magnetic fields and with many periods. High gain in undulators and high quality of the electron
beams are particularly important for new generations of sources of radiation — FEL with self amplified
spontaneous emission (SASE) [18, 19], high gain harmonic generation (HGHG) [20] and other modern
schemes, frequently including two-frequency undulators (see, for example, [21–23]). In this context the
quality of the undulator device can be evaluated according to its UR spectrum deterioration, which,
if not ascribed to inhomogeneous broadening or to beam transport problems, may be viewed as the
consequence of the distorted structure of the undulator magnetic field. Deviation from the ideal periodic
form of the field [24] in permanent magnet undulators is usually present in the form of a constant field
component, superimposed on the on-axis periodic field. In what follows, we will explore its effect on the
undulator performance, comparing it with that due to electron energy spread and some beam transport
losses. In particular, we will demonstrate how long undulators with many periods may be sensitive
to it and how properly imposed constant field can partially compensate for off-axis effects. We will
include both homogeneous and inhomogeneous effects, recognizing enlightening studies of the effect of
inhomogeneous field error in undulators [25, 26], performed in the framework of the phase error concept.

Our analysis will be largely based upon the technique of generalized special functions and on
mathematical results, obtained earlier in [27]. We recall that for a planar undulator with N periods
of the length λu along the z-axis, the periodic magnetic field amplitude H0 and the constant magnetic
field Hd, superimposed on it reads

~H = H0 (ρ, κ + sin(kλz), δ) , kλ = 2π/λu, Hd = H0κ1, (1)
where

κ1 =
√

κ2 + ρ2, (2)
ρ and κ are the factors for the transversal components of the constant magnetic field Hd, and the UR
intensity depends on their combination (2), rather than on each of them separately [28]. Moreover,
let us demonstrate that for a high energy electron beam, longitudinal component δ does not play any
significant role. Ultrarelativistic (γ À 1) electrons move in undulators with very small transverse speed
β⊥ in a pure magnetic field

β⊥ ¿ 1, β⊥H= ¿ H⊥, ~E = 0. (3)
Then the longitudinal component of the constant magnetic field, interacting with the transversal
component of the electron velocity, effects in higher orders of k/γ, rather than do the transversal
magnetic components, interacting with the relativistic drift of the electron β0

z ≈ 1. Straightforward
integration of the equations of motion leads to the system of differential equations, which, in its turn,
yields the following law of motion in the lowest order of k/γ:
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The longitudinal field component δ plays its role in the terms of the second order of k/γ, such as
1
6(k

γ )2ρδ c
ω0

(ω0t)3, (k
γ )2δ c

ω0
(cosω0t− 1) etc., whereas the transversal constituents play a role in the 1st

order of k/γ. We omit here the complete expression for the sake of conciseness. We only note that, in
the case of ultrarelativistic motion of the high energy electrons and relatively weak constant components
H0ρ, H0κ and H0δ in undulators, which we consider, the effect of the longitudinal field, factorized by
ρ (k/γ)2 and similar products, is negligible. In low energy applications, on the contrary, the longitudinal
component plays an important role. Some undulator designs even include longitudinal fields for focusing
in low energy FELs. Analytical computation of the UR intensity in the case of k/γ < 10 goes beyond the
usual (k/γ)2 order, accounting for the corrections of (k/γ)2 approximation for UR spectrum frequencies.
The relativistic electron drift β0

z , the undulator frequency ω0 and the undulator parameter k are given
as always:

β0
z = 1− 1
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)
, (5)
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ω0 = kλβ0
zc, kλ =

2π

λ
, k =

e

mc2

H0

kλ
. (6)

The shift of the electron trajectory due to a constant magnetic field in an undulator was discussed
in [27]. We just underline that for e.g., κ = ρ = 10−4, γ = 103, k = 1, the energies ∼ 500MeV and
λu ≈ 6 mm, and the deviation will be only 10−3 mm. However, the shift along the x-direction after
100 periods is 10 times the oscillation amplitude, and after 150 periods the electron trajectory shift in
x- and y-directions becomes 20 times its oscillation amplitude. This indicates possible changes in UR
characteristics.

2. UR INTENSITY WITH ACCOUNT FOR OFF-AXIS EFFECTS AND FOR THE
CONSTANT MAGNETIC FIELD

The intensity of the electron emission in the farfield zone [29] is given by the well-known expression for
the radiation integral [30]

d2I

dωdΩ
=

e2

4π2c

∣∣∣∣∣∣
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−∞
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2

. (7)

This is a generic classical expression for radiation intensity of an accelerated charged particle, where ~n
is the observation vector, which has the following approximate form forγ À 1:

~n ∼=
(
ψ cosϕ, ψ sinϕ, 1− ψ2/2

)
. (8)

Following the lines of [27], we now include off-axis effects and a 2-component constant field to end up
with a complicated expression, similar to those, described in detail in [27], but with many new terms
in the exponential of the radiation integral. We omit it for brevity and proceed upon the realistic
supposition of a weak constant field κ1 ¿ 1 to simplify complicated and cumbersome exact analytical
expression, eventually obtaining for the UR intensity
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, (9)

where ξ = ω
ω0

(k
γ )2 is the argument of the Bessel function Jn(−ξ/8). The second argument of the function

S(α, β, η) reads as follows:

β = (2πnN + νn)
(γθH)2

1 + k2/2 + (γθH)2
, (10)

θH is the effective bending angle

θH =
2√
3

k

γ
πNκ1 (11)

and νn is the detuning parameter, describing the deviation from the central frequency ωn of the harmonic
n

νn = 2πNn

(
ω

ωn
− 1

)
. (12)

The off-axis effects are accounted for in the argument

η = 2π2N2 (κ cosϕ− ρ sinϕ)
ω

ω0

(
k

γ

)
ψ (13)

of the generalized Airy-type special function

S (α, β, η) ≡
∫ 1

0
dτei(α τ+η τ2+β τ3), S (α, β, 0) =

1∫

0

ei(α τ+β τ3)dτ, S (α, 0, 0) = eiα/2 sincα/2. (14)
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They now play the role of a sinc function and determine the shape of the UR harmonics, which read
for a common undulator as follows:

ωR0 =
2ω0γ

2

1 + k2
/
2
, ωn0 = nωR0. (15)

For a 2-component transversal magnetic field, Eqs. (9)–(14) depend purely on the intensity of the
constant transversal constituent, related to that of the periodic undulator field: κ1 = (κ2+ρ2)1/2, where
κ1H0 and ρH0 are the transversal components of Hd. Thus, the direction of the transversal component
of Hd does not matter, and its longitudinal part is irrelevant as discussed above (see also [28, 31]).
This important observation allows choosing the direction of the constant field at our convenience when
treating more complicated mathematical problems of radiation of charges in multi-component fields.

So far as the shape of the harmonics is concerned, we find from Fig. 1 and from the analysis of (14)
that the emission line has a discrete and evident peak along the line of the values

α ≈ −β, if α, β ∈ [−8, 8]. (16)

Beyond this range, the local side-maxima of S become stronger, while the main peak of the function fades
out. It does not follow Eq. (16) any more, remaining at α ≈ −5 and thus the single discrete harmonic
spreads into a wide band of the emission. The derivative of S(α, β) exhibits similar behaviour. With
account for the off-axis effects and the constant magnetic component, we obtain the spectrum for the
undulator (1) in the form of peaks with the following central frequencies ωn:

ωn|ψ 6=0, Bd 6=0 = nωR =
2nω0γ

2

(
1 + k2

2

)
+ (γψ)2 + (γθH)2 −√3(γθH)(γΩ)

, (17)

where Ω = ψ(ρ sinϕ− κ cosϕ)/κ1. Eq. (17) generalizes the expression previously obtained in [27]
and demonstrates that the off-axis effect can be partially compensated by proper configuration of the
constant magnetic field Hd. It follows from (17) that the angular divergence is mostly compensated by
the effective bending angle θ̃H due to the constant magnetic field, such that

θ̃H =
√

3
2

Ω, Ω = ψ
ρ sinϕ− κ cosϕ

κ1
, κ1 =

√
ρ2 + κ2. (18)

The horizontal divergence (i.e., ϕ = 0, π) is compensated by the vertical field component

θ̃H = ∓ψ

√
3

2
κ

κ1
, ϕ = 0, π, (19)

and the vertical divergence (i.e., ϕ = ±π/2) is compensated by the horizontal field component

θ̃H = ±ψ

√
3
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Figure 1. Absolute value of the function S(α, β, 0) for the parameters α and β.
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with the respective sign choice. The best compensation by θ̃H in the proper half-plane can reduce the
divergence angle ψ to its half: ψ/2. Thus, if we induce constant magnetic fields opposite each other
in two semi planes for ϕ = π/2 and ϕ = −π/2 and choose the intensity accordingly from (20), so that
the bending angle θ̃H is produced, we will compensate (in part) for vertical divergency! For the radial
divergency compensation refer to (19) with ϕ = 0, π.

3. SPECTRUM DISTORTIONS AND THE BROADENING PARAMETERS
CONCEPT

It is useful to recall some basic notes of the focusing concept in undulators, beam emittance, electron
energy losses, UR spectrum corrections and the line broadening associated with the above mentioned
phenomena. To this end we refer, for example, to [32], although this topic was broadly discussed by
other researchers as well. It is well known that the ratio of the half-width of an UR harmonic to the
harmonic frequency is inversely proportional to the number of the undulator periods N

∆ω

ωn0
=

ω − ωn0

ωn0
=

1
nN

, (21)

where ωn0 are the frequencies of the ideal planar undulator (15). Obviously, we are at the half-height of
the spectrum line for ∆ω/ωn0 = 1/(2nN); ∆ω/ωn0 ¿ 1 for any realistic number of undulator periods.
Good shape of the spectrum line is insured by (16).

The deviation of the peak harmonic frequencies from (15) ∆ωR = ωn − ωn0, caused by the field
Hd, has a negative sign and it can be expressed as follows:

∆ωR = − ωn0

1 + (1 + k2/2) / (γθH)2
. (22)

Thus, the constant magnetic field shifts the UR frequencies down. The value of the detuning
parameter (12) νn = νn Res at the peak frequency of the n-th harmonic depends on the constant field
intensity and on the number of periods as follows:

νn Res = −2πNn (γθH)2

1 + k2/2
= −n

3
(2πN)3κ2

1

1/2 + 1/k2
. (23)

Evidently, in the absence of the constant field we have νn Res = 0, and then the UR spectrum goes over
to (15). From (16) the following upper limit for the ratio Hd/H0 arises to preserve the line width and
distinct harmonic shape:

κ1 ≤ κmax =
1

(πN)3/2

√
3
n

(
1
2

+
1
k2

)
. (24)

Thus (24) can be viewed as the condition for the constant magnetic field intensity, under which (17)
determines harmonic frequencies. When Eq. (24) is not fulfilled, νn Res approximately corresponds to
the middle of the wide frequency band νn ∈ [0, 2 νn Res], that remained from the n-th harmonic line.
The larger the induced bending angle, the wider the frequency spread becomes∣∣∣∣
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. (25)

For example, for |νn Res| ≈ 20 we obtain the harmonic line spread in a wide range ∆νn ≈ 40, which is
seven times wider, as compared with ∆νn = 2π, the half-width of a common undulator harmonic.

As regards the odd harmonics — planar UR feature arising in a constant magnetic field — their
amplitude strongly depends on N and on the intensity of the constant field via κ1 (see (9)), growing
with their increase. When κ1 is below κmax, specified by (24), they are negligible; otherwise, when
|α|, |β| > 10, odd harmonics have the following frequencies:

ωn|ψ=0 = nωR =
2nω0γ

2

(
1 +

k2

2

)
+ 2 (γθH)2

, n = odd, (|α| , |β| > 10). (26)



250 Zhukovsky

We can heuristically introduce broadening parameters µi corresponding to each broadening factor
“i”, such as the off-axis effects, the energy spread, the field effect etc.. The constant field broadening (22),
normalized to (21), yields the following broadening parameter:

µH ≡ ∆ωR/ωn

∆ω/ωn0
=

Nn(γθH)2

1 + k2
/
2

. (27)

We can evaluate the maximum value of the frequency detuning |∆ωR|/ωn, corresponding to the
maximum intensity of the constant field κ1

∼= κmax, when the harmonic still has a distinctive shape.
This reads |∆ωR

ωn
|max = 4

πnN , and the maximum value µH max of the constant field broadening parameter
µH for a distinct line unsurprisingly becomes

µH max ≡ (∆ωR/ωn)max

∆ω/ωn0
=

4
π
≈ 1.3. (28)

In this context it is interesting to make a comparison with the broadening effect of the emittance
of the beam. We recall expressions (22) for the emission line shift by a constant field ∆ωR/ωn and the
constant field broadening parameter µH (27) and compare them with the relevant expressions for the
frequency shift due to the emittance effects∣∣∣∣

〈
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x,y (29)
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µx,y = nN
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〈
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ω
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x,y

, (30)

where Θx,y = εx,y/σx,y are the electron beam divergences in the undulator, related to εx,y, the horizontal
and the vertical emittances of the beam, and to σx,y, the beam size. Whether the broadening is
dominated by the angular divergence of the beam or by the constant magnetic field depends on which
bending angle is bigger: Θx,y > θH or vice versa.

As regards the focusing effects in undulators, first of all, note that the magnetic field in its form (1)
does not satisfy Maxwell equations and is quite accurate only in a small region in the vicinity of the
undulator axis. Proper discussion of this topic and of necessary corrections for all three field components
can be found in [32]. Not intending to go into details of the focusing concept, we just estimate the order
of the magnitude of the effect produced in order to understand under which conditions the effect of
our constant magnetic field Bd can be compared with that of the focusing field in a planar undulator.
Following [32], for the amplitude of the magnetic field component, in charge of the focusing in the
undulator, we derive the following maximum value:

Bmax f =
2B0L

2

k2β2
x

γ2ΘxΘy = 2B0

(γ

k

)2
L2 ε3

x

σ5
x

εy

σy
, (31)

where βx is the Twiss coefficient.
Note that the above value essentially depends on the ratio of the beam divergence angles to the

SR characteristic angle, which is of the order of 1/γ. Upon the comparison with ρ in (1), the following
equivalent value of the horizontal constant field intensity (2) arises:

κ̃ ≡ ρ̃ = 2B0

(γ

k

)2 ε3
x

σ5
x

L2Θy. (32)

Consider an undulator of a total length L = 2.1m with 300 periods, k = 0.5 and on-axis (!) field
amplitude 7.5 kG at the storage ring Siberia-2 in Novosibirsk [33] in the regime of a “standard” beam
of 2.5 GeV, whose size is 1.5mm × 0.078mm, horizontal emittance is εx = 98nm rad, evaluated for
εy = 49 pm rad vertical emittance. We obtain κ̃1 = 7.2 · 10−5 and Bmax f = 0.5G , which is of the
order of the value of the magnetic field of the Earth! In a “bright” regime its beam energy is 1.3 GeV,
its sizes are 0.363mm × 0.017mm and a horizontal emittance equals εx = 4.9 nm rad. For the same
undulator we have κ̃1 = 1.28 · 10−5 and Bmax f = 0.1G. With the same “standard” beam of 2.5GeV
in Novosibirsk and a 2 m long undulator with k = 1 and Θy = 0.013m rad, we obtain the following
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values: κ̃1 = 3.4 · 10−4 and for 2.5 kG on-axis field we have Bmax f = 0.86G. If the beam energy is
0.51GeV, for a 1 m long undulator with 2.5 kG on-axis field, k = 1 and Θy = 0.013m rad we have
κ̃1 = 3.4 · 10−6 and the respective field value Bmax f = 8.6mG. These examples show that a constant
ambient (or of another origin) field can reach and even exceed the order of the magnitude of focusing
field components in undulators. As far as the divergency is concerned, horizontal and vertical spreads
of a 1.3 GeV beam of Siberia installation are 0.09m rad and 0.013 m rad, respectively. The transversal
constant magnetic field of 0.5 G induces a bending angle of 0.014m rad. This is almost exactly the value
of the vertical beam divergence of the device (!) and 0.5 G is approximately equal to the value of the
strength of the magnetic field of the Earth. Thus, it is evident that the effect of a constant field of
Bd ≈ 0.1÷0.5G (and even lower) across the axis should not be neglected at least because it is comparable
in our example with the contribution of the terms, responsible for inhomogeneous broadening, such as
beam emittance (µx = 0.30), and with the focusing effects. Moreover, another important observation
is that the constant magnetic component can be exploited to compensate for the angular divergence
(in part). Indeed, we know that the off-axis divergence in the angle ψ produces broadening and the
shift ωn|ψ 6=0 = nωR = 2nω0γ2

1+k2/2+(γψ)2
(see, for example, [32]) and it can be partially compensated for by

properly chosen field Hd as discussed in the end of the previous Section (see Eqs. (17)–(20)). It should
be noted that we also have to account for the other source of broadening in undulators, namely, for the
electron energy beam spread.

With the assumption of Gaussian energy distribution in the beam, the relevant line broadening is
(∆ω/ω)ε ≈ 2

√
σe with zero average frequency shift. Normalized to (∆ω/ω)0 = 1/2nN , it becomes

µε ≡ (∆ω/ω)ε

(∆ω/ω)0
≈ 4Nn

√
σe. (33)

Evidently, the broadening effects, induced by the energy spread in beams, are negligible when√
σe ¿ 1/(4nN). For N ∼ 100 and n = 1, we obtain

√
σe ¿ 2.5 · 10−3 and we conclude that the

value σe < 10−6 can be neglected. This was confirmed by numerical code (see, for example, in [27, 28]).
Comparing the constant field effect with the energy spread effect, we relate (27) to (33):

µH

µε
=

(γθH)2

4
√

σe(1 + k2
/
2)

=
π2

3
k2

1 + k2/2
(Nκ1)2√

σe
. (34)

Let us estimate the condition for the effects of the constant field and of the energy spread to be of the
same order, i.e., we set µH ≈ µε to obtain the following value for the squared intensity of the constant
magnetic component κ1 ε, imposed across the undulator in this case:

κ2
1 ε ≈

3
π2

√
σe

N2

1 + k2
/
2

k2
, note that κ1 ε ∝ 1

N
. (35)

For example: for the undulator 1 with N = 100, k = 2 and σe = 10−6 we obtain the value
κ1 ε

∼= 1.6·10−4, for which the constant field and the beam energy spread contributions are approximately
the same. For the undulator 2 with N = 200 we have κ1 ε

∼= 0.8 · 10−4. Note that the Earth magnetic
field of Bd = 0.5G produces κ1 = 2 · 10−4 in an undulator with the on-axis field B0 = 2.5 kG. For
the undulator 1 the Earth magnetic field bends γθH

∼= 0.14, for the undulator 2 γθH
∼= 0.28. The

last example 3 is of an undulator at the Siberia-2 installation in Novosibirsk with the on-axis field
amplitude of 0.75 T,

√
σe = 0.5 · 10−4, N = 300 and k = 0.5 [33]. In this case the energy spread

broadening coefficient amounts to the small value µε
∼= 0.06, for which we find κ1 ε

∼= 0.28 · 10−4,
corresponding to Bd = B0κ1 ε = 0.21G, which produces the same order effect as the energy spread
does. The value of Bd appears of the order of, but somewhat lower than 0.5G (that of the Earth), and
respectively κ1 = 0.667 · 10−4 (κ1

∼= 2.4κ1 ε). Although bending due to 0.5 G field in this undulator is
small, i.e., γθH

∼= 0.036, it produces respectable µH
∼= 0.35. Detailed consideration of the emittance of

the electron beam in an undulator, of the focusing and the defocusing etc., remains beyond the scopes
of the present work. Here we only note that with account for the energy spread and the emittance of
the beam, the total spectrum bandwidth is given by[

∆ω

ω

]

Tot

=
∆ω

ωn,0

√
1 + µ2

ε + µ2
H +

(
µ2

x + µ2
y

)
. (36)
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In a similar way the near field effects can be heuristically included, which, combined with emittance,
can produce on the axis appreciable reduction of the peak UR intensity.

Above we applied a simple approach based on ∆ωi/ω and on corresponding broadening parameters
µi, which gives correct qualitative results for the UR intensity. To describe the exact behaviour of the
function, we need generalized Airy functions, which at the beginning just shift the frequency with little
broadening and only then flatten the peak. In order to account better for the energy spread we refer,
for example, to [32] and write the following simple convolution:

I =
∫ ∞

−∞
(|S (νn + 4πnNε, β)|)2 exp

[−ε2/2σe

]
/

(√
2πσε

)
dε, (37)

where σε is the energy spread, νn is the detuning parameter. Now we turn back to the undulator with
300 periods at the installation Siberia-2 in Novosibirsk and complete our consideration with account for
the energy spread, off-axis effect and its compensation by the constant magnetic field in Fig. 2.
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Figure 2. Emission line for N = 300, n = 1, k = 0.5, σ = 10−8, B0 = 7.5 kG, off-axis angle: γψ ∼ 0.04.

Note that at κ ∼= 0.7×10−4 almost complete compensation of the shift, originated from the off-axis
effects, does occur, which means that Bd ∼ 0.7 · 10−4B0 ≈ 0.5G is the required intensity value of the
constant field (evidently directed opposite to each other for ϕ = 0 and for ϕ = π). Accidentally, it is
of the order of the strength of the magnetic field of the Earth. It has more impact on the emission line
than the energy spread has (see discussion above). In a stronger constant magnetic field Bd > 10−4B0

incoherence prevails; it broadens the line and the intensity of the fundamental harmonic reduces to 1/4
of its initial value for κ ∼= 2.5× 10−4, as observed in Fig. 2.

4. BROADENING OF HIGHER UR HARMONICS

As we have underlined above, a constant magnetic field affects the UR spectrum, i.e., odd harmonics
appear on the axis and even harmonics shift down, and the reduction of the UR intensity occurs,
which should be properly accounted for, since users of UR require high brightness and intense beams.
Corrections due to various sources of broadening were discussed above. In what follows, we will give
some examples of the influence of a constant magnetic constituent on higher UR harmonics. Consider,
for example, undulators with the periodic magnetic field H0 = 2.5 kG. Let us evaluate the effect of
the magnetic field of the Earth (not accounting for the magnetic screening though) Hd = 0.5G, i.e.,
κ1
∼= 2 · 10−4. Its effect on the main harmonic of the undulator with k = 2 and N = 100 was shown to

be unnoticeable for κ1 < 1.5 · 10−4 in [27]. Recent development of new sources of high frequency and
high coherency radiation, such as FEL with SASE, HGHG and others, require high quality beams in
precision made undulators. They frequently employ higher UR harmonics. Therefore, it is important
to know how non-periodic magnetic components, present in undulators, influence them. Modelling of
the UR in such sources should always include losses, associated with homogeneous and inhomogeneous
effects. It is particularly important for the higher harmonics, as we will demonstrate in what follows.
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Separating the constant field effect on the 3rd harmonic line of the undulator with N = 100, k = 2
in additional constant magnetic field κ1H0 as shown in Fig. 3, we conclude that the magnetic field Hd

has no effect on it for κ1 < 0.5 ·10−4. It causes none or little detuning and fading for κ1 < 1.0 ·10−4, and
for κ1 > 1.5 · 10−4 it already decreases the UR intensity three times with the detuning value νn Res ≈ 6.
For κ1 > 2 · 10−4 we see the emission in a wide frequency band instead of the line of the 3rd harmonic.
Thus κ1 ≈ 1.0 · 10−4 is the maximum possible value, when the 3rd harmonic is intended for use. If,
on the contrary, the 3rd harmonic is undesirable, then it can be reduced to half of the main harmonic
intensity by imposing the field with κ1 > 1.5 · 10−4. Even stronger is the effect of Hd on the 5th and
higher harmonics. Thus, even if Hd is as weak as 0.01% of H0, it matters for the higher harmonics.

The constant magnetic constituent Hd also gives rise to odd harmonics on the axis. The example
of the second harmonic is demonstrated in Fig. 4.
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Figure 3. Broadening of the 3rd (n = 3)
harmonic of the undulator with N = 100, k = 2,
due to the constant magnetic field κ1H0.
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Figure 4. Broadening of the 2nd (n = 2)
harmonic of the undulator with N = 100, k = 2,
due to the constant magnetic field κ1H0.

However, the intensity of odd harmonics for the chosen values of the magnetic fields and the
undulator periods is below 1% of even harmonics intensity. It grows with the increase of κ1 and N , but
for reasonably low values of the constant field, such that κ1 < 2.5 · 10−4, it remains at most few percent
even for N ≈ 200.

We complete our consideration of broadening effects due to constant magnetic field with the study
of inhomogeneous broadening contributions due to the electron beam energy spread. It causes serious
reduction of the UR intensity, in particular, for higher harmonics, as demonstrated in Fig. 5 for the 3rd
harmonic of the undulator with N = 100, k = 2 (the plot is scaled with e2γ2/c and with the Bessel
functions factor, independent of N and κ). For σe ≈ 10−6 the beam energy spread alone reduces the
3rd harmonic with 30÷ 50% and only σe ≈ 10−7 (and less) preserves the line shape and the intensity.
Thus for the effective radiation of the 3rd harmonic independently of the constant field broadening
contribution, the quality of the undulator itself and of the beam should be high enough to allow for
the value of σe at least one order smaller than that needed for the main harmonic radiation (see [27] to
compare).

Broadening effects for higher harmonics are even more evident. At the same time, the energy spread
does not change the UR line of the first 2 harmonics of the undulator with N = 100 and k = 2 in the
presence of a constant field and just reduces the fundamental harmonic intensity by less than 10%. The
2nd harmonic emission is totally determined by the intensity of Hd. For N = 100 and Hd = 2 · 10−4H0

it is as weak as ≈ 1% of the main harmonic of the undulator. We omit proper figures for brevity.
Eventually, we study the dependence of the harmonic intensity on the number of periods in

undulators N . Calculating (9) for νn and for N , we can make an optimal choice for the undulator
in terms of maximum output of a certain harmonic, respectively to another one, and obtain best
emission intensity and minimal line broadening. The example of the 3rd harmonic intensity, factorized
by (5 · 103e2γ2/c)−1, is given in Fig. 6.

The 3rd harmonic growth, presented in Fig. 6, gives evidence that in order to exploit it in the
undulator with k = 2, where the constant magnetic field constituent Hd = H0 · 10−4 is present and
σe = 10−6 is the value of a beam energy spread, N ≈ 100 is the preferable choice. Indeed, the intensity
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Figure 5. Pure inhomogeneous effects of the 3rd
harmonic of the undulator with k = 2, N = 100.
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(due to constant magnetic field).

has a maximum at N ≈ 100 and any further increase of N just broadens the line. To give an idea of
the value of the total losses for the 3rd harmonic, we can refer to [32] and proper figures, where the
beam transport and energy losses are zero. The ideal intensity there is ≈ 1.5 and ≈ 6 times higher for
N = 100 and N = 200 periods respectively. This study complements the discussion of the UR spectrum
features in an extra constant magnetic field, presented in the previous Sections, and demonstrates how
the UR intensity should be carefully evaluated with account for non-periodic magnetic fields, which may
appear in undulators either due to structural imperfections, manufacturing defects or magnetic fields
external to an undulator, like that of the Earth.

5. CONCLUSIONS

We have analyzed the contribution of various sources of the undulator line broadening to the total UR
intensity, employing the technique of generalized special functions and accounting for the broadening
effects in an analytical form. The obtained expressions allow for clear distinction of the terms,
responsible for spectrum modification, broadening and shift. In particular, we have demonstrated
that a constant magnetic component of a proper intensity and space orientation can compensate for
negative off-axis effects. Analytical expressions were obtained, examples of some undulators considered
and values of the field intensity, best for such compensation, were derived. If too strong, it impairs
the coherency of electron oscillations in an undulator and deteriorates the UR emission. It appeared
that the Earth can induce a magnetic field of comparable order, which, however, is partially screened
out by the undulator itself. Odd harmonics appear on the axis, but their intensity remains less than
1% of the intensity of even harmonics. We have obtained analytical expressions for the spectrum shift
and emission line broadening due to a constant magnetic field and obtained the ratio of constant and
periodic field intensities κmax = Hd/H0, under which the line shape is preserved.

We also compared the effect of a constant magnetic constituent with the focusing effects in
undulators, included the UR line broadening due to the electron beam energy spread, the emittance
of the beam and other losses. Several examples of undulators were studied. We found that in long
undulators the effect of the constant field can reach and even exceed that of the above mentioned factors,
and at the same time, the Earth also creates a non-negligible disturbance. The UR characteristics
depend on the absolute value of the constant magnetic field constituent κ1 in the plane transversal
to the undulator axis. Longitudinal component of the magnetic field was demonstrated to be not
important for high energy beam undulators; in this case external to the undulator harmful constant
magnetic component can be redirected along the undulator axis, and its influence, if any, virtually
eliminated.
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Dependently on the undulator characteristics, an increase of the number of periods above N ≈
100 ÷ 150 (depends on the undulator parameters and the constant field strength), may give no gain
for high harmonics in particular, but may lead to serious line broadening. In long undulators, higher
harmonics are especially subjected to broadening effects. It may be considered as negative feature, but,
also, as positive, when high harmonics are undesired. Proper choice of the field strength, values of k and
N , can reduce high harmonics radiation several times. It may be important for some FEL applications,
where hard components of radiation damage the mirrors. Limitations of the harmonics gain are also
important in FEL applications, where high gain is essential, e.g., in SASE schemes and in HGHG FEL.
They may involve two-frequency undulators for high harmonic generation. If the periodic field H2 with
the period λ2 in such devices is significantly weaker than the main field H1, then the planned effect of
the field H2 may be reduced and even eliminated by the constant magnetic constituent Hd ≈ 10−4H2.
Moreover, for non sinusoidal periodic fields in an undulator, higher terms of their Fourier expansions,
being smaller than the main terms, can be masked by a constant magnetic field, which is likely to appear
in complex magnetic structures. In this context UR can be used as a control tool for the undulator
device itself, when intended as a part of a FEL system. Our study also demonstrates that particular
attention should be paid to inhomogeneous effects, which, together with extra fields at least as strong
as 10−4 of the periodic field, can equalize even significant theoretical gain of a high harmonic with the
radiation of the fundamental frequency in long undulators.

We hope that the results of our research reported above can find direct application in studies of the
performance of synchrotron insertion devices and used for tuning of SR, UR sources and FEL devices.
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