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Optical Bistability in a Grating with Slits Filled Nonlinear Media

Lyudmila A. Kochetova1, *, Sergey L. Prosvirnin2, 3, and Vladimir R. Tuz2, 3

Abstract—An approximate self-consistent solution of the problem of plane electromagnetic wave
diffraction on a thick grating of metallic bars with slits between the bars filled a Kerr-type nonlinear
dielectric is solved. The bistable operating regime of wave transmission through the grating is studied.

1. INTRODUCTION

Diffraction gratings made of metallic or dielectric bars are widely used in various quasi-optic and
electronic devices, particularly in wavemeters, interferometers, polarization converters, phase shifters,
microwave vacuum electronic devices, etc. Therefore, the problem of electromagnetic wave diffraction
on such gratings is a classic problem in the theory of diffraction [1].

In recent years the interest in solution of the problem of electromagnetic waves diffraction on
gratings of bars has been rekindled due to advances in technologies of production of the periodic
structures whose characteristic dimensions are comparable to the wavelength of optical and infrared
radiations [2]. An important point is that, unlike to the microwave band, in the optical and infrared
bands, on the one hand, there is a lot of transparent materials with significant nonlinear characteristics
and, on the other hand, powerful light sources (lasers) are available which can produce radiation with
sufficiently high intensity enough for the nonlinearity to become apparent.

An undoubted importance for practical applications are nonlinear resonant structures that exhibit
the effects of optical bistability or multistability in transmission, reflection or light polarization
conversion. Bistable systems, which have two stable states at the same control parameters (e.g., for the
same intensity of the incident light), allow designing miniature optical switches, efficient power limiters,
optoelectronic systems and optical transistors (transphasors) which are nonlinear optical devices that
use one light beam to modulate another, in a manner analogous to an electronic transistor, and that
operate through the transference of a phase shift from one beam to the other.

A classical example of the bistable device is a Fabry-Perot interferometer, filled with a Kerr-type
nonlinear medium [3]. In this case, the resonator provides feedback, which is essential to obtain a
multivalued intensity at the structure’s output. Examples of recently proposed new miniature nonlinear
resonant elements are photonic crystal microcavities [4] and quantum well structures [5]. With the
assistance of surface plasmon polaritons to the effects of confining and enhancing the local optical
field intensity, optical bistability has also been shown in different metal nanostructures such as surface
plasmon polaritonic crystals [6], one-dimensional and two-dimensional subwavelength gratings [7–10],
metamaterials [11–15], etc.. In their design the main attention is focused on achieving an enhancement
of nonlinear effects along with reducing the material volume and intensity of the operating light. As
nonlinear materials some semiconductors, like indium antimonide (InSb), gallium arsenide (GaAs) and
indium arsenide (InAs) are typically used in such systems. These materials are characterized by a
relatively strong nonlinearity and have acceptable switching time (relaxation time) of the nonlinear
response.
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The goal of this paper is to study the features of bistable optical response (especially phase
transformations) of a grating of metallic bars with slits filled a Kerr-type nonlinear dielectric. Our
investigations are provided in the near-infrared wavelength range, in particular, at the wavelength of
1240 nm which is close to the second Telecom Window of the fiber-optic communication lines.

2. PROBLEM STATEMENT AND SOLUTION

Let us assume an electromagnetic plane wave

~Ei(z) = ~P exp[i(kz − ωt)], (1)

normally incidents on a periodic grating depicted in Fig. 1. In (1) ~P is a vector which defines the
magnitude and polarization state of the incident field, and k = 2π/λ the free-space wavenumber. We
neglect the effects of high-order harmonic generations, so we suppose that both transmitted and reflected
fields have the time dependence in the form exp(−iωt).

The grating is made of silver bars with rectangular cross section which are periodically arranged
on a flat substrate of silica. The slits between the bars are filled with gallium arsenide. So the final
structure is the layered geometry, and consists of alternating layers of two materials with different linear
and nonlinear optical properties. The grating period and thickness are d and a, respectively. The width
of slits is θ.

At the wavelength λ = 1240 nm, the relative permittivity of silver is almost independent of the
electromagnetic field strength and is about εa = −81.5 + i5.1 [16]. On the contrary, gallium arsenide
which fills the slits between the silver bars is a nonlinear material. In the first approximation, its
permittivity is linearly dependent on the intensity of the electric field, i.e., it is a Kerr-type nonlinear
medium with permittivity εb = εb1 + εb2|E|2, where εb1 = 11.0, εb2 = 1.3 × 10−3 cm2/kW [3]. The
substrate is made of a transparent and linear material (silica) which permittivity is εs = 2.1. We
suppose that all structure’s components are nonmagnetic, i.e., µ = 1.

Further we assume that the grating is made from ultra thin layers of metal and nonlinear dielectric.
Thus the structure period d is much smaller than the electromagnetic wavelength in the grating materials
(d ¿ λ). Under this condition, the propagation of light can be described by effective values of the optical
constants that are obtained by performing a suitable volume average of the local optical response of the
material. In fact, performing such an average can be rather subtle for situations involving the nonlinear
optical response, because it is the nonlinear polarization that must be averaged, and the nonlinear
polarization depends on the spatially inhomogeneous electric field amplitude in the composite material.
We will, however, make the assumption that the spatial extent of each region is sufficiently large that
we can describe its response using macroscopic concepts [17–22] rather than using microscopic ones. So,
these conditions limit the grating period by several tens of nanometers. Thus, to calculate a nonlinear
response of the studied structure we can follow the approach treating the grating like a slab of effective

Figure 1. A periodic grating of pairs
of alternating metallic (silver) and dielectric
(gallium arsenide) bars placed on a silica
substrate.

Figure 2. The normal incidence of the
plane electromagnetic wave on the homogeneous
anisotropic layer which is equivalent to the
grating.
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continuous anisotropic medium [23] with effective tensor of nonlinear dielectric permittivity

ε̂eff =

(
εxx 0 0
0 εyy 0
0 0 εzz

)
. (2)

This problem becomes to be reduced to the problem of finding the relation between the local
and macroscopic field in a composite material containing nonlinear inclusions. By this means, the
investigation of the wave interaction with an inhomogeneous periodic structure is reduced to the solution
of the boundary-value problem of conjugations of an equivalent homogeneous anisotropic layer with
surrounding spaces (Fig. 2).

Electromagnetic field within the grating must satisfy the condition of continuity of the tangential
component of the electric field and the normal component of the electric induction at the boundaries
between the layers of silver and gallium arsenide. Using these boundary conditions, it is easy to obtain
expressions for the components of effective permittivity tensor ε̂eff in the case when the vector ~E is
parallel to bars (E-polarization)

εyy = εzz = ηεb + (1− η)εa, (3)

and in the case when the vector ~E is perpendicular to bars (H-polarization)

εxx =
εaεb

ηεa + (1− η)εb
, (4)

where η = θ/d is the dielectric infilling factor.
When the incident field intensity is small (i.e., in the linear regime), the effective permittivity of

the equivalent layer is a constant. In this case the reflected (z < 0), inner (0 < z < a) and transmitted
(z > a) fields can be written as follows

Eref (z) = P
γ −√εe −√εs + (δ +

√
εe −√εs) exp(2ikea)

α + β exp(2ikea)
exp(−ikz), (5)

Ein(z) = 2P
γ exp(ikez) + δ exp[ike(2a− z)]

α + β exp(2ikea)
, (6)

Etr(z) = 4P
exp[i(ke − ks)a]
α + β exp(2ikea)

exp(iksz), (7)

where ke = k
√

εe, ks = k
√

εs, α = 1+
√

εe+
√

εs+
√

εs/εe, β = 1−√εe+
√

εs−
√

εs/εe, γ = 1+
√

εs/εe,
δ = 1−

√
εs/εe. The difference between H-polarization and E-polarization involves the use in Eqs. (5)–

(7) of two different effective permittivities εe = εxx and εe = εyy, respectively.
When the incident field intensity is high (i.e., in the nonlinear regime), the permittivity of gallium

arsenide in the grating slits depends on the electric field intensity, and therefore the grating becomes
to be inhomogeneous along the z-axis. In our self-consistent approach we neglect the effect of this
inhomogeneity on the optical properties of the studied structure and seek a solution of the nonlinear
diffraction problem by averaging the squared magnitude of the electric field inside the grating along its
thickness and then use this averaged value to determine the actual permittivity within the slits

εb = εb1 + εb2|Ein(z)|2, (8)

and then the effective permittivity εe of the equivalent layer. In Eq. (8) the averaged value of the
squared amplitude of the electric field is calculated using (6) as the next

F = |Ein(z)|2 =
1
a

∫ a

0
|Ein(z)|2dz =

4|P |2
a

∫ a

0

∣∣∣∣
γ exp(ikez) + δ exp[ike(2a− z)]

α + β exp(2ikea)

∣∣∣∣
2

dz. (9)

Thus a nonlinear equation related to the averaged value of the squared amplitude of the electric
field can be formulated in the form [13–15]

F = P̃ΦF (λ, εb1 + εb2(F )) = P̃ΦF (λ, εe(F )), (10)

where P̃ is a dimensionless coefficient which depicts how many times the incident field magnitude P is
greater than 1V cm−1. The input field magnitude P is a parameter of this nonlinear equation. So, at
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a fixed wavelength λ, the solution of this equation gives us the averaged value of the squared amplitude
of the electric field F which depends on the magnitude of the incident field P . Since the effective
permittivity εe depends on the averaged value of the squared amplitude of the electric field F , Eq. (10)
is a nonlinear equation with respect to F in which the incident field magnitude P is a parameter. For
each value of the magnitude of the incident field Eq. (10) can have one solution or more than one
solutions, and accordingly, the whole diffraction problem has a set of solutions.

Since these solutions are depended on the incident field intensity, it is convenient to provide an
analysis of the diffraction problem solution in terms of field intensities. Thus the intensity of the
electromagnetic wave, which electric field strength is expressed in V cm−1 in a nonmagnetic medium
with a refractive index n, is further determined by the formula I = n|E|2/240π W cm−2.

The set of solutions of the nonlinear Equation (10) can be found at least in two ways. The first
one is to find the roots of the equation for any given value of the magnitude (intensity) of the incident
wave. The second less obvious way consists in assigning F in some interval of its possible values and
then finding the field intensity of the incident wave, which leads to the appearance of the appropriate
inner field. The second method is more robust since it does not need searching for multiple roots of
the equation in the case when their number is not known a priori, and we use such a treatment in our
numerical calculations.

3. RESULTS AND DISCUSSION

The characteristic curves of dependence of the inner field intensity on the incident field intensity
(Iinc = |P |2/240π kW cm−2) are depicted in Fig. 3 in the case of the H-polarized incident wave.
At low magnitude of the incident wave, electromagnetic field intensity inside the structure is a single-
valued function Iin(Iinc) of the intensity of the incident wave. As magnitude of the incident wave rises,
the function Iin(Iinc) becomes to be two-valued and then multi-valued one.

Figure 3. Dependences of the inner field intensity on the incident field intensity of H-polarized wave
for the grating in free space (solid red line) and the grating placed on a silica substrate (dash blue line);
η = 0.8, a/λ = 0.5.

The inner field intensity experiences an abrupt transitions between different distinct states as the
incident field magnitude increases/decreases. In Fig. 3 these transitions are marked with vertical arrows.
It is important that the field intensity inside the structure is changed in a different way as the magnitude
of the incident wave increases and decreases, forming typical for nonlinear systems S-type hysteresis
loops.

Once the averaged intensity of the inner field (i.e., the parameter F which is a solution of Eq. (10))
is found, the transmission (T ) and reflection (R) coefficients can be determined in the form

T = Etr(a)/Einc(a) = Etr(a) exp(−ika)/P, R = Eref (0)/P, (11)

apart for E-polarized and H-polarized waves.
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(a) (b)

Figure 4. Magnitude (solid red line) and phase (dash blue line) of the (a) transmission and (b) reflection
coefficients versus the incident field intensity of H-polarized wave for the grating placed on a silica
substrate; η = 0.8, a/λ = 0.5.

The dependences of the magnitude of the transmission and reflection coefficients on the incident
field intensity for H-polarized incident wave at a wavelength of 1240 nm are presented in Fig. 4. In the
case of such polarization, the electric field vector of the incident wave is perpendicular to the grating
bars. Therefore, the fundamental waveguide mode of the planar waveguide with metallic sidewalls is
effectively excited inside the grating slits for any their width. As a result of the fundamental waveguide
mode reflection from open ends of planar waveguides in planes z = 0 and z = a the standing wave field
is formed within each slit. At a particular wavelength this standing wave field becomes to be resonant.
The resonant wavelength depends on the permittivity of slits filling, which, in turn, is determined by
the inner field intensity. Thus the dependences of the magnitude of the transmission and reflection
coefficients on the incident field intensity appear as alternating maxima and minima which are results
of the constructive and destructive interference of waves inside the structure, and characteristic of this
wave interference changes as Iin increases or decreases.

The phase changing of the reflection and transmission coefficients against the background of their
magnitudes as a function of the incident field intensity of H-polarized wave is also depicted in Fig. 4.
One can see that the phase also experiences discontinuous switching as Iinc increases and decreases.

(a) (b)

Figure 5. Magnitude (solid red line) and phase (dash blue line) of the (a) transmission and (b) reflection
coefficients versus the incident field intensity of E-polarized wave for the grating placed on a silica
substrate; η = 0.8, a/λ = 0.5.



138 Kochetova, Prosvirnin, and Tuz

In the case of E-polarization of the incident waves (i.e., when the electric field vector ~E is parallel
to the grating bars) at a low intensity of the incident field the wave is almost completely reflected from
the grating (see Fig. 5). The phase of the reflection coefficient is close to −180◦. The grating can be
approached as an equivalent layer of the plasma-like medium which dispersion curve is considered to be
in the frequency band below the plasma frequency. As the incident field intensity increases the optical
properties of this medium vary and the system becomes to be partially transparent.

It is obvious when the incident wave possesses some intermediate polarization, which is a
superposition of H-polarized and E-polarized waves, some abrupt changes in the polarization state
of the reflected and transmitted fields (namely, the stepwise changing in the polarization azimuth
and ellipticity) can appear with the incident field intensity increasing due to effects of bistability and
multistability in the reflection and transmission coefficients.

4. CONCLUSION

The studied structure made in the form of grating of metal bars with slits filled with a Kerr-type
type nonlinear dielectric manifests bistable and multistable behaviors of the reflection and transmission
coefficients in the near infrared band. From the specific parameters used in our numerical calculations,
it is reasonable to conclude that bistable response and stepwise polarization switching can already be
achieved at the incident power densities of 10–100 kW cm−2 with available materials in the considered
structure configuration. The studied structure can be applied in the infrared band for designing
miniature switches, limiters, logic gates, etc..
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