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Travelling Wave Mechanism and Novel Analysis of the Planar
Archimedean Spiral Antenna in Free Space

Teng-Kai Chen1, 2, * and Gregory H. Huff1

Abstract—While Archimedean spiral antennas were invented a half-century ago, only self-
complementary impedance can be evaluated directly from the Babinet’s principle. This paper examines
the effects of metal width and arm spacing on printed spiral’s input impedance. A model is proposed
based on examination by decomposition of planar spiral. A closed-form expression for the input
impedance of Archimedean spiral antenna is obtained by evaluating the proposed model with conformal
mapping techniques. Full-wave numerical simulations, Babinet’s principle, and a fabricated antenna
demonstrate the accuracy of the proposed model. The expression in this work can be used to find the
impedance of a variety of spiral complementary structures analytically. The examination and discussion
on the effects of other parameters and features in addition to the spiral itself are also provided through
numerical simulation.

1. INTRODUCTION

The Archimedean spiral antenna is well known for its broadband characteristics with circular
polarization since its first disclosure in the 1950s by Turner [1]. Curtis proposed the first analytical
analysis using wire assumption and semicircle approximation [2]. In 1960, Kaiser proposed the band
theory stating that the radiation occurs in the regions where the two filamentary currents on the
neighboring wires are in-phase [3]. No rigorous math is described by the band theory, but its easier-
understood concept can explain several notable properties of Archimedean spiral antennas. Although
there was a dispute that the Archimedean is not a type of frequency independent antenna [4], it shares
similar properties with the equiangular spiral and some research report that the Archimedean is a better
candidate for broadband application [5, 6].

After those analytical works in the 1960s, the pursuit of a physically descriptive analysis on the
Archimedean spiral antenna has received less attention perhaps due to its curvilinear structure and
the geometric complexity. A number of numerical methods have been developed and utilized to model
these broadband attributes. The method of moments (MoM) with thin-wire assumption is applied in
several earlier works to investigate the spiral on an infinite reflector [7], impedance loading along the
spiral arms [8], and monofilar spiral backed by a ground plane [9] in free space. The printed wire design
can also be analysed by MoM on a semi-infinite dielectric substrate [10], an infinite conductor-backed
substrate [11, 12], and an infinite grounded substrate with superstrate [13]. For the printed spiral with
non-negligible arm width, the thin-wire assumption is less valid due to the fact that the currents will
reside on the edges of metal strip. The analysis of them has been performed using various computational
techniques, e.g., the finite-volume time-domain (FVTD) method [14], the finite-difference time-domain
(FDTD) method [15–20], the finite element method (FEM) [21], and commercial full-wave solvers [22–
25].
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These methods have been collectively successful in the analysis of many spiral antennas, but they
are not convenient for the design and synthesis. This is especially true with regards to the input
impedance, which is very important to feeding the power effectively but fully unpredictable except the
self-complementary structure in free space. The pioneered work in [26] applied the concept of the band
theory and developed the coplanar strip (CPS) model. Our previous work proposed a model based on a
conjectured field distribution of the radiation region similar to what the band theory stated due to the
in-phase currents [27]. This work proposes an alternative quasi-static model based on a novel analysis on
the planar spiral structure (disregarding the band theory) and provides a rigorous conformal mapping
analysis. The primary differentiator from other models is the more accurate treatment of the spiral
transmission line as a slotline with finite lateral PMC boundaries. In this paper, the two-arm spiral
geometry is reviewed first with its major design parameters and operational assumptions. A model for
the quasi-TEM slotline propagating mode is proposed next, and followed by the conformal mapping
analysis. Babinet’s principle and full-wave electromagnetic simulations verify this analytical closed-form
expression. Experimental observations on a fabricated antenna provide additional demonstration on the
accuracy of the simulated results and proposed method.

2. ARCHIMEDEAN SPIRAL ANTENNA

Figure 1 shows a non-self-complementary two-arm planar gap-fed Archimedean spiral antenna. The
equation of Archimedean spiral curve is given by

r = aθ + rin (1)

where r is the radius of curve, a the growth rate, θ the winding angle, and rin the inner radius of spiral.
The outer radius is then defined by rout = 2πNa+ rin with N turns of the spiral. Two edge curves of c1

and c2 describe one spiral arm as c1 = aθ + rin and c2 = a(θ + θoff) + rin, where θoff is the offset angle.
The metal width W and the metallization ratio χ of spiral antenna can then be defined as

W = |c1 − c2| = θoffa (2)

χ =
W

W + S
=

θoff

π
(3)

The design of the trapezoid feed section at the spiral center is shown in the exploded-view in
Figure 1 with the taper to a gap length of g and gap width of Wg. The inner radius is designed by

rin =
S

4 sin
(

S
2a

) (4)

for parametric study in the following numerical simulation.
Computation of radiation characteristics on spiral antenna has been the subject of several papers,

on which the numerical approaches are based mostly, while the band theory provides physical insight
into its radiating operation [3]. There is no mathematical rigor attached to this theory, but it surmises

Figure 1. The two-arm planar Archimedean spiral antenna with number of spiral turns of N = 1.5
and non-negligible metal width.
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that the broadside radiation originates in annular regions where the outward-propagating filamentary
currents in neighboring wires are in-phase. This radiating mechanism is geometrically similar to a loop
antenna with a circumference that is equal to a guided wavelength λg as

2πrrad = λg =
vp

f
(5)

where rrad is the radius of the loop antenna, vp is the phase velocity of guided wave, and f is the
operating frequency. The lower bound of bandwidth predicted by the band theory can therefore be
approximated using rout. For the upper bound of operating frequency, there is historically no prediction
of it, but it can be approximated using rin if there is no tapered feed region in the spiral center [28]. In
the region between the upper and lower frequency bounds, a band of nearly constant impedance can be
seen.

3. PARALLEL SLOTLINE MODEL

For any antenna design, the impedance matching is a key factor to radiate power effectively. Assuming
the spiral arms are symmetrically designed with an infinite number of turns and are excited in its
fundamental balanced mode, two leaky traveling waves propagate outward from the feed location and
a perfect magnetic conductor (PMC) wall can then be placed in the middle perpendicular plane of
spiral arm, as shown in Figure 2(a). The treatment is similar to the work in [29]. To investigate its
impedance properties, the spiral is then unwrapped into an un-curved two-conductor transmission line,
and a short section about the central feed can be examined to analyze the relationship between the
excitation at the center and the leaky wave supported by the two spiral arms. Figure 2(b) shows the
resulting three-port network obtained from this transformed antenna feed structure, where Port1 is a
lumped port representing input terminals of the spiral antenna, and Port2 and Port3 are wave ports
terminating the slotline structures with PMC walls on their lateral sides.

Figure 3 shows the simulated S-parameters and port impedance of the three-port network shown
in Figure 2(b). The width and slot spacing is fixed at W + S = 2.5mm. The characteristic impedances
Z02 and Z03 are taken directly from full-wave simulation [30] of slotline structure at Port2 and Port3,
respectively. The lumped port impedance at Port1 is assigned manually during post-processing as the
parallel impedance of Z02 and Z03. The low S11 is expected in Figure 3 because this assignment facilitates
an intuitive impedance matching condition. The S21 and S31 demonstrate 3 dB power transmission
from port1 to port2 and port3, respectively, implying that the power is split equally from the input
end to the two slotline modes. It is noted that the slotline with finite PMC boundaries has constant

(a)
(b)

Figure 2. (a) A two-arm planar Archimedean
spiral antenna with a perpendicular PMC plane
placed along the middle of spiral arms and (b) a
three-port network of unwound spiral antenna.

Figure 3. Simulated S-parameters of unwrapped
spiral antenna structure.
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(a) (b)

Figure 4. Calculation of capacitance C0 for slotline mode with lateral PMC in free space; (a) equivalent
circuit and (b) conformal mapping steps from z-plane onto t-plane and then onto w-plane.

characteristic impedance from DC up to 50 GHz, while the slotline with infinitely lateral conductor is a
highly dispersive transmission line [31].

Based on this examination, the input impedance of spiral antenna is closely related to the parallel
characteristic impedance of two outward-propagating slotline modes with lateral PMC boundaries on
spiral structures. The quasi-static analysis by conformal mapping [32, 33] is performed here to calculate
the characteristic impedance since the potential functions and the capacitances between corresponding
conductors are preserved after mapping to a simpler domain for which solutions are easily obtained.
Several additional conditions are assumed to retain sufficient accuracy at higher frequencies. First, the
quasi-TEM wave propagation will be maintained by ensuring W + S ¿ λg/2 for the spiral and slotline.
Next, the metal strips have negligible thickness and are PEC. The per-unit-length (P.U.L.) capacitance
C0 is the only unknown parameter required to obtain the characteristics. The general mapping processes
used in this paper is outlined in the Appendix.

Figure 4(a) shows the cross section of slotline with PMC boundaries, where a PEC wall is placed
at the middle plane of slot due to assumed symmetric field distribution. The P.U.L. capacitance C0

can then be evaluated by conformal mapping analysis described in Figure 4(b). The z-plane for this
topology has the coordinates zb = W/2 + S/2, zc = W/2 and zd = 0, and the mapping function

t = − cos
(

2πz

W + S

)
(6)

maps these points onto the t-plane. The parallel-plate structure in the w-plane can be obtained using
the transformation in (A3), and C0 can be obtained by

C0 = ε0
K (k0)

K
(√

1− k2
0

) (7)

where the modulus of elliptic integral is k0 = sin(χπ/2). From the equivalent circuit shown in
Figure 4(a), the characteristic impedance Z0 of slotline are given by

Z0 =
√

µ0ε0

C0
(8)

where ε0 and µ0 are the permittivity and permeability in free space, respectively. The input impedance
of spiral antenna can be evaluated by the parallel impedance of Z0.

4. RESULTS AND DISCUSSIONS

The conformal mapping analysis can provide an accurate prediction across a wide frequency
band [34, 35]. Analytical results obtained from quasi-static model are compared in this section to the
full-wave simulated results. Moreover, the Babinet’s principle demonstrates the accuracy of proposed
model.
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4.1. Parametric Study of Archimedean Spiral Antenna

The Archimedean spiral antennas with design parameters of W + S = 5mm, N = 5, and g = Wg =
0.04 × W are examined to provide a demonstration vehicle for evaluation of proposed model. The
radiation boundary is truncated from the radiating source by half wavelength of lower frequency of
bandwidth using the band theory of (5) with rout. The maximum size of tetrahedron meshing elements
is limited by W/5 along the spiral arms for accuracy. Figure 5 shows the simulated input impedance as
a function of frequency for χ = 0.167, 0.5, and 0.833. The theoretical frequency span was determined
by rin and rout for the upper and lower bounds of 20.042 GHz and 932 MHz, respectively. In practice,
the lower frequency has been found to be upwards of three times this theoretical value [23]. Following
this, the low frequency limit is 3fL = 2.795GHz. The upper limit of 20.042 GHz is somewhat arbitrary
since there is no explicit limit to this, but it may be limited in practice by 1/3, which is self-consistent
with the lower limit. Thus, a bandwidth approximately from 2.8 GHz to 6.7 GHz is considered here in
Figure 5.

Figure 5 shows that the input reactance is close to zero in the radiation region, which is a well-known
property of spiral antenna [7, 10, 16]. A clearly frequency-independent behavior of input impedance is
observed on the self-complementary structure (χ = 0.5) over the bandwidth. For the structure of
χ 6= 0.5, the input impedance is a little offset from the frequency-independent value. This is explained
by the difference between frequency-independent antennas and Archimedean spiral antennas [34].
As expected, only the self-complementary structure exhibits frequency-independent behavior. Less
frequency-dependence at higher metallization ratios can also be observed due to the more concentrated
field distribution in the narrower slot, which makes the P.U.L. capacitance of transmission line less
dependent on frequency. In general, the analytical conformal mapping results have good agreements
with simulated input resistance.

In addition to metallization ratio χ, other spiral parameters may have effects on the input
impedance. The lower frequency point of stable impedance is dominated by the outer radius (e.g.,
W + S and N), but their input resistance remain similar values in the radiation region (supported by
numerical simulation but not shown here). Figure 6 shows the simulated input impedance of three
Archimedean spirals in different arm termination and feed region. The antennas to be simulated in
Figure 6 all have spiral parameters of W + S = 5 mm and N = 5 with various metallization ratios. In

Figure 5. Simulated input impedance (solid
line) of two-arm planar Archimedean spiral
antenna in free space compared with analytical
impedance (dashed line) of parallel slotline model
by conformal mapping.

(a) (b) (c) (a) taper termination
(b) inductive feed gap
(c) no feed region

Figure 6. Simulated input impedance of spiral
antenna design with (a) taper arm termination,
(b) inductive feed region (g > Wg), and (c) no
feed region.
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case (a), the antenna has the feed region of g = Wg = 0.04 ×W and arm termination by a taper to a
point to reduce the reflection from the end of the antenna. The input impedance of this case remains
similar behavior to Figure 5 in the radiation region because most of the power of propagating mode is
radiated without reflecting back from the end. In case (b), the antenna has no arm termination but has
the feed region design by g = 0.1 × rin and Wg = 0.04 ×W , where g is always larger than Wg. This
feed gap design has inductive response in the input end rendering the positive input reactance, but the
input resistance still remains similar behavior. In case (c), the antenna has no arm termination and no
feed region design. The input reactance becomes inductive when the metallization ratio is small due to
the small metal arm width, while the input reactance becomes capacitive when the metallization ratio
is large. It is noted that the input reactance of self-complementary structure without feed region has
capacitive input reactance due to the large input gap as shown in Figure 6(c). Although different feed
design may affect the input impedance (mostly on input reactance), the behavior on the input resistance
is obviously a function of metallization ratio and can be captured by analytical model very well.

4.2. Parallel Slotline Model and CPS Model

Since a band of nearly constant impedance can be observed between the upper and lower frequency
limits, the input resistance at the low frequency operating point is extracted to compare with the
proposed quasi-static model. Figure 7 shows a good agreement between the simulated results of gap-
fed spiral and those obtained by conformal mapping. The parallel slotline model can predict the
input impedance of two-arm gap-fed Archimedean spiral antenna over a suitably wide frequency band,
especially for larger metallization ratio.

Results obtained using the CPS model in [26] are also included in Figure 7 for comparison since
it provides the first demonstration that conformal mapping techniques can be used to evaluate the
impedance of spiral antenna (and any planar non-self-complementary symmetric antenna structure).
This model represents a pioneering effort in regards to its approach and insight, but the results in
Figure 7 indicate that the CPS model yields different results to those evaluated by parallel slotline
model. From physical point of view, the complementary structure of any CPS is interpreted as a CPW
with infinite lateral grounds; this is not a self-complementary structure by virtue of CPS and further
illustrates why the CPS model cannot obtain the self-complementary impedance of η0/2 = 188.5Ω at
χ = 0.5 (W = S). Other mathematical differences between the proposed model and the work in [26]
reside in its derivation. The CPS model is evaluated by modifying the self-complementary impedance
of η0/2 using a multiplicative factor. Specifically, this factor uses the ratio of characteristic impedances
for a non-complementary CPS (WCPS 6= SCPS) to the characteristic impedance of self-complementary
CPS (WCPS = SCPS), where WCPS is the metal width, SCPS is the strip spacing, and the impedance of
CPS is given by [36]. Strictly speaking, it is not a rigorous derivation directly from a CPS structure.

Figure 7. Analytical impedance (parallel slotline model and CPS model in [26]) and simulated input
impedance (Num.) of two-arm Archimedean spiral antenna in free space at 2.8 GHz and 6.7 GHz.
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4.3. Babinet’s Principle

Booker’s widely recognized relation of ZmetalZslot = η2/4 for Babinet’s principle in electromagnetic
fields [37, 38] can be used to benchmark the proposed parallel slotline model, where Zmetal and Zslot are
the input impedances of metal and slot radiating modes, respectively, and η is the intrinsic impedance.
This principle is of fundamentally importance and can be applied to find the impedance for a wide
variety of complementary structures. However, it cannot provide a priori information for non-self-
complementary spiral antennas since Zmetal and Zslot are typically unknown.

For an Archimedean spiral antenna with a metallization ratio of χ, its complementary structure
has a metallization ratio of (1− χ) and the input impedance Zc

in is given by

Zc
in =

1
2

√
µ0

ε0

K
[
sin

(
π

χ

2

)]

K
[
cos

(
π

χ

2

)] (9)

Multiplying the impedance of Zin = Z0/2 and its complementary impedance of Zc
in, the result is given

by

Zin × Zc
in =

η2
0

4
(10)

where (µ0/ε0)1/2 = η0. This demonstrates that the expression fulfills the relationship of complementary
structures and accurately predicts the input impedance of Archimedean spiral antenna. Since (8) is a
function of only metallization ratio, it is reasonable to deduce that the impedance derived by conformal
mapping can be generalized for any planar complementary FI structure.

5. MEASUREMENT

A two-arm gap-fed Archimedean spiral antenna was fabricated and measured for further verification
of conformal mapping result. The prototype antenna has metallization ratio of χ = 0.8333 with
W +S = 30mm. The input region design has g = 0.5mm and Wg = 0.25mm. The outer radius of spiral
is 99.6mm and consists of turns N = 1.5. These parameters were determined by the limitations of the
mechanical milling area and the capability of carrying cable on spiral arms. The antenna was milled
from solder-tacked copper tape atop a 228.6mm×228.6mm square Rohacell 51 IG (polymethacrylimide
foam) substrate [39] with dielectric constant εr = 1.05, loss tangent tan δ = 0.003, and a thickness of
3.99mm. The foam provided physical support for the antenna while remaining closely matched in
material properties to free space. The backside of fabricated antenna has no conductor plane. The
infinite balun design in [40] is adopted as a feed, which requires a wide metal arm to carry the
feeding cable along the middle of spiral arm. The dummy cable on the other arm is necessary to
remain the symmetry of spiral structure. The length of coaxial cable is 914.4mm for de-embedding the
measured point to the input terminal of spiral antenna. The impedance measurements were obtained
by Agilent E8361C VNA using port extension to move the reference plane electrically to spiral center.

Figure 8 shows measured and simulated input impedances from 500 MHz to 8 GHz. The average
measured and simulated real-valued impedances from 1 GHz to 8GHz are 106.02 Ω and 111.69 Ω,
respectively, while the conformal mapping result is 108.7527 Ω. As expected, the presence of additional
metal surfaces from cables and solder increases the capacitive loading on transmission line and hence
decreases the characteristic impedance of slotline mode. The experimental data are however in
reasonable good agreement with the simulated results. It is noted that the measured input reactance of
this spiral is −10−4 Ω, while the simulated input reactance is around 11 Ω. The positive input reactance
is due to the inductive feed region design and the capacitive loading of soldered cable across the input
terminal compensates this inductive reactance.

Although the radiation patterns of spiral antenna are well studied in literatures, not the focus in
this work, the measured radiation pattern is included here for readers’ interest. The gain measurements
were obtained through anechoic chamber. Figure 9 shows the measured and simulated radiation
pattern (Eθ and Eϕ) in xz - and yz -plane at different frequencies within the radiation bandwidth of
the spiral antenna. Due to the impedance mismatch between the input impedance of spiral antenna
and characteristic impedance of coaxial cable, the realized gain of simulated result is recorded in this
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Figure 8. Measured input impedance (solid line) after de-embedded calibration of cable, simulated
input impedance (dashed line) without the infinite balun, and conformal mapping result (red dash-dot
line) of the fabricated spiral antenna.

(a)

(b)

(c)

Figure 9. Radiation patterns of measured gain (solid line) and simulated realized gain (dashed line)
in xz - and yz -plane at (a) 3GHz, (b) 6 GHz, and (c) 8GHz.
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plot. The discrepancy between the peak measured and simulated radiation patterns is mainly due to
the cable loss, i.e., the simulation performed by an ideal input without the long feeding cable along
the spiral arms to the input end. Other reasons may be due to the imperfect fabrication by our lab
equipment and additional mismatch interaction between the coaxial transitions to the DUT. Taking
the cable loss into consideration (e.g., 2.30 dB/m at 3 GHz and 4.27 dB/m at 10 GHz), the simulated
radiation pattern has a very good agreement with the measured one. The axial ratio is below 5 dB
across the radiation bandwidth (not shown here), while it can be improved by increasing the spiral
turns. It is worthy to note that this antenna design has not been optimized in any way or chosen for
any particular performance attribute.

6. CONCLUSION

A rigorous analysis and a closed-form expression for the input impedance of Archimedean spiral antenna
have been obtained using the parallel slotline model, which gives physical insight when the spiral arm
width is non-negligible (cannot be considered as thin wires). Other spiral parameters such as the number
of turns and the spiral growth rate have little effect on the input impedance operating at its radiation
region, while the feed design may affect the impedance since it is placed near the input terminal. The
accuracy of derived expressions has been verified by three ways: comparison with the numerical results
by full-wave solver, substitution into the Babinet’s principle, and measurement of fabricated antenna.
The proposed analysis provides an accurate prediction for the input impedance of Archimedean spiral
antenna in free space.

It is worthy to note that expression (8) is only a function of metallization ratio, which indicates
that it may be applied to other frequency-independent antennas based on traveling wave mechanism.
The closed-form expression in this work is important because it is not found since Archimedean spiral
antennas were invented a half-century ago. Only self-complementary impedance can be evaluated
directly from the Babinet’s principle in most of antenna textbook and spiral antenna literatures. It
can be applied to find the impedance of a variety of spiral complementary structures analytically, while
the Booker’s relation can only be used to find the self-complementary impedance. It can also be applied
to design spiral antenna’s impedance to match with system impedance since it is hard to design a
wideband balun as wide as the frequency response of spiral antenna [41, 42]. It is especially useful for
any spiral antenna design starting from designing input impedance as works in [43].

APPENDIX A.

The Schwartz-Christoffel transformation [44] provides a useful tool to calculate capacitance and is given
by

df (t)
dt

=
n∏

ρ=1

(t− tρ)
−(1−αρ) (A1)

where w = f(t) is the mapping function. It maps the upper-half of complex t-plane onto the interior of
a polygon in w-plane and the real axis onto the boundary with the interior angle of παρ at the vertex
ρ of polygon. For a closed convex polygon, the restriction on αρ is given by

n∑

ρ=1

(1− αρ) = 2 (A2)

For more than four vertices (n > 4), this transformation can only be evaluated by numerical integration.
Fortunately, the transformation for calculation of parallel-plate capacitance can be expressed by a linear
combination of elliptic integrals.

Figure A1 shows the general transformation when mapping the upper half-plane onto the interior
of the rectangle with αk = 1/2 and n = 3 by

w = A + B

∫ t 3∏

ρ=1

(
t′ − tρ

)− 1
2 dt′ (A3)
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Figure A1. Schwartz-Christoffel transformation of n = 3.

where constant A describes a translation and constant B describes the rotation and magnification. For
a generic value of t, the integral is said to be incompletely expressed by the elliptic integral of first kind
as

F (ϕ, k) =
∫ sin ϕ

0

dx√
(1− x2) (1− k2x2)

(A4)

where ϕ and k are called amplitude and modulus of elliptic integrals, respectively.
When ϕ = π/2, the integration in (A4) can be expressed as K(k); this expression is called the

complete elliptic integral of first kind. The integral in (A3) can be found in a table of integrals (e.g., [45]),
and the boundary of the rectangle in the w-plane are given by

∫ t2

t3

dt′√
(t′ − t1) (t′ − t2) (t′ − t3)

= −g3K (k) (A5)

∫ t1

t2

dt′√
(t′ − t1) (t′ − t2) (t′ − t3)

= jg3K
(
k′

)
(A6)

where the geometric parameters are expressed in

g3 =
2√

(t1 − t3)
(A7)

k =

√
(t2 − t3)
(t1 − t3)

(A8)

and k′ = (1 − k2)1/2 is the complementary modulus of elliptic integral. It is noteworthy that the
parameter g3 is not shown in Figure A1 since it represents the magnification of mapping and will be
canceled in the calculation of capacitance.
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