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Electromagnetic Scattering by Approximately Cloaked
Dielectric Cylinder

Hany M. Zamel1, *, Essam El Diwany1, and Hadia El Hennawy2

Abstract—In cloaking, a body is hidden from detection by surrounding it by a coating consisting of
an unusual anisotropic nonhomogeneous material. The permittivity and permeability of such a cloak
are determined by the coordinate transformation of compressing a hidden 2D or cylindrical body into a
line. Some components of the electrical parameters of the cloaking material (ε, µ) are required to have
infinite or zero value at the boundary of the hidden object. In order to eliminate the zero or infinite
values of the electrical parameters, approximate cloaking can be used by transforming the cylindrical
body virtually into a small cylinder rather than a line, but this produces some scattering. The solution
is obtained by rigorously solving Maxwell equations using angular harmonics expansion. In this work,
the scattering pattern, and the backscattering cross section against the frequency for cloaked dielectric
cylinder are studied for both transverse magnetic (TMz) and transverse electric (TEz) polarizations of
the incident plane wave for different transformed body radii.

1. INTRODUCTION

Recently, the concept of electromagnetic cloaking has drawn considerable attention concerning
theoretical, numerical and experimental aspects [1–7]. One approach to achieve electromagnetic cloaking
is to deflect the rays that would have struck the object, guide them around the object, and return them to
their original trajectory, thus no waves are scattered from the body [1]. In the coordinate transformation
method for cloaking cylindrical bodies, the body to be hidden is transformed virtually into a line, and
this transformation leads to radially nonhomogeneous profiles of anisotropic components of ε, µ in the
cloaking coating. One problem for the line-transformed cloaks is that some component of the parameters
(ε, µ) have singularities at the inner boundary. For cylindrical cloak, εφ, µφ are infinite while ερ, µρ,
εz, µz are zero. This requires the use of metamaterials which can produce such values, however, they
are narrow band since they rely on using array of resonant elements (as split ring resonators) [8–11].
To avoid the problem of the infinite or zero material parameters at the hidden body boundary, two
approaches have been studied. The first is removing a thin layer from the inner boundary; however,
cloaking is very sensitive to this removal [12, 13]. Another technique is the use of approximate cloaking
by transforming the hidden body virtually into a small object rather than a line, as shown in Fig. 1 [14–
20], and for general finite cylindrical shapes [21], however, this leads to some scattering. The analysis
of this technique shows that certain resonances result due to the transformed small object, a lossy layer
can be used to solve this problem [15, 22, 23]. Approximate cloaking with lossy layer can be used to hide
both passive bodies and active sources for electromagnetic scattering [15, 22, 23], and also for acoustic
scattering [24]. Special coatings can also be used to enhance cloaking for systems governed by Helmholtz
equation [25, 26].

In this work, the scattering properties of approximately cloaked dielectric cylinder are studies for
both TEz and TMz polarizations as a function of the transformed object radius.
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(a) (b)

Figure 1. (a) Virtual domain, (b) actual domain.

2. COORDINATE TRANSFORMATION METHOD FOR CLOAKING — MATERIAL
PARAMETERS OF THE APPROXIMATE CYLINDRICAL CLOAK

Perfect cylindrical cloak can be constructed by compressing the electromagnetic fields in a cylindrical
region ρ′ ≤ R2 into a cylindrical shell R1 ≤ ρ ≤ R2 as shown in Fig. 1. The coordinate transformation
relates the radius ρ′ in the virtual domain to the corresponding radius ρ in the cloaking material. The
coordinate transformation is ρ′ = f(ρ), with f(R1) = 0 for perfect cloaking or f(R1) = c for approximate
cloaking and f(R2) = R2 [15], while ϕ and z are kept unchanged, where c is the reduced radius in the
virtual domain. In the principal directions (ρ, ϕ, z in cylindrical coordinates) this transformation leads
to a diagonal Jacobian matrix T [27, 28],

T =

[
Qρ 0 0
0 Qϕ 0
0 0 Qz

]
(1)

whose elements are the stretching ratios (Qρ, Qϕ, Qz) of the line elements in the principal directions
(dρ′

dρ , ρ′dϕ′
ρdϕ , dz′

dz in the cylindrical coordinates) in the virtual domain relative to the actual domain.
The radial and transverse permittivity and permeability of the cylindrical cloak, depending on ρ,

are given as [1, 29]:

ερ

ε0
=

µρ

µ0
=

QϕQz

Qρ
=

f (ρ)
ρf ′(ρ)

,
εϕ

ε0
=

µϕ

µ0
=

QρQz

Qϕ
=

ρf ′(ρ)
f (ρ)

,
εz

ε0
=

µz

µ0
=

QϕQρ

Qz
=

f (ρ) f ′(ρ)
ρ

(2)

ερ and εϕ are reciprocals to each other.
A linear transformation is usually used, given for approximate cloaking by (for ideal cloaking

c = 0) [15, 30]:

f (ρ) = ρ′ =
1

(R2 −R1)
[ρ (R2 − c)+R2(c−R1)] (3)

Thus, the permittivity and permeability of the approximate cylindrical cloak are given from the above
equations by:

ερ

ε0
=

µρ

µ0
=

ρ(R2−c)+R2(c−R1)
ρ(R2 − c)

(4)

εϕ

ε0
=

µϕ

µ0
=

ρ(R2−c)
ρ(R2−c)+R2(c−R1)

(5)

εz

ε0
=

µz

µ0
=

ρ (R2 − c)2 + R2(c−R1)(R2 − c)
ρ (R2 −R1)

2 (6)

At ρ = R1:
ερ

ε0
=

R1 (R2 − c) + R2(c−R1)
R1(R2 − c)

=
c(R2 −R1)
R1(R2 − c)

(7)
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εϕ

ε0
=

R1(R2−c)
R1(R2−c)+R2(c−R1)

=
R1(R2 − c)
c(R2 −R1)

(8)

εz

ε0
=

R1 (R2 − c)2 + R2(c−R1)(R2 − c)
R1 (R2 −R1)

2 =
c(R2 − c)

R1(R2 −R1)
(9)

For approximate cloaking εϕ, µϕ are proportional to 1
c at ρ = R1, while ερ, µρ, εz, µz are proportional

to c. Thus, for ideal cloaking (c = 0), at the inner boundary, εϕ, µϕ are infinitely large, and the other
components are zero.

At ρ = R2,
ερ

ε0
=

R2 −R1

R2 − c
(10)

εϕ

ε0
=

(R2−c)
(R2 −R1)

(11)

εz

ε0
=

(R2 − c)2 + (c−R1)(R2 − c)
(R2 −R1)

2 =
(R2 − c)

(R2 −R1)
(12)

3. FORMULATION OF THE PROBLEM OF SCATTERING BY A CLOAKED
CYLINDER WITH NONHOMOGENEOUS ANISOTROPIC CLOAK MATERIAL

To study the problem of scattering of a plane EM wave by a cloaked dielectric cylinder, the fields are
expanded in cylindrical harmonics in the different regions (as will be shown) in the actual domain (air,
cloaking shell and dielectric), and the boundary conditions are applied at the interfaces. For normally
incident wave on the cylinder, Maxwell’s equations can be decomposed into TEz (Eρ, Eϕ, Hz) and TMz

(Hρ, Hϕ, Ez) fields w.r.t the axial ẑ direction. Thus, for TEz fields only µz, ερ and εϕ are required
when analyzing scattering. TMz fields require εz, µρ and µϕ.

3.1. The Differential Equation for the Axial Field Component in the Cloak Region

Maxwell’s equations for TMz polarization are [31]:

Ez =
1

jωεzρ

[
∂(ρHϕ)

∂ρ
−∂Hρ

∂ϕ

]
(13)

Hρ = − 1
jωµρρ

∂Ez

∂ϕ
(14)

Hϕ =
1

jωµϕ

∂Ez

∂ρ
(15)

where ω is the angular frequency, j =
√−1. The general wave equation governing the behavior of TMz

fields within a radially nonhomogeneous anisotropic material can be developed by substituting Eqs. (14)
and (15) into Eq. (13).

Ez =
1

jωεzρ

[
∂

∂ρ

(
ρ

jωµϕ

∂Ez

∂ρ

)
− ∂

∂ϕ

(
− 1

jωµρρ

∂Ez

∂ϕ

)]
(16)

Eq. (16) can be rewritten as [31]:

1(
εz
ε0

)
ρ


 ∂

∂ρ


 ρ(

µϕ

µ0

) ∂Ez

∂ρ





+

1(
εz
ε0

)
ρ2

∂

∂ϕ


 1(

µρ

µ0

) ∂Ez

∂ϕ


 + k2

0Ez = 0 (17)

where k0 is the free-space wave number, k0 = ω
√

µ0ε0. By substituting from Eq. (2) into Eq. (17), we
get:

1
f (ρ)

∂

∂f

(
f (ρ)

∂Ez

∂f

)
+

1
f2(ρ)

∂

∂ϕ

(
∂Ez

∂ϕ

)
+ k2

0Ez = 0 (18)
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Therefore, a suitable solution of the above equation can be expressed as [32]:

Ez=
[
FnJn (k0f (ρ))+CnH(2)

n (k0f (ρ))
]
ejnϕ (19)

where Jn is the nth order Bessel function of the first kind, n is integer, and H
(2)
n is the nth order Hankel

function of the second kind.
This means that the solution in the actual domain at a radius ρ is obtained in terms of Bessel

functions with argument corresponding to the virtual domain at the transformed radius f(ρ).

3.2. The Field Expansions and Application of Boundary Conditions

Figure 2 shows an Ez polarized plane wave with amplitude E0, Ei = Eoe
−jk0xẑ, incident upon the

coated dielectric cylinder along the x̂ direction. The time dependence of ejωt is suppressed.

Figure 2. Configuration of scattering of a plane wave by a coated cylinder.

In order to apply the boundary conditions at the cylindrical surfaces, the fields in the different
regions are expanded in terms of cylindrical wave functions with unknown coefficients.

3.2.1. The TMz Case

For a TMz polarized incident plane wave, the incident field can be expressed in terms of cylindrical
waves [33, 34]:

Einc
z = e−jk0xEo = Eo

∑∞
n=−∞ (j)−n Jn (k0ρ) ejnϕ ρ > R2 (20)

The scattered field can be expressed as [33, 34]:

Es
z=Eo

∑∞
n=−∞ (j)−n AnH(2)

n (k0ρ)ejnϕ ρ > R2 (21)

where the scattered field is expressed using the cylindrical Hankel function H
(2)
n (k0ρ) representing

scattered outgoing waves.
As shown in Eq. (19), the field inside the cloak region can be expressed as:

Ec
z=Eo

∑∞
n=−∞

[
FnJn (k0f (ρ))+CnH(2)

n (k0f (ρ))
]
ejnϕ R1 < ρ < R2 (22)

where the fields in the cloak region are represented by Bessel and Hankel functions of argument (k0f(ρ)).
The expansion in the dielectric region is:

Ed =
∑∞

n=−∞DnJn(kdρ)ejnϕ ρ < R1 (23)

where kd is the wave number in the dielectric region, kd= ω
√

µ0εd.
The boundary conditions are that the tangential components Ez and Hϕ are continuous across the

cylindrical interfaces ρ =R1 and R2. At ρ =R2, the tangential electric field components Ez give:[
Einc

z + Es
z

]
ρ=R2

= [Ec
z]ρ=R2
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(j)−n Jn (k0R2) + (j)−n AnH(2)
n (k0R2) = FnJn (k0R2)+CnH(2)

n (k0R2) (24)

The boundary condition for Hϕ is :
[
H inc

ϕ + Hs
ϕ

]
ρ=R2

=
[
Hc

ϕ

]
ρ=R2

,

where Hϕ is obtained from Eq. (15). Thus:

k0

jµ0ω
(j)−n [Jn (k0R2)]

′+
k0

jµ0ω
(j)−n An

[
H(2)

n (k0R2)
]′

=
k0

jµϕω

[
Fn [Jn (k0R2)]

′

+Cn

[
H

(2)
n (k0R2)

]′
]

df (ρ)
dρ

∣∣∣∣∣
ρ=R2

(25)

where µϕ = µ0
ρ

f(ρ)
df(ρ)
dρ , Eq. (2), and f(R2) = R2. The primes at the square brackets indicate

differentiation with respect to the argument k0ρ. Thus Eq. (25) becomes:

k0

jµ0ω
(j)−n

[
[Jn (k0R2)]

′+An

[
H(2)

n (k0R2)
]′]

=
k0

jµ0ω

[
Fn [Jn (k0R2)]

′

+Cn

[
H

(2)
n (k0R2)

]′
]

(26)

Eqs. (24) and (26) lead to:
Fn = (j)−n , Cn=(j)−n An (27)

Similar conditions are applied at ρ = R1, which corresponds to ρ′= c in the cloak region, thus we have:

[Ec
z]ρ=R1

=
[
Ed

z

]
ρ=R1

, FnJn (k0c) + CnH(2)
n (k0c) = DnJn (kdR1) (28)

[
Hc

ϕ

]
ρ=R1

=
[
Hd

ϕ

]
ρ=R1

,
k0

jµϕω

[
Fn[Jn (k0c)]

′+Cn

[
H(2)

n (k0c)
]′] df (ρ)

dρ

∣∣∣∣
ρ=R1

=
kd

jµ0ω

[
Dn [Jn(kdR1)]

′](29)

By substituting for µϕ from Eq. (2) into Eq. (29), then

ηoc

R1

[
Fn [Jn (k0c)]

′+Cn

[
H(2)

n (k0c)
]′]

=
1
ηd

[
Dn [Jn (kdR1)]

′] (30)

where ηo =
√

µ0

ε0
and ηd =

√
µ0

εd
.

By substituting Eq. (27) into Eqs. (28), (30), we get the scattering coefficient An (TMz case):

An= −


 cηdJn (kdR1) [Jn (k0c)]

′ −R1ηoJn (koc) [Jn (kdR1)]
′

cηdJn (kdR1)
[
H

(2)
n (k0c)

]′
−R1ηoH

(2)
n (k0c) [Jn (kdR1)]

′


 (31)

3.2.2. The TEz Case

The scattering for the TEz case can be obtained by the procedure used above. The incident field H inc
z

is given by Eq. (20) by replacing E0 by H0. The scattering coefficient An in Eq. (21) is replaced by Bn.
The coefficients Fn, Cn in Eq. (22) are replaced by Pn, Sn, respectively. The coefficient Dn in Eq. (23)
is replaced by En.

At ρ = R2, the continuity of the tangential magnetic field components Hz gives:
[
H i

z+Hs
z

]
ρ=R2

=[Hc
z ]ρ=R2

, (j)−n Jn (k0R2)+(j)−n BnH(2)
n (k0R2)=PnJn (k0R2)+SnH(2)

n (k0R2) (32)

From Maxwell equation, Eϕ is given by:

Eϕ =
−1

jωεϕ

∂Hz

∂ρ
(33)

The boundary condition for Eϕ is:
[
Ei

ϕ + Es
ϕ

]
ρ=R2

=
[
Ec

ϕ

]
ρ=R2
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−k0

jε0ω
(j)−n

[
[Jn (k0R2)]

′ + Bn

[
H(2)

n (k0R2)
]′]

=

[
−k0

jεϕω

[
Pn [Jn (k0R2)]

′

+Sn

[
H

(2)
n (k0R2)

]′
]

df (ρ)
dρ

]

ρ=R2

(34)

where εϕ = ε0
ρ

f(ρ)
df(ρ)
dρ . Thus,

(j)−n

[
[Jn (k0R2)]

′ + Bn

[
H(2)

n (k0R2)
]′]

=
[
Pn [Jn (k0R2)]

′+Sn

[
H(2)

n (k0R2)
]′]

(35)

Eqs. (32) and (35) lead to:
Pn = (j)−n , Sn=(j)−n Bn (36)

Similar conditions are applied at ρ = R1, which corresponds to ρ′ = c in the cloak region, thus we have:

[Hc
z ]ρ=R1

=
[
Hd

z

]
ρ=R1

, (j)−n Jn (k0c) + (j)−n BnH(2)
n (k0c) = EnJn (kdR1) (37)

[
Ec

ϕ

]
ρ=R1

=
[
Ed

ϕ

]
ρ=R1

,

−k0

jεϕω

[
(j)−n [Jn (k0c)]

′ + (j)−n Bn

[
H(2)

n (k0c)
]′] df (ρ)

dρ

∣∣∣∣
ρ=R1

=
−kd

jεdω

[
En [Jn (kdR1)]

′] (38)

By substituting εϕ in Eq. (38), then
ηoc

R1

[
(j)−n [Jn (k0c)]

′+(j)−n Bn

[
H(2)

n (k0c)
]′]

= ηd

[
En [Jn (k0R1)]

′] (39)

By solving Eqs. (37), (39), we get the scattering coefficient Bn (TEz case):

Bn= −


 cη0Jn (kdR1) [Jn (k0c)]

′ −R1ηdJn (koc) [Jn (kdR1)]
′

cη0Jn (kdR1)
[
H

(2)
n (k0c)

]′
−R1ηdH

(2)
n (k0c) [Jn (kdR1)]

′


 (40)

in agreement with [16, 19, 20] that the scattering from the cloaked body is equivalent to that produced
by the body of reduced size with the values of ε, µ modified using a linear transformation for the region
of the hidden body.

It is to be noted that An and Bn are independent of the outer radius R2. The difference between
the two expressions is in exchanging η0 and ηd. The expressions for An and Bn can lead to resonance
behavior [15, 18].

For c = R1, these coefficients are the same as the solution for scattering by a dielectric
cylinder [34, 35]. The mode series is truncated at the mode number nmax = k0R2 + 5 [36].

4. THE SCATTERING WIDTH

For the 2-D scattering problem, the scattering width σ(ϕ), which is referred to as the scattering cross
section per unit length, is defined as [35]:

σ (ϕ) = lim
ρ→∞ 2πρ

|Es (ϕ)|2
|Ei|2 = limρ→∞2πρ

|Hs (ϕ)|2
|H i|2 (41)

The scattering width σ(ϕ) defines the scattering in an arbitrary direction (for forward scattering ϕ = 0◦,
for backscattering ϕ = π).
For TMz case [35]:

σ (ϕ) =
4
k0

∣∣∣
∑∞

n=0
(−1)n εnAncos(nϕ)

∣∣∣
2

(42)

For TEz case [35]:

σ (ϕ) =
4
k0

∣∣∣
∑∞

n=0
(−1)n εnBncos(nϕ)

∣∣∣
2

(43)

where the Neuman number εn =
{

1, for n = 0
2, for n = 1, 2, 3, . . .

.
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5. LOW FREQUENCY ASYMPTOTIC SCATTERING

For electrically small dielectric cylinder with kdR1¿ 1 and k0c ¿ 1, an approximate solution can
be obtained by keeping only the first terms of the field expansions by using the small — argument
approximations [37]:

J0(z) ∼= 1, H
(2)
0 (z) ∼= 1−2j

π

(
ln

z

2
+0.5772

)
, J ′0(z) ∼=−z

2
,

d

dz
H

(2)
0 (z) ∼=−2j

πz
, J1(z) ∼=z

2
,

H
(2)
1 (z) ∼= −2j

πz
, J ′1(z) ∼=1

2
,

d

dz
H

(2)
1 (z) ∼=−2j

πz2
, when z → 0

(44)

5.1. Scattering Widths for Cloaked Dielectric Cylinder

The coefficients for the first terms of the dielectric cylinder, Eqs. (31), (40), are found as:

A0 ≈
k0

2
(
R2

1εr−c2
)

2j

πk0
−k0

2
R2

1εr

(
1−2j

π
ln (0.8905k0c)

) , (εr = εd/ε0) (45)

For R2
1εr À c2

A0≈ −1

1− 2j

π

(
2

k2
0R

2
1εr

+ ln (0.8905k0c)
) (46)

Also:

B0 ≈
−k0

2
(
R2

1 − c2
)

−2j

πk0
+

k0

2
R2

1εr

(
1− 2j

π
ln (0.8905k0c)

) (47)

For R2
1 À c2

B0 ≈ −1

1− 2j

π

(
2

k2
0R

2
1

+ ln (0.8905k0c)
) (48)

Also:

B1 ≈ k2
0c

2π

4j

εr − 1
εr + 1

¿ B0 (49)

Thus, the backscattering widths are given by:

σ (ϕ = π) ∼= 4
k0

1

1+
4
π2

(
2

k2
0R

2
1εr

+ ln (0.8905k0c)
)2 (TMz case) (50)

σ (ϕ = π) ∼= 4
k0

1

1 +
4
π2

(
2

k2
0R

2
1

+ ln (0.8905k0c)
)2 (TEz case) (51)

We can conclude that, the effect of c is small on the behaviour of the scattering width for TEz and TMz

cases for the dielectric cylinder at low frequencies.

6. RESULTS

Normalized bistatic scattering pattern and backscattering versus frequency are studied with R2 = 2R1.
For the bistatic scattering R1 = λ.
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6.1. Scattering by a Cloaked Dielectric Cylinder

For scattering by a cloaked dielectric cylinder, we consider cylinders with relative permittivities of 4
and 8. Figs. 3, 4 show the normalized bistatic scattering width (σ/R1) for a cloaked circular dielectric
cylinder versus ϕ with a relative permittivity of 4 with three different radii c for TEz and TMz cases,
respectively. The scattering decreases as c decreases. The scattering from the cloaked cylinder in certain
directions may be higher than the scattering from the dielectric cylinder at the angles where the latter
scattering is low.
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Figure 3. Normalized bistatic scattering width
for a cloaked circular dielectric cylinder, εr = 4
(TEz case).
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Figure 4. Normalized bistatic scattering width
for a cloaked circular dielectric cylinder, εr = 4
(TMz case).

Figures 5, 6 show the normalized backscattering width (σ/πR1) for a circular dielectric cylinder
versus the normalized frequency k0R1 with a relative permittivity of 4 with three different radii c for
TEz and TMz cases, respectively. At higher frequencies the scattering decreases as c decreases. The
cloaked dielectric cylinder produces larger scattering than the uncloaked cylinder in a range of low
frequencies.
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Figure 5. Normalized backscattering width for
a cloaked circular dielectric cylinder, εr = 4 (TEz

case).
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Figure 7. Normalized bistatic scattering width
for a cloaked circular dielectric cylinder, εr = 8
(TEz case).
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for a cloaked circular dielectric cylinder, εr = 8
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Figures 7, 8 show the normalized bistatic scattering width (σ/R1) for a circular dielectric cylinder
versus ϕ with a relative permittivity of 8 with three different radii c for TEz and TMz cases, respectively.

From Figs. 7, 8, we can conclude that the normalized bistatic scattering width is nearly constant
with increasing ϕ for different values of c for the used operating dimensions.

Figures 9, 10 show the normalized backscattering width (σ/πR1) for a circular dielectric cylinder
versus k0R1 with a relative permittivity of 8 with three different radii c for TEz and TMz cases,
respectively. The scattering behavior is similar to that for εr = 4, except that the number of resonances
increases as the relative permittivity increases.
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6.2. Permittivity and Permeability Profiles in the Cloak Region

Figures 11–13 show the values of the material parameters in the cloaking material for perfect cloaking
(c = 0) and two different radii for approximate cloaks, Eqs. (4)–(6), with R2 = 2R1. For the ideal
case, the value of the relative permittivity εϕ at the inner boundary approaches infinity, Eq. (8), but for
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approximate cloaking the value of εϕ at the inner layer is finite (39 for c = R1/20 and 79 for c = R1/40),
Eq. (8), as shown in Fig. 11. For ideal cloak (c = 0), ερ is zero at the inner boundary, Eq. (7), but
for approximate cloaking the value of the relative permeability ερ is finite (0.026 for c = R1/20 and
0.013 for c = R1/40). Also, for ideal cloak (c = 0), µz is zero at the inner boundary, Eq. (9), but for
approximate cloaking the value of the relative permeability µz is finite (0.0975 for c = R1/20 and 0.0494
for c = R1/40).

7. CONCLUSION

In this work, the scattering from a cloaked dielectric cylinder is studied for both TEz and TMz cases for
anisotropic nonhomogeneous cloaking profiles. For cloaked dielectric cylinder, the scattering expressions
for the TEz and TMz cases are the same except for exchanging η0 and ηd. The low frequency asymptotic
expressions show that the effect of c is small on the behaviour of the scattering width for TEz and TMz

cases for the dielectric cylinder.
For a cloaked dielectric cylinder the scattering decreases as c decreases at higher frequencies. The

cloaked dielectric cylinder produces larger scattering than the uncloaked cylinder in a range of low
frequencies. The scattering behaviour for cloaked dielectric cylinders show resonances, with the number
of resonances increasing as the relative permittivity increases.
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