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Abstract—To reduce the complexity of classifier design in radar automatic target recognition (RATR),
a novel RATR method for high range resolution profile (HRRP) is proposed. Linearly separable features
are extracted with sequential vanishing component analysis (SVCA) which is implemented by finding the
generators of each approximately vanishing polynomial set, and target classification is implemented with
linear classifiers. Experiments are carried out on simulated vehicle target data and MSTAR database,
and the results demonstrate the efficiency of the proposed method.

1. INTRODUCTION

The efficiency of weapon system directly depends on the target recognition capability of radar system
in modern battlefield environment. A great number of literatures focused on RATR are based on radar
images, such as one dimension HRRPs, synthetic aperture radar (SAR) images and inverse synthetic
aperture radar (ISAR) images. A HRRP is the amplitude of the coherent summations of complex time
returns from target scatterers in each range cell, which contains the target structure signatures for
RATR. For the advantages in system realization, image stability and computational efficiency, HRRP-
based RATR has received intensive attention from the RATR community [1–13].

In HRRP-based RATR, one primary task is how to deal with the target-aspect, time-shift, and
amplitude-scale sensitivity of HRRP, which makes HRRP-based RATR a challenging problem [1, 2]. The
common approaches to handle these sensitivities include [3]: dividing the training data into target-aspect
frames according to some criterions to deal with the target-aspect sensitivity; amplitude-scale sensitivity
is eliminated by amplitude normalization; time-shift compensation, or some time-shift invariant features
are applied to remove the time-shift sensitivity. The desirable features for HRRP-based RATR should
contain such characteristics: (1) stable with aspect variation, (2) invariant with time-shift, (3) separable
between different classes, (4) moderate dimensionality. Most of the feature extraction methods are
proposed for such purposes, and some widely investigated features are scattering center [4–6], central
moment [7], high order spectrum [8], time-frequency property [9], principle component analysis [10],
singular value decomposition [11], wavelet transform [12], and structure signatures of HRRPs [13], etc.
A common drawback of such methods is that the spatial distribution of the extracted features is complex
and unpredictable, which makes feature-based classifier design still a tough problem.

Recently, a feature extraction method referred to as vanishing component analysis (VCA) is
introduced in [14]. Feature extraction is performed with the generators of approximately vanishing
polynomial set, and the obtained features have the desirable property of linear separability. However,
the dimension of VCA feature is proportional to the number of targets, which may result in unfeasibility
for HRRP-based RATR. Motivated by such an issue, a novel recognition method based on SVCA is
proposed. The generator sets found with VCA algorithm are used for feature extraction sequentially,
which makes the dimension of the extracted feature approximately unchanged with the number of
targets. The obtained features are proved to be linearly separable. Target classification is implemented
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with linear SVM classifies. Experiments are carried out based on simulated data of 4 ground vehicle
targets and MSTAR (Moving and Stationary Target Acquisition and Recognition) database. The
experimental results show that the proposed method has comparable performances with VCA-based
method, and both of them outperform the baseline MCC-TMM (Maximum Correlation Criterion-
Template Matching Method). Additionally, the proposed method is implemented with the lowest feature
dimension, meaning that it is more computationally efficient and suitable for HRRP-based RATR.

The remainder of this paper is organized as follows. In Section 2, the basic idea as well as the
procedure of VCA algorithm is presented. Section 3 discusses the proposed method and its application
to HRRP-based RATR. In Section 4, experiments with simulated data and real data are carried out
to evaluate the recognition performances of the proposed method. Finally, conclusions are made in
Section 5.

2. STATEMENT OF VCA ALGORITHM

One succinct approach to describe a point set S is to find a set of functions {f} that satisfy f(x) = 0
for each point x belonging to S. In other words, if the set of functions C = {f |f(x) = 0, x ∈ S} can be
found, then S can be well characterized, and f ∈ C can be used for feature extraction. The basic idea
behind VCA is to find the generators of the approximately vanishing function set under the constraint
that the desired functions must be polynomials and use the generators for feature extraction. Before the
detailed description of VCA algorithm is presented, some related definitions are shown as follows [14].

Definition 1 (Polynomial). A function f : Rn → R is called a polynomial if it is of the form

f(x) =
∑

j βjxα(j)
=

∑
j βj

∏n
i=1 x

α
(j)
i

i , where βj ∈ R, α(j) = [α(j)
1 , . . . , α

(j)
n ]T , and each α

(j)
i is a

non-negative integer. The degree of the polynomial is defined as max
j
‖α(j)‖1 = max

j

∑n
i=1 α

(j)
i .

Definition 2 (Ideal). A set of polynomials I is ideal if for any f ∈ I, g ∈ R[x1, . . . , xn], we have
f + g ∈ I and fg ∈ I (R[x1, . . . , xn] is the set of all polynomials in n variables [x1, . . . , xn] over the
reals of finite degree).

Definition 3 (Set of Generators). A subset F = {f1, . . . , fk} of an ideal I is said to generate I, if
∀f ∈ I and there exist g1, . . . , gk ∈ R[x1, . . . , xn] such that f =

∑
i gifi.

Definition 4 (Vanishing Ideal). Given a set S ⊂ Rn, the vanishing ideal of S is the set of polynomials
that I(S) = {f |f(x) = 0,x ∈ S}.

Definition 5 (Algebraic Set). A set U ∈ Rn is called an algebraic set if there is a finite set of
polynomials {pi}k

i=1, such that U are the common roots of {pi}k
i=1.

Given a point set Sm = {x(i)}m
i=1(x = [x1, . . . , xn]T ∈ Rn), the VCA algorithm for finding a

generator set for I(Sm) is described in Algorithm 1. Since real world data are noisy, and the polynomials
may “almost” vanish in the point set, VCA allows some tolerance by looking for the generator set V
of I(Sm) = {f |f(x) ≤ ε, x ∈ Sm}. For any x ∈ Sm and ν ∈ V, we have ν(x) ≤ ε. The generator set V
and non-vanishing polynomial set F are calculated iteratively, which makes an exponential increase of
computational cost with the degree of polynomial avoidable in VCA algorithm.

The generator sets Vk = {ν(k)
1 , . . . , ν

(k)
nk }, k = 1, . . . , K are obtained with the VCA algorithm

calculated on each point set Sk = {x(k)
i , i = 1, . . . , Nk}, k = 1, . . . , K. All of the generators are used

to define the VCA transform

x 7→ fVCA(x) = [|V1(x)| , . . . , |VK(x)|] =
[∣∣∣ν(1)

1 (x)
∣∣∣ , . . . ,

∣∣∣ν(K)
nK (x)

∣∣∣
]

(1)

The linear separability of the features after VCA transform has been proven in [14] if the intersection
of any two different sets is empty, thereby good performance can be achieved with easily implemented
linear classifiers.

ALGORITHM 1: VCA algorithm

1: Input: observation set Sm = {x(i)}m
i=1(x

(i) = [x1, . . . , xn]T ∈ Rn), tolerance ε;
2: Output: generator set V and non-vanishing set F;
3: Initialization: F = {f(·) = 1/

√
m}, V = ∅; C1 = {f1, . . . , fn}, where fi(x) = xi;
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Perform (F1,V1) = FindRangeNull(F,C1,Sm, ε), F = F ∪ F1, V = V ∪V1, t = 2;
4: Calculate: Ct = {gh : g ∈ Ft−1, h ∈ F1};
5: If Ct 6= ∅, calculate (Ft,Vt) = FindRangeNull(F,Ct,Sm, ε), F = F ∪ Ft, V = V ∪Vt,

let t = t + 1, turn to step 4;
Otherwise, break, output V and F;

ALGORITHM 2: FindRangeNull sub-procedure

1: Input: F, C, Sm, ε; denote k = |C|, C = {f1, . . . , fk};
2: Calculate f̃i = fi −

∑
g∈F 〈fi(Sm), g(Sm)〉 g, i = 1, . . . , k;

3: Let A =
[
f̃1(Sm), . . . , f̃k(Sm)

]
, perform singular value decomposition A = LDUT ;

4: Perform gi =
∑k

j=1 Uj,if̃j , i = 1, . . . , k;

5: Output: F1 = {gi/‖gi(Sm)‖ : Di,j > ε}, V1 = {gi : Di,j ≤ ε}.

3. RADAR TARGET RECOGNITION BASED ON SVCA

To deal with the target-aspect sensitivity of HRRP, a large number of templates must be stored as library
data in training phase, and searching procedure is executed along the aspect axis for an optimal matching
in test phase. In addition, the high-dimensional HRRPs may result in computational sensitivity for
target classification. Thus, how to reduce the computational complexity and achieve good performance
are two most important tasks for HRRP-based RATR. As can be seen from (1), the dimension of the
VCA feature increases proportionally with the number of targets. For the reason the direct use of VCA
feature may be unfeasible for HRRP-based RATR as a result of the highly computational complexity.
Motivated by such issues, a modified method referred to as SVCA is proposed for feature extraction,
and linear classifiers are used for target classification. Instead of extracting the features with all the
generators of K classes, SVCA feature is calculated with each generator set separately

x 7→ |Vk(x)| =
[∣∣∣ν(k)

1 (x)
∣∣∣ , . . . ,

∣∣∣ν(k)
nk (x)

∣∣∣
]

(2)

As can be seen from (2), the feature dimension after SVCA transform is independent from the
number of targets. Under the assumption that the size of each generator set is the same, the dimension
of SVCA feature is compressed into 1/K compared to VCA feature, which makes calculation in high-
dimensional feature space avoidable. Moreover, as proven in the appendix, the SVCA feature is not
only separable, but also linearly separable.

Different from the VCA feature sets which are linearly separable between any two sets, the SVCA
feature set calculated on the kth class is linearly separable with the rest of K−1 classes, while the linear
separability among K−1 classes is not referred. However, comparable performance can be obtained with
linear classifiers as shown in Section 4. The matrixes for feature transformation and the optimal weights
of linear classifiers are acquired with (2) and linear support vector machine (SVM) [15], respectively.
Both of them can be calculated offline.

It has been reported that the target-aspect sensitivity can be mitigated effectively by averaging the
HRRPs over a large aspect angle [1]. For the reason incoherent average is calculated firstly in a subset
of HRRPs from a target-aspect sector without scatterers’ motion through range cells [2], then feature
extraction is performed with SVCA. No less than K − 1 binary-classification classifiers are needed for
the classification of K targets, which can be organized as serial mode or parallel mode. Classification is
carried out sequentially in serial mode, and binary decision is made for each test sample. At iteration
k, if “1” denotes the output of the kth classifier, then the test sample is labeled with k, and iteration
is terminated. Otherwise, iteration is repeated for k = k + 1. In parallel mode, the test sample is
imported into all the linear classifiers simultaneously, and binary decision is made for each classifier as
well. Obviously, parallel implementation mode is much more computationally efficient, so it is selected
for real-time RATR in this paper.

Based on the above analysis, the proposed method can be summarized as follows:
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Training Phase: Let S = {x(k)
i }, i = 1, . . . , Nk, k = 1, . . . , K be a set of labeled training samples

which contains K classes, where Nk denotes the number of samples of each class. At iteration k, S
is divided into two subsets SA and SB, where SA = Sk, SB = ∪K

l=1,l 6=kSl. The transformation matrix
is obtained with SVCA based on SA, and linearly separable feature sets FA and FB can be acquired
through feature extraction performed on SA and SB. Next, the training of linear SVM classifier is
carried out based on FA and FB. The iteration is repeated until the training of K linear classifiers is
accomplished, and then the classifiers are organized with parallel mode.

Test Phase: The test sample x is imported into K linear classifiers simultaneously, and binary
decision is made in each classifier. Generally there is only a “1” output which indicates the test sample
label. Otherwise, x is assigned to the label which has the largest distance to the corresponding decision
hyperplane.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Toy Example

We begin with a toy example to evaluate the feasibility of the VCA/SVCA features used for target
classification. The two classes are shaped as circles in two dimension plane, corresponding to the
equations X = {x|x2

1 + x2
2 = 1} and Y = {y|y2

1 + y2
2 = 9}. The observations are generated with uniform

sampling on the circles and adding with uniform random numbers. The spatial distributions of the raw
data and SVCA features are shown in Figure 1. As can be seen clearly, the two classes are nonlinearly
separable in raw data space, while linearly separable in SVCA feature space, meaning that nonlinearly
separable data are turned linearly separable after SVCA transform. Thus, we can use linear classifiers
to achieve good classification results.

In the following experiments, odd samples are used for training and even for testing. Classification
experiments with linear SVM classifiers are carried out based on raw data, VCA and SVCA features.
Table 1 lists the correct classification rates (CCRs) of the three methods averaged by 100 Monte-
Carlo trials. It can be seen from the performance comparison that significant improvement appears
using VCA/SVCA features, demonstrating that target classification based on VCA/SVCA features is
feasible.
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Figure 1. Spatial distributions of raw data and SVCA features.

Table 1. Correct classification rates of toy example.

X Y

Raw data 88.9% 39.47%
VCA feature 100% 99.99%
SVCA feature 100% 99.88%
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4.2. Experiments with Simulated Database

In this subsection we turn to examine the proposed method based on simulated database. A database
of range profiles for four ground vehicle targets including an armored carrier, heavy carrier, heavy-duty
truck and wagon truck is developed. The detailed parameters for radar cross-section generation are
shown in Table 2. The CAD model of each vehicle (as shown in Figure 2) is exported as a facet file
for electromagnetic simulation software, which generates the radar echoes from 0 to 60 deg aspect in
0.1 deg increments, resulting in 601 profiles. The range profiles are formed through inverse fast Fourier
transform (IFFT), with each consisting of 128 range cells. HRRPs illuminated at depression angle
27 deg are used for training, and 30 deg are used for testing. Figure 2 shows the HRRPs observed at
depression angle 27 deg and aspect angle 50 deg as examples. The amplitude-scale sensitivity of HRRP is
eliminated by amplitude normalization (L2 normalization) while time-shift compensation is unnecessary
for the turntable-like HRRP data. The incoherent average of the training range profiles subtending a
3 deg aspect aperture is exported for VCA/SVCA feature extraction in training phase, and single-view
range profiles are imported for testing directly in test phase.

Table 2. Electromagnetic simulation software settings.

Center frequency 10 GHz Azimuth angles 0∼60 deg in 0.1 deg steps
Bandwidth 500 MHz Depression angles 27 deg, 30 deg

Number of frequency samples 128 Polarization mode HH
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Figure 2. Simulated vehicle targets and HRRPs. Horizontal axis indicates the range bins, and vertical
axis represents the normalized amplitude.

We compare the classification performance of the proposed method with the baseline MCC-TMM
and summarize the results in the form of confusion matrix as shown in Table 3. Across each row
of the confusion matrix, the numbers represent the occurrences of the test samples from a particular
test target type (indicated in the head of the row) which are classified as the target types indicated
on the top of each column. In Table 3, the numbers outside the parentheses are the classification
results performed with SVCA-based method, and those in the parentheses represent the numbers of
test samples classified with MCC-TMM. It can be seen that the average CCR is improved from 90.97%
to 93.88%. Additionally, the dimensions of the SVCA features for the four vehicle targets are 32, 42,



246 Liu et al.

Table 3. Comparison of SVCA-based method and MCC-TMM on simulated database.

armored carrier heavy carrier heavy-duty truck wagon truck Correct rate (%)

armored carrier 562 (523) 9 (17) 12 (5) 18 (56) 93.51 (87.02)

heavy carrier 18 (5) 575 (586) 3 (2) 5 (8) 95.67 (97.50)

heavy-duty truck 3 (23) 5 (8) 592 (554) 1 (16) 98.50 (92.18)

wagon truck 54 (26) 14 (38) 5 (13) 528 (524) 87.85 (87.19)

Average correct classification rate: SVCA — 93.88%, MCC-TMM — 90.97%
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Figure 4. Feature dimensions with different ε.

54, and 36, respectively, which are much lower than the raw HRRPs (128). Moreover, the searching
procedure for an optimal matching along aspect axis is avoidable, which makes the proposed method
much more efficient for target classification.

In the following paragraph the effect of the parameter will be discussed. Both the linear separability
and the dimensions of the extracted features are changed with the tolerance ε. The average CCRs under
different ε are shown in Figure 3. It can be seen from the figure that both the performance of VCA-
based and SVCA-based method improve with the increase of ε for ε < 0.5, and they are nearly constant
for ε > 0.6. As mentioned previously, ε stands for the tolerance to noise and the mismatch of the
polynomial model. This means that a larger ε has more tolerance capability and is more beneficial to
performance improvement. It is also seen from the performance comparison between SVCA-based and
VCA-based method that the CCRs are comparable for ε > 0.6, which indicates that the separability
of SVCA features is nearly the same as VCA features. Moreover, much lower dimensional features are
used in SVCA-based method (as shown in Figure 4, the SVCA feature dimension is the maximum for
the four targets), which will significantly reduce the computational burden for target classification.

In an attempt to analyze the effect of observation noise on target classification, different signal-to-
noise ratio (SNR) is considered for performance evaluation. The SNR is defined as [16]:

SNR (dB) = 10 log10

(∑L
l=1 pl

L · σ2

)
(3)

where pl denotes the power of the original test HRRP in the lth range cell, σ2 the power of Gaussian
white noise, and L the number of range cells which can be estimated by taking the difference between
the first bin and last bin to cross the threshold along the range profile. The threshold is defined as the
amplitude-ratio to the peak of range profile, which is set to 0.1 in our experiments.
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Figure 5. Classification performance with SNR via VCA, SVCA and MCC-TMM.

Figure 5 shows the average CCRs for 100 Monte-Carlo trials under different SNRs, obtained via
MCC-TMM, VCA-based and SVCA-based method. As can be seen from the figure, the performance of
SVCA-based method is a little worse than MCC-TMM and VCA-based method under low-SNR cases.
It can be explained as that noise and the mismatch of the polynomial model in low-SNR cases are
beyond the tolerance capability. It is also noted that SVCA- and VCA-based methods have comparable
performance and outperform MCC-TMM with the increase of SNR (SNR > 20 dB). Furthermore,
SVCA-based method has lower dimensional features for target classification than MCC-TMM and VCA-
based method. All the above can be concluded as that the proposed method has superior performance
and higher efficiency for HRRP-based RATR.

4.3. Experiments with MSTAR Database

In this subsection we evaluate the performance of the proposed method using the MSTAR public
database. The MSATR database contains X-band SAR images captured at depression angles 15 deg
and 17 deg over the full aspect angles with 1 ft×1 ft resolution for 10 ground vehicle targets. A detailed
description about MSATR database is given in [17]. HRRPs are extracted from SAR images, and the
creation process is illustrated in Figure 6 [18].
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Figure 6. The HRRP creation process from SAR images.
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Figure 7. MSTAR targets and HRRPs extracted from SAR images. Horizontal axis indicates the
range bins, and vertical axis represents the normalized amplitude.

Table 4. Classification results on the
MSTAR database with SVCA-based method.

2S1 BRDM2 T62 ZSU4
2S1 251 6 14 3

BRDM2 6 262 3 3
T62 15 0 244 14

ZSU4 1 0 8 265
Average correct classification rate: 93.17%

Table 5. Classification results on the MSTAR
database with MCC-TMM.

2S1 BRDM2 T62 ZSU4
2S1 237 12 11 14

BRDM2 15 258 1 0
T62 8 1 239 25

ZSU4 1 0 21 252
Average correct classification rate: 89.62%

Table 6. Runtimes of 3 methods.

MCC-TMM VCA SVCA
Runtime (s) 43.11 4.74 2.18

In the following experiments, data measured at depression angle 17 deg are used as library data,
and 15 deg is considered as unknown input for testing. Specifically, four vehicle targets (2S1, RDM2, 62
and ZSU) which cover most completed aspect angles are selected for performance evaluation (as shown
in Figure 7). One average HRRP is extracted from each SAR image. In training phase, the HRRP
dataset over full 360 deg aspect angles is divided into 6 subsets, with each covering a 60 deg azimuth
aperture. In test phase, classification of each test sample is carried out in the actual angle subset
by assuming that aspect angle prediction through SAR image provides approximate target-heading
information. The classification results of SVCA-based method and MCC-TMM are summarized in
Table 4 and Table 5 with the same processing procedure described in the previous subsection, and both
of them are represented in the form of confusion matrix. As can be seen from the tables, SVCA-based
method outperforms MCC-TMM on the MSTAR database. In conclusion, the experimental results also
verify the superior performance of the proposed method.

The computational efficiency of the proposed method can be seen by comparing the runtimes of
MCC-TMM, VCA-based and SVCA-based methods. The three methods are executed under the same
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PC environment with 2.8 GHz CPU, 2.75 GB RAM, MATLAB (R2011a) simulation software. After
the acquisition of the optimal parameter ε and the weighted vectors for linear classifiers offline in
training phase, HRRPs extracted from SAR images are filled into each classifier for testing. The time
consumptions of MCC-TMM, VCA-based and SVCA-based methods for 1095 test samples are shown in
Table 6. It is clearly seen that the SVCA-based method consumes the least time, which demonstrates
the high efficiency of the proposed method.

5. CONCLUSION

Due to the complex distribution of the features extracted with conventional methods, classifier design
based on the features is still a challenging problem. Aiming at the issue, a novel recognition method
is proposed for HRRP-based RATR. Linearly separable features are extracted with SVCA, and
target classification is implemented with linear SVM classifiers. Experimental results carried out on
simulated and real data demonstrate that the proposed method outperforms the baseline MCC-TMM,
has comparable performance with VCA-based method and is much more computationally efficient,
indicating its potential use for real-time RATR applications.
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APPENDIX A.

The proof of the linear separability for SVCA features.

A.1. Proof of Separability

Assume that there are algebraic sets {Uk}K
k=1 whose intersection is empty in pairs such that Sk ⊆ Uk,

and let Vk = {ν(k)
1 , . . . , ν

(k)
nk } denote the generator set of I(Uk), then we have Vk ∈ I(Uk). For each

x ∈ Uk, ν
(k)
i ∈ Vk, we have |ν(k)

i (x)| < ε. From the definition of vanishing ideal, it is obvious that x is
a common root of I(Uk). Suppose that there are some x′ ∈ Ul vanishing on Vk, for some l 6= k. That
means |ν(k)

i (x′)| < ε, for all i. Therefore, x′ is a common root of Vk. It follows immediately that x′ is
also a common root of I(Uk), thus x′ ∈ Uk, which contradicts the assumption that Ul ∩Uk = ∅. In
other words, for each x′ ∈ Sl(l 6= k), there must be some i such that |ν(k)

i (x′)| > ε. On the contrary, for
any x ∈ Sk, the inequation |ν(k)

i (x)| < ε holds for all i. This means SVCA features are separable.

A.2. Proof of Linear Separability

Suppose that Fk = {αi}N
i=1 and Fl = {βi}N

i=1 are the SVCA feature sets calculated on Sk and Sl(l 6= k)
with the generator set Vk, respectively. Without loss of generality, if there are some ω = [ω1, . . . , ωn]T

which satisfy ωT α−ωT β < 0 for any α ∈ Fk and β ∈ Fl, then Fk and Flare linearly separable. Denote
αk = [α1, . . . , αn] = arg max

α
ωT α and βl = [β1, . . . , βn] = arg min

β
ωT β, then we have αi < ε for each

i and βi > ε for some i. Clearly, let ωi < 0 if ε− βi > 0 and ωi > 0 if ε− βi < 0, then ωT α−ωT β < 0
holds for any α ∈ Fk and β ∈ Fl, which concludes that Fk and Fl are linearly separable.
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