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Adaptive Cross Approximation for Scattering by Periodic Surfaces

Jean-René Poirier* and Ronan Perrussel

Abstract—The adaptive cross approximation is applied to boundary element matrices coming from 2D
scattering problems by an infinite periodic surface. This compression technique has the advantage to be
applied before the assembly of the matrix. As a result, the computational times for both assembly and
solution phases are reduced. Numerical results assess the efficacy of the method on scattering problems
with several periodic surfaces.

1. INTRODUCTION

Many engineering applications are formulated in terms of scattering by periodic structures. This is
especially true in electromagnetics, where periodicity plays an important role in the design of devices.
The development of broadband absorbers, the study of sea surface scattering, the design of antenna
arrays, microwave lenses, and artificial dielectric media or photonic crystals are a few examples.

For the analysis of such periodic structures, the problem is usually solved by methods such as
the finite difference method, finite element method, or Boundary Element Method (BEM) often also
called the Method of Moments in the electromagnetics community. Because of the computational cost
of such simulations, a common simplification is to consider the periodic structures as infinite. This is
particularly relevant for the BEM when an appropriate Green function enables to take into account the
periodicity. However the a priori complexity in O(N2) with N the number of unknowns restricts the
BEM to relatively coarse grids. A method to improve this complexity is then required.

In this work, we focus on electromagnetic scattering by rough surfaces. First we recall the studied
problem and the considered BEM to solve it. A few details are then introduced concerning the matrix
compression technique applied to our BEM matrices. Several numerical aspects of this technique are
eventually studied on representative surfaces before conclusions and prospects.

2. CONTINUOUS PROBLEM AND DISCRETIZATION

We consider scattering problems by a perfectly conducting L-periodic surface Γ in the E-polarization,
i.e., E3 is the only non-zero component, as shown in Figure 1. The involved boundary-value problem
is then the Helmholtz equation with a Dirichlet boundary condition on Γ and a radiation condition at
infinity.

These scattering problems are then formulated as a boundary integral equation [2] with a single
layer potential, ∫

Γ
G(x,xs)j(xs)dγ(xs) = −Einc(x), ∀x = (x1, x2) on Γ, (1)

where Γ is the boundary, Einc the incident electric field, j the sought density current, and G the Green
function. Variables x and xs represent respectively the observation point and the source. In free space,
this Green function is given by

G(x,xs) =
1
4i

H
(2)
0 (k‖x− xs‖) (2)
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Figure 1. A L-periodic surface Γ.

where i is the imaginary unit, k the wave number, and H
(2)
0 the Hankel function of the second kind.

This definition is replaced in the case of a periodic surface by

G(x,xs) =
+∞∑

n=−∞

1
2iγnL

e−iγn|x2−xs,2|eiαn(x1−xs,1) (3)

where L is the period of the surface (see Figure 1), αn = 2πn/L+k sin(θ) with θ the incident angle and
γn =

√
k2 − α2

n.
Note that it is not efficient to compute the sum (3) because of the slow convergence. Some

improvements have been proposed to transform the sum as an integral easier to compute [2, 7].
Integral Equation (1) is then discretized using a Galerkin method with a current density constant

per element. It leads to the solution of a linear system ZI = V where Z is a full matrix that should be
compressed for memory and computational time efficiency.

3. MATRIX COMPRESSION

3.1. Hierarchical Matrix

It has been proved that some matrices issued from the BEM, as these coming from diffusion
problems (electrostatics or magnetostatics), can be efficiently represented by a data-sparse format called
hierarchical matrices and usually denoted by H-matrices [4].

This format of matrix is based on a hierarchical matrix block partition of the original matrix.
The partition of the indices of row or column can be built from the geometric positions of the degrees
of freedom (dofs) of the discretization. It can be done for instance by a regular quad-tree: the dof

dof position

Figure 2. Three levels for the dof partition based on a regular quad-tree. On two levels, dofs in the
blue boxes are in far-field interactions with the dofs in the yellow boxes and in near-field interactions
with the dofs in the red boxes.
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Figure 3. Block partition of the matrix corresponding to levels 2 and 3 from Figure 2. Dofs are
supposed to be numbered from left to right. Red blocks are not admissible, green ones are. First block
row on each subfigure can be related to the blue boxes in Figure 2. (a) After two steps of the regular
quad-tree algorithm. (b) After three steps of the regular quad-tree algorithm.

positions are enclosed in a bounding box and this box is cut in four equal boxes, this procedure is
applied recursively until the number of dofs in each box is sufficiently small (see Figure 2). This regular
quad-tree algorithm is the method we consider for the numerical results.

Some blocks identified, thanks to the dofs partition, satisfy an admissibility condition and can
be compressed. They mainly represent far-field interactions between sets of degrees of freedom. Other
non-admissible blocks have to be fully assembled and they represent near-field interactions. An example
is proposed in Figure 2 to illustrate both interactions. From the dofs partition in Figure 2, the block
partition of the matrix with admissible and non admissible blocks is given in Figure 3.

In order to compress the admissible blocks, several strategies can be considered as multipole
expansion or panel clustering [5]. Here we prefer to focus on a purely algebraic approach, the adaptive
cross approximation because it is straightforward to implement and few comparable techniques have
already been considered for periodic Green’s functions. For instance multipole expansion is not yet very
efficient [8] for these Green functions.

3.2. Adaptive Cross Approximation

For the same application, a compression technique (QR algorithm) has been considered for the
admissible matrix blocks in a previous work [11]. Unfortunately this method is limited by the fact
that the compression is performed a posteriori and consequently it is necessary to assemble the whole
matrix. In this work, we perform an Adaptive Cross Approximation (ACA) [1] which can be applied
a priori. To our knowledge, this method has been applied to electromagnetic problems [6, 10], but not
yet in the case of a periodic structure. It is an iterative process that computes at each iteration one row
and one column (a cross) of the matrix block and an estimate of the error to approximate the block
(adaptivity). More precisely, starting from a matrix block A of size L ×M , one row and one column
are computed providing two vectors respectively of size L and M , u1 and v1, and the first approximate
is given by u1v

T
1 (·T denotes the transposition). The same operation is then applied to the residual

R = A − u1v
T
1 to obtain two new vectors u2 and v2. By iterating this process, A is approximated by

Ãr a sum of r rank-one updates:

Ãr =
r∑

n=1

unvT
n . (4)

At each iteration we can test if
‖ur‖F ‖vr‖F 6 εACA

∥∥∥Ãr

∥∥∥
F

, (5)

to be able to stop the process once the required accuracy is reached; ‖ ·‖F denotes the Froebenius norm.
Note that A or R are never fully assembled and thus only selected entries of the matrix block have

to be computed.



100 Poirier and Perrussel

4. NUMERICAL RESULTS

The first considered problem is a surface with a sinus profile

x2 = s(x1) = h sin
(

2πx1

L

)
(6)

with h = 0.25m, L = 1 m or a plate of the same period. Note that in the plate case, it means that L is
the period of the periodic Green function in the integral formulation. This plate case is only considered
to validate the method on a simple example where the analytic solution is known. We also consider the
scattering by a Weierstrass surface [3] described by

x2 = W (x1) = h

n2∑

n=1

(
1

b(2−D)n
cos

(
2πbnx1

L

))
, (7)

where D is the fractal dimension (equal to 1.5 in our example), n2 the number of scales considered,
and h a parameter to scale the height of this surface. The last parameter b is used to characterize the
lacunarity of the fractal function; it will be equal to 2 in the following experiments. Fractal surfaces
have been often considered to describe rough surfaces. Among fractal surfaces, the function (7) is one
of the most basic example. For a given accuracy these surfaces require more unknows than plate or
sinus and may lead to a performance deterioration in terms of compression and convergence.

4.1. Memory Cost and Compression Rate

We first study the behavior of the compression rate: memory storage of the compressed matrix relatively
to the full matrix. For the sinus profile, an example of a computation with 102400 unknowns has been
considered and the corresponding memory storage is provided in Table 1. The compression rate is then

simply the ratio
1303

1.6 105
given in %.

Table 1. Memory and computation time for a 102400-unknown problem.

uncompressed part compressed part comp. times
non admissible blocks 389MB 389MB 11506 s

admissible blocks 1.59 105 MB 913MB 14385 s
total 1.6 105 MB 1303 MB 25891 s

The compression is studied with εACA = 10−8 and simulations are performed for several surfaces
and frequencies: plate, sinus, and Weierstrass (h = 0.25m) surface at 0.2 and 2GHz. For the given
ACA accuracy, the compression rate is shown in Figure 4 for an increasing number of degrees of freedom
N .

At a given frequency, Figure 4 illustrates that the method works with the expected asymptotic
behavior, i.e., an increase of the memory storage in N log(N), whatever is the block compression
technique. Moreover for the same accuracy, the compression rate with the ACA decreases for an
increasing frequency which is consistent with the theory. Eventually Figure 4 also shows that the
geometry of the surface has an influence on the compression rate.

It is illustrated also by Figure 5 where it can be noticed that the increase of the compression rate
seems roughly proportional to the frequency. It is especially noticeable in the high-frequency regime
but is not always sensitive in our frequency ranges of interest.

Both assembly and solution times are shown in Figure 6. It fully justifies the use of the ACA and
here again the expected asymptotic behavior is observed. Note that the full system is iteratively solved
by using the Generalized minimal residual (GMRES) method [9].
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Figure 4. Compression rate vs the number of dofs.
P: plate, S: sinus and W: Weierstrass.
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Figure 5. Compression rate vs the frequency.
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Figure 6. Computation times vs number of dofs.

4.2. Accuracy of the Solution

As no loss of accuracy can be generated by the compression technique, we have also checked the accuracy
for a given solution. For this, far from the surface (i.e., x2 À maxx1∈[0,L](s(x1))), it is usual to decompose
the solution to the scattering problem by a periodic surface on the basis of the outgoing Floquet modes

uscat(x1, x2) =
∑

n

uneiγnx2eiαnx1 , (8)

These modes are computed from the values of the current j on the surface:

un =
i

2γnL

∫

Γ
ei(αnx1+γns(x1))j(x)dγ(x). (9)

Owing to the discretization, they are directly deduced from the solution to the linear system

un =
i

2γnL

N∑

n=1

In

∫

Γn

ei(αnx1+γns(x1))dγ(x). (10)

Figure 7 shows the convergence of the solution on the far-field, i.e., the Floquet modes. Only the
propagative modes (i.e., γn ∈ R), which contribute to the energy of the system, are considered. In the
case of the plate, we refer to the analytic solution and in the other cases, the reference is provided by
the most refined mesh. The solution error is then

(∑

n∈Θ

‖un − uref
n ‖2

) 1
2

(11)
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Figure 7. Floquet’s modes convergence for several
surfaces. P: plate, S: sinus and W: Weierstrass..
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Figure 8. Accuracy and εACA.

where Θ is the set of propagative modes. In every case, the ACA solution is close to the solution provided
by the direct approach and the behavior of the rate of convergence is maintained for the points computed
only by the ACA method. Note that the small difference on the last point can probably be explained
by the accuracy of the reference solution.

The last study concerns the choice of the parameter εACA. Figure 8 shows the loss of accuracy for
the solution when this parameter is fixed to a given value (from 0.01 to 0.0001).

As expected for a given value of εACA, the computed solution differs from the direct approach when
the accuracy due to the discretization is better that the accuracy of the ACA. A possible strategy in
our problems is to consider εACA of the form CN−2 where 1/N gives roughly the mesh step and the
constant C can be adjusted on a coarse mesh. Thus εACA is directly correlated to the accuracy of the
discretization and no loss of accuracy will be due to the ACA.

5. CONCLUSION

As confirmed by our numerical experiments, the use of the ACA for the scattering by periodic surfaces
enables to consider problems whose size cannot be accessed without compression (more than 105

elements on a personal workstation). It is particularly useful when studying with a high accuracy a
multiscale profile like a fractal surface. However, this kind of surface can be only treated by compression
if the associated iterative method converges. As a result efficient strategies have to be implemented to
be able to solve properly the resulting linear systems. This will be treated in a forthcoming work.
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