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Finite Element Method
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Abstract—In this paper, a rigorous and accurate numerical two-dimensional modeling finite element
method 2D-FEM is applied to the analysis and design of substrate integrated waveguide components.
The finite element method represents an excellent tool for the analysis and design since it easily allows
taking into account all details of each device. The advantages of this method have been proved with
the successful design of two SIW waveguide topologies operating in [8–12]GHz and [10.7–12.75] GHz
respectively for X-band and Ku-band applications employed in satellite communications. In order to
validate the proposed method, a comparison is made between the FEM method implemented in Matlab
and CST Microwave Studio R© software. Agreements between the finite element method data and the
CST software results were achieved. The obtained results show the effectiveness of this method to
analyze such types of guides.

1. INTRODUCTION

Waveguide is a traditional transmission line employed for microwave signal guidance and processing,
and it is still widely used today for many applications. Various microwave waveguide components,
such as couplers, detectors, isolators, phase shifters and slotted lines, are commercially available for
various standard waveguide bands. It is also known that these matured waveguide components present
properties of low loss and high power.

Because of their bulky size, their use is however limited in some of practical applications, and
it is also difficult to manufacture them in mass production. With trends toward miniaturization and
integration, planar transmission line structures, such as microstrip and stripline rather than waveguide,
have been used in many commercial applications. There is, however, still a huge demand for waveguides
in loss- and/or power-sensitive applications. Therefore, it would be much meaningful for microwave
applications if we can combine the advantages of planar transmission lines with those of waveguides.
There have been many research activities to develop new platforms of transmission lines to reduce
circuit size, simplify manufacture process, lower production cost and maintain high performance. To
overcome these issues, substrate integrated waveguides (SIW) have recently been proposed [1–7] as
alternative structures to conventional transmission lines. Substrate integrated waveguides are synthetic
rectangular waveguides formed by top and bottom metal layers which embed a dielectric slab and two
sidewalls of metallic vias and it can be easily fabricated with standard PCB process, thick-film process
or LTCC process, and is easily integrated into microwave and millimeter wave integrated circuits. This
technology is one of the most popular and the most developed platforms.

Due to the advantages of this new technology, it is convenient to develop numerical methods for the
accurate and efficient simulation of such components. To analyze this type of guides, rigorous numerical
methods are needed. Several methods are available and proposed in literature [8–17].
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Currently the FEM finite element method has a fundamental role in the analysis of various problems
related to electromagnetism, from a simple structure as a waveguide to complex circuits and antennas.
The FEM remains the most common method used by CAD softwares. Advantages of this method come
from its ability to analyze complex geometries.

The finite element method implemented in the MATLAB R© software is applied for analysis and
design of SIW waveguides operating in X and Ku-band applications. The implementation of the finite
element methods is not easy because it requires tedious and complex analytical formulation development
before going to the implementation.

This paper is organized as follows: in Section 2, the finite element method modal expansion
formulation is presented. Section 3 presents the FEM Implementations. Section 4 describes the geometry
and design rules. The obtained results and the comparison made between the FEM and the CST
Microwave Studio software are reported in Section 5. Finally, conclusions are drawn in Section 6.

2. THE FINITE ELEMENT MODAL EXPANSION FORMULATION

Let us assume that the junction is excited with the fundamental mode TE10 through its ports. The
finite element formulation of the problem will be carried out considering the case of an H-plane junction.
The top view of the geometry as well as the reference systems used for the analysis of a generic H-plane
junction are shown in Figure 1. The finite element method is applied in the region Ω and is delimited
by a perfectly conducting wall Γ0 and by two defined ports Γk (k = 1, 2). The electric field into the
region Ω has the only component Ey.

The components of the electric and magnetic fields, Eywg and Hxwg , when the port j is fed with
the TE10 mode can be expressed as [18]:
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where e1 is the orthonormal modal functions of the TE10 mode.
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k0 and Z0 are the free-space propagation constant and characteristic impedance, respectively.
β1 denotes the propagation constant into the waveguide with dimensions a and b:
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Figure 1. Structure under study in H-plane. The domain Ω is embedded in a rectangle with contour
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and kc = mπ
a is the cutoff propagation constant of mode TE10.

Inside the inhomogeneous region Ω, the field cannot be expressed in terms of analytically known
functions, thus the problem is solved seeking the solution of the scalar Helmholtz equation:

∇t

(
1
µr
∇tEy

)
+ k2

0εrEy = 0 (5)

where: εr and µr are respectively the relative permittivity and permeability.
The homogeneous boundary conditions are:

Ey=0, k = 1, 2 (6)
At the metallic wall Γ0:
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By using the weighted residual procedure, by choosing arbitrary differentiable weighting functions
W , W̄ , and ¯̄W , (5), (6), (7) and (9) can be replaced by:
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By applying Green’s identity to (10) and introducing the boundary condition (13), leads to the
weak form of the Helmholtz equation:
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3. THE FINITE ELEMENT IMPLEMENTATION

The solution (12) and (14) for H-plane junction using finite elements in the framework of the weighted
residual procedure is based on the following five steps:
• The region of guide is divided into finite elements;
• Simplify the unknown function on each element;
• Giving weighting functions and express the residue on each element;
• Summing up contributions from all elements to obtain the residue on the whole domain;
• Annihilating the residue and solve the linear system of equations obtained.

The solution on each element (e) is required among the approximating functions Ē
(e)
y of the form:

Ē(e)
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where: Ē
(e)
yj and α

(e)
j (x, y) (j = 1 . . . N (e)) are the coefficients and the set of nodal-shape functions,

respectively. W
(e)
i presented in Figure 2 are the weighting functions equal to the shape functions,

W
(e)
i = α

(e)
i (i = 1 . . . N (e)).
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Figure 2. Global weighting function W
(g)
i obtained by connecting first-order weighting functions

defined on adjacent elements and centered at the same global node i.

R
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i is the residue relative to the ith weighting function, with:
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Alternatively, in matrix form:
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where:

• [S(e)] and [T (e)] present the usual local matrices of scalar nodal element.

• [Ē(e)
y ] is the vector of nodal unknown coefficients of element (e).

• [Bk] is a column vector, whose jth entry is the amplitude of the transmitted mode j at the port k.

• [C(e)
k ] and [H(e)

k ] come from the contour integrals at the k = 1 . . . N ports.
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k ] are given by:
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where, (l) is the port fed and δkl is the Kronecker’s delta.
The local residual (17) relative to each element can be assembled into a single linear system of

equations, where the matrix [F ] assembles the two matrices [S(e)] and [T (e)] with a dimension of
(Nn × Nn), [F ], with Nn total number of nodes. The matrix [C] assembles the matrix [C(e)

k ] and
the vector [H(e)

k ] with a dimension of (Nn × (N × M)). The matrix [H inc ] presented by the column
(N × 1).

For both entities, the assembling approach to recover the row index in the global matrix/vector is
the same as that used for the local matrices [S(e)] and [T (e)]. The assembling scheme for the column
index j of matrix [C] is readily determined by the formula j = M × (k − 1) + m, which means that
the unknown amplitudes of transmitted modes at different ports are sequentially arranged in a unique
column vector [B] with dimension ((N × M) × 1). Annihilating the residue of the assembled system
leads to the matrix equation [18]:

[F ] · [Ē]
+ [C] · [B] =

[
H inc

]
(20)
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In this formula, the unknowns are the column vectors [Ē] and [B].
The matrix [Ē] contains the coefficients of the finite element approximation of the electric field, and

[B] stores the amplitude of the transmitted field at the ports. To construct these equations, the boundary
condition (12) is used. A particularly convenient choice for the basic functions W̄

(k)
m , m = 1 . . . M to be

used at port (k) is:
W̄ (k)
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)
(21)

Using these weighting functions, the residue R
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The above equation, relative to port (k), can be made from the matrix:
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where the column vector [Ē(k)
y ] (N (k) × 1) stores the finite element coefficients of the electric field

associated to the N (k) nodes at port (k). [Dk] is a rectangular matrix (M × N (k)) with generic entry
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The matrix [Ak] is diagonal with entries:
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The column vector [Ek] (M × 1) takes into account the incident field, if any, at port (k). It has
only one nonzero entry that is pertinent to the fundamental TE10 mode:
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The continuity boundary conditions at each port, expressed by (23), can be assembled into a global
system and the residue annihilated. Combining such a system with that in (20) eventually yields the
total system of equations to be solved, which has the structure:[
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4. GEOMETRY AND DESIGN RULES

The SIW waveguide is filled with a dielectric, so we can use the formulas to design a classical waveguide
to reconstruct the geometric parameters of a substrate integrated waveguide. For the TE10 mode, the
simplified version of this formula is:

fc =
c

2a
(28)

For a filled waveguide (FW) as shown in Figure 3, with same cut off frequency, dimension “aFW”
is found by:

aFW =
a√
εr

(29)

Having determined the dimension “aFW” for the filled waveguide, we can now pass to the design
equations for SIW [19].

as = aFW +
d2

0.95s
(30)
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Figure 3. Dimensions for: (a) FW, (b) SIW.

where d is via diameter and s is the distance between the vias.
For SIW design, the following two conditions are required:

d <
λg

5
(31a)

s ≤ 2d (31b)

λg is the guided wavelength:

λg =
2π√

(2πf)2 εr

c2
−

(π

a

)2
(32)

Our goal is to produce a SIW waveguide with best transmission, because we must adapt our
structure. A transition from a microstrip line to the waveguide SIW is necessary. The formula used to
calculate the waveguide impedance of the SIW is given by:

Zpi = ZTE
π2h

8as
(33)

For the calculation of the guide impedance, it is also necessary to calculate the wave impedance of
TE mode, which is given by:

ZTE = jω
µ

γ
= ω

µ́

β
=

√
µ

ε
× λg

λ
(34)

5. SIMULATION RESULTS

2D-FEM analysis of such a problem becomes more efficient once it is recognized that, for posts with a
constant section that extends the whole height of the substrate integrated waveguide, a TE10 excitation
will produce only TEm0 modes and that the three-dimensional problem can be reduced to a two-
dimensional one by analyzing only the Ey field component on an H plane cut [20]. Figure 4(b) shows a
mesh of such cut. The analysis is done on the entire SIW waveguide with a perfect electric conductor
(p.e.c) boundary.

The first task of the analysis is building the geometric model and its finite element discretization
using the mesh generator. Figures 5 and 6 show an analysis of 15 and 26 equally spaced via-hole pairs
respectively for X and Ku bands with microstrip input and all-dielectric waveguide output.

The first test case is a simple SIW waveguide enclosed by p.e.c. walls, with dimensions as shown
in Figure 7 and Figure 8 for X and Ku bands, respectively.

The SIW waveguide considered for this investigation is is to be designed on Arlon Cu 233LX lossy
substrate which has a relative permittivity εr of 2.2, a dielectric thickness h of 0.508 mm, a loss tangent
of about 0.0013 and 0.05 mm conductor thickness. The SIW waveguide is designed to operate over the
frequency range [8–12 GHz] and [10.7–12.75GHz] respectively for X-band and Ku-band applications.
Because the input impedance of the SIW waveguide at its edges is usually too high for direct connection
to the feeding line, whose standard impedance is 50 Ohm. SIW guide adaptation is necessary; in this
case, a microstrip transition can be designed to achieve a satisfactory return loss at the operating band
frequency.
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Figure 4. (a) SIW waveguide in dielectric. (b) Two-dimensional mesh of the full domain with p.e.c.
wall.
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Figure 5. (a) X-band SIW waveguide. (b) Mesh of SIW guide operates in the X-band generated by
the finite element method.
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Figure 6. (a) Ku-band SIW waveguide. (b) Mesh structure generated by the finite element method in
the Ku-band.

Figures 7 and 8 depict respectively the optimized proposed configuration of the X and Ku-band
waveguides based on SIW with their physical parameters. 50 Ohm microstrip transitions from 50 Ohm
to the waveguides impedance are used in input and output.
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Figure 7. X band SIW waveguide. The parameters of this waveguide defined by: We = 1.3mm,
WT = 6.16mm, LT = 50.14mm, as = 17.73mm, d = 3.30mm, s = 4.95mm, LG = 76 mm.
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Figure 8. Ku band SIW waveguide. The parameters of this waveguide defined by: as = 10.32mm,
d = 1.25mm, s = 1.88mm, We = 1.59mm, WT = 2.71mm, LT = 20.72mm, LG = 49mm.
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Since the two-dimensional finite element method simulates only the SIW waveguide without the
transition, the later can be simulated with any software, and the obtained result is stored in a matrix
[ST ]. The final matrix can be calculated by the following expression.

[
S11 S12

S21 S22

]
= [ST ] [Ssiw] [ST ] (35)

Figures 9 and 10 display a comparison between the finite element method and the CST Softaware
for X and Ku-band respectively.

Let us notice from Figures 9(a) and 10(a) that below the cutoff frequencies respectively fc =
7.75GHz for the X-band waveguide and fc = 10.70GHz for the Ku-band waveguide, the return loss is
maximal, about 0 dB. The corresponding transmission is minimal as shown in Figures 9(b) and 10(b).
It can be observed that a good rejection is obtained from the provided results.

The simulations was performed using an Intel (R) Core (TM), i7-2600 CPU@3.40 GHz with 8Go
RAM memory on the same computer, without simulation parallelization and hardware acceleration. It
was observed that FEM method running time is the half of the CST one.

Beyond range frequency [7.75–12 GHz] for the X-band waveguide and [10.70–12.60 GHz] for the
Ku-band, the transmission is significantly improved. Several resonance peaks are found with levels
less than −20 dB. Let us notice that the comparison made between the two-dimensional finite element
method and CST gives good results. A major observation in Figure 9 is that the two graphs are almost
identical, and a good agreement is observed between this two approaches. Some differences are observed

Owner
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Figure 10. Ku-band return loss and transmission coefficient.

in the return loss performance. However, the shifts are small and occur in the return loss level. The
comparison results show the effectiveness of the two-dimensional finite element method in studying the
SIW waveguide performances.

6. CONCLUSION

A rigorous analytical full-wave analysis method for the precise modelling of SIW structures is proposed
in this paper. The efficiency of the method has been shown through the analysis and design of two SIW
waveguides operating in X and Ku bands. Even the implementation of the finite element method used to
solve a series of formula to decompose a problem in finite element is too hard; it offers a good accuracy
compared with other full wave methods. The exploitation of finite element method in electromagnetic
field offers another vision of applying this method to examine and study other components based on
the substrate integrated waveguides technology such as filters, couplers, etc.
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In page 28, the correct Equation (35) is:
[

T11 T12

T21 T22

]
= [TT ][TSIW ][TT ] (35)

where: [
b1

a1

]
= [T ]

[
a2

b2

]
(36)

[ST ] =




T12

T22

T11T22 − T21T12

T22

1
T22

−T21

T22


 (37)
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