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GPR Signal Enhancement Using Sliding-Window
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Abstract—Ground penetrating radar (GPR) has shown to provide useful results for detection of
buried objects. However, its performance suffers from strong reflection from ground surface especially
for shallowly buried targets. In such cases, the detection problem depends on the separation of the
target signal from the ground backscatter such as landmines and unexploded ordnances. In this
paper, we discuss and analyze the use of space-frequency time-reversal matrices for the enhancement of
ground penetrating radar signals and potential clutter reduction. Through the use of sliding windows,
submatrices from a given B-scan (radargram) are utilized to extract localized scattering information
of a given detection scenario. Each sub-B-scan is decomposed to its singular vectors and later used to
render synthetic aperture time-domain singular vector distributions corresponding to different scattering
mechanisms. Later, they are weighted by the singular values and subtracted from the full B-scan
to achieve reduced clutter and enhanced target response. The method shows satisfactory results for
shallowly buried dielectric targets even in the presence of rough surface profiles.

1. INTRODUCTION

Ground-penetrating radar (GPR) is a well-established (geophysical) remote sensing method used to
obtain information on the subsurface [1]. It is extensively utilized in various fields such as shallow
geophysical exploration, civil engineering and archeology [1]. Thanks to its strong detection potential,
it is one of the preferred methods in detection and localization of buried objects such as land
mines, unexploded ordnances or utilities. GPR exploits the differences between the electromagnetic
characteristics, such as the dielectric permittivity and the conductivity of a surrounding medium and
the target of interest to achieve detection. In many applications, GPR data is often hampered by
clutter which is mainly composed of (rough) surface reflection, scattering from third party objects and
cross-talk between antennas. Also, particularly for shallow buried objects, temporal responses of the
surface and the targets can overlap and interfere each other thereby eliminating the option of time-
gating for improved GPR responses. Additionally, in case of lossy subsurface and dielectric targets
(e.g., plastic mines), scattered energy from the targets can be very low. Thus, GPR performance highly
depends on the ability to successfully differentiate the target signal from the clutter. One of the main
topic of interest in GPR signal processing is therefore geared towards the reduction of clutter. Various
studies have been conducted on this front, among them are filtering algorithms [2–4], parametric system
identification [5], statistical signal processing [6], subspace methods [7–9], entropy-based approaches [10]
and techniques employing parametric and non-parametric modeling [11]. A neural networks approach
has been introduced in the marine radar application [12] for sea clutter reduction and other approaches
have been successfully used in automatic radar detection in ground clutter [13, 14]. While each method
tackles different aspects of the problem, there is still room for further improvement.
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In this study, we present a singular value decomposition (SVD) based method for improved detection
of shallow dielectric targets (e.g., plastic landmines). The method was first applied in a time-reversal
(TR) based imaging algorithm utilizing space-frequency (SF) matrices [15]. TR has been first introduced
in acoustics [16] and attracted attention from different disciplines such as communications [17] and
electromagnetics [18]. Two recent studies have already applied TR in the GPR field [19, 20]. TR
can achieve both temporal and spatial focusing around the original target location(s) thanks to the
exploitation of wave equation reciprocity in lossless and time-invariant media. Its ability to positively
exploit the multipaths in the medium yields to superresolution and statistical stability [16]. Here, we
adapt the SF-TR matrices proposed in [15] for its potential application to GPR detection of shallowly
buried dielectric targets. As discussed in [4, 21] and elsewhere, target signature in such cases is hidden
in a strong clutter signal, thus poses an important challenge. In our attempt to extract the target
signature in the presence of strong clutter, we develop a method based on spatially sliding windows and
synthesizing singular vector distributions corresponding to different scattering mechanisms. We apply
the SVD to the appropriately selected subsets of radargrams (B-scan) obtained during a given GPR
survey. A radargram is obtained by the collection of individual A-scans each of which corresponds to
the recorded GPR response at a single location. Basically, when the GPR is away from the target of
interest, the radargram mainly carries the (rough) surface information and when the GPR is in the
vicinity of the target of interest, the radargram contains both surface and target responses. When the
SVD is applied to different subsections of the radargram, the singular values and corresponding vectors
can be combined to synthesize time-domain signals that correspond to different scattering centers. They
can later be subtracted from the full B-scan for reduction of surface clutter and enhancement of target
response. In the next sections, we introduce the method and support it with various sample scenarios.

2. SYNTHETIC APERTURE SPACE-FREQUENCY DATA MATRIX GENERATION
AND UTILIZATION

We consider a pulse radar GPR system with a single transmitter-receiver to illustrate the method
(Fig. 1). An extension to array configuration is possible and left for future works due to space limitation.
For better articulation, alongside with the fundamentals of the method, we provide results obtained
from numerical simulations based on the finite-difference time-domain method [22]. The utilized GPR
antenna located 10 cm above the ground surface transmits a short pulse of 900 MHz and the scattered
signals are recorded back at the same location. Since the antenna has a low directivity, a single
measurement is not enough to decide on the target direction. Thus, it is assumed that the GPR
unit moves along the +x-direction while surveying. At a given spatial location (~ri) above the ground,
the time domain response recorded by the GPR unit is called an A-scan and denoted by A(~ri, t). Each
A-scan signal can be modeled as a summation of three independent parts, A(~ri, t) = si(t)+ bi(t)+ni(t)
where si(t) is the desired target signal, bi(t) is the background return and ni(t) is the remaining clutter
and noise. An ensemble of A-scans obtained at various spatial locations forms the so-called B-scan
(radargram) which is represented by

B
(
RN

1 , t
)

= [A(~r1, t), . . . , A(~rN , t)] (1)

where N is the total number of A-scans and Rj
i = [~ri, . . . , ~rj ] with j ≥ i. B-scans obtained for a

dielectric target of 5 cm radius and εr = 3 embedded 5 cm below the uniform and randomly fluctuating
surface profiles of εr = 9 (dry clay) are shown in Fig. 1. The rough surface generation follows random
medium generation of [22]. These chosen parameters, i.e., relative dielectric permittivity and the depth
information are similar to those provided in [5, 21]. As the target is shallowly buried and the target-soil
dielectric contrast is smaller compared to air-subsurface contrast, this constitutes a difficult detection
problem with a low signal to noise ratio. Note also that the algorithm can also be applied to lossy media
without loss of generality.

If the individual A-scans forming the B-scan are Fourier transformed in time, the frequency domain
B-scan B(RN

1 , ω) is obtained which is essentially similar in form to the space-frequency (SF) TR matrix
of [15]. However, while the SF matrix of [15] utilizes an array of N > 1 static antennas, B(RN

1 , ω) is
obtained using a single transceiver at different survey locations mimicking synthetic aperture behavior.
Owing to this similarity, space-frequency TR algorithm can in principle be applied to the full B-scan.
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(a) (b) (c)

Figure 1. (a) A GPR surveying scenario where a dielectric target of εr = 3 is embedded below a rough
surface profile with εr = 9 (dry clay). The dashed line represents the corresponding uniform surface
interface. (b) Full B-scan obtained with uniform and (c) rough surface.

In the SF-TR algorithm, SVD is applied to the chosen data matrix to obtain the coherent time-domain
singular vectors that can be later used for backpropagation [15] or extracting target signatures [23]. In
the GPR problem, if the spatial range of the B-scan is relatively large such that the individual A-scans
have both target and surface signatures with different direction of arrivals, delays and amplitudes, then
the obtained time-domain singular vectors do not necessarily represent the scattering centers accurately.
However, with a shorter spatial range, it might be possible to extract the signatures due to different
scattering components more effectively. Hence, in an effort to adapt the technique for its successful
application to the GPR scenario, several modifications are introduced. First, instead of using the global
data through the whole B-scan matrix, sub-matrices having localized information are utilized. For this
purpose, a sliding window of a predetermined number of A-scans is swept through full B-scan to obtain
submatrices as shown in Fig. 2. Each submatrix corresponds to Mf × L sub-B-scan denoted here as

Bsub
i = Bsub

i

(
RL+i−1

i , ω
)

=




A(~ri, ω1) · · · A (~rL+i−1, ω1)
...

. . .
...

A(~ri, ωMf
) · · · A

(
~rL+i−1, ωMf

)


 (2)

where i = 1, . . . , N − L + 1, L ≤ N − i + 1 is the number of A-scans considered in a single sub-B-scan
and Mf the number of frequency samples considered in the bandwidth. Note that there are a total of
N−L+1 sub-B-scans. Applying SVD to Bsub

i yields Bsub
i = Usub

i Λsub
i (Vsub

i )† where Usub
i is the unitary

Mf ×Mf matrix of left singular vectors, Vsub
i is the unitary L×L matrix of right singular vectors and

. . . . . . . . . . . . . . 

Figure 2. Sliding windows and corresponding sub-matrices (sub-radargrams) for the full B-scan of
GPR survey obtained for the shallowly buried dielectric target under the rough surface of Fig. 1.
Each sub-radargram is associated with a specific synthetic aperture determined by the recorded A-scan
locations.



4 Yavuz, Fouda, and Teixeira

Λsub
i is the Mf × L matrix of singular values and † represents the conjugate transpose operator. Here,

Bsub
i maps the local spatial information to the received frequency data via Bsub

i vsub
i,n = λsub

i,n usub
i,n where

λsub
i,n is the nth singular value, vsub

i,n is the nth L × 1 right singular vector that represents the spatial
(position) content of the received signals and usub

i,n is the nth Mf × 1 left singular vector containing
frequency information [15]. The left singular vectors, usub

i,n for n = 1, . . . , Mf are orthonormal and
span the frequency space and they are the eigenvectors of the time-reversal operator (TRO) matrix
Bsub

i (Bsub
i )†. Similarly, the right singular vectors (vsub

i,n for n = 1, . . . , L) are also orthonormal and span
the GPR location space. Assuming Mf ≥ L and utilizing the singular vectors, Bsub

i can be rewritten in
the following form:

Bsub
i =

L∑

n=1

λsub
i,n usub

i,n

(
vsub

i,n

)∗
(3)

Using the left singular vectors of each sub-B-scan, time-domain singular vectors can be constructed
through inverse Fourier transform via usub

i,n (t) = F−1{usub
i,n }. Depending on the scenario, each time-

domain signal might correspond to different signatures of the scattering mechanisms in the GPR
scenario. For illustration, several dominant time-domain singular vectors of the leftmost sub-B-scan
(usub

1,n (t) for n = 1, . . . , 3) are compared with those of the full B-scan in Fig. 3. In this example, the
full B-scan utilizes N = 112 A-scans whereas the sub-B-scan has only L = 5 A-scans. Since surface
scattering is dominant for both cases, the first singular vectors correspond to the surface reflection.
However, the remaining singular vectors show big differences: Those of the full B-scan mainly lie
between 1–4 ns and correspond to an effective response from all N = 112 A-scans whereas those of the
sub-B-scan are around 6–9 ns and correspond to localized target response at the particular GPR antenna
distance. This shows the advantage of using sub-radargrams over the full B-scan as it can extract more
localized information. The locality of information also applies for the first singular vectors. Under a
rough surface profile, the first singular vector of the full B-scan provides a surface response similar to
the ensemble average subtraction [1] which is effective only if the ground is uniform. But with the use
of sub-B-scan, relatively local surface roughness is included with different time delays and amplitudes
allowing better surface clutter reduction. It may be argued that for localized scatterers under uniform
surface conditions, the full B-scan can give the same first singular vector (see Fig. 3), hence removes
the surface scattering as effectively as sub-B-scan matrices. While this statement is absolutely valid, it
should be kept in mind that for elongated scatterers under uniform surface, full B-scan cannot provide
the same localized information as sub-B-scans. This constitutes yet another advantage of sub-B-scans
over full B-scan.
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Figure 3. Time-domain singular vectors of the 1st sub-B-scan (usub
1,n (t)) are compared with those of

the full B-scan for a dielectric target under a uniform surface profile.

Once the time-domain singular vectors of sub-B-scans are obtained, they can be combined to
generate synthetic singular vector distributions given as follows:

Cn

(
RN−L+1

1 , t
)

=
[
usub

1,n (t), . . . , usub
N−L+1,n(t)

]
(4)
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Figure 4. The first three dominant singular vector distributions (Cn(RN−L+1
1 , t) for n = 1, 2, 3) for

L = 5 and corresponding singular values (bottom) for a dielectric target under a uniform surface profile
when L = 5 and L = 15. The vertical dashed lines represent the lateral target location.

Each of these distributions provides a global snapshot of distinct mechanisms of the scattering scenario
as illustrated in Fig. 4 for the single dielectric target case of Fig. 3. From these figures, it is observed
that, the first singular vector distribution is mostly dominated by the surface scattering. Thus, it can
be later used to eliminate the surface clutter. The remaining distributions mostly correspond to the
embedded target and exhibit somewhat close to the so-called hyperbola curve which is typical for isolated
scatterers (Here, we have limited our study to pulse shaped radar waveforms and similar study can be
performed for other waveforms as well). The peak of the hyperbola represents the lateral position of
the target. In certain circumstances, the corresponding singular value distributions can also be used for
change detection as they tend to peak or dip above the isolated targets [21]. The singular values and
vectors can be combined together to obtain the following weighted singular vector distribution:

Dn

(
RN−L+1

1 , t
)

=
[
λsub

1,n usub
1,n (t), . . . , λsub

N−L+1,n usub
N−L+1,n(t)

]
(5)

This distribution can then be subtracted from the full B-scan to eliminate the surface clutter and thereby
enhancing the target signatures where possible. The resulting matrices (distributions) can be denoted
as synthetic residual B-scans and are represented by

SP

(
RN−L+1

1 , t
)

= B
(
RN−L+1

1 , t
)
−

P∑

n=1

Dn

(
RN−L+1

1 , t
)

(6)
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Figure 5. The first two residual distributions, i.e., synthetic B-scans (Si(RN−L+1
1 , t) for i = 1, 2) once

the dominant singular vectors are subtracted from the full B-scan for uniform surface case.
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where P is the number of individual weighted singular vector distributions. Fig. 5 shows two such
synthetic B-scans obtained for the dielectric target under uniform surface profile for P = 1 and P = 2.
Once compared with the full B-scan of Fig. 1, it is observed that the surface scattering from the full
B-scan is eliminated and the target response (hyperbola) from the embedded dielectric scatterer is
distinguishable. For this particular case, S1 is already enough for detecting the hyperbola curve.

Another point to note is the criteria to choose the radargram subsets which is highly scenario
dependent. The number of total B-scans, the interval between each B-scan, central wavelength of
operation, scatterer size and other factors affect the choice of subsets. As a rule of thumb, smaller
subsets provide more localized information than the larger subsets. But if the subset is very small
(e.g., L = 1), then singular vectors can not be necessarily utilized as described in the method. To
our experience, depending on the scenario, subsets should be chosen encompassing a range of 1 to 2
wavelengths of interest. In some of the figures throughout the paper, we have provided the singular
vector distributions for both L = 5 and L = 15 for comparison.

3. FURTHER SIMULATION RESULTS AND DISCUSSIONS

Here, the algorithm is applied to several scenarios to assess its performance under different conditions.
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Figure 6. (a) Full B-scan of the scenario with two dielectric scatterers. Corresponding first and second
singular value distribution along the survey path (c) singular vector distributions are shown in the
following rows (d). Finally, the residual distributions are shown in (e).
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3.1. Multiple Targets Case

We start by testing the algorithm for two dielectric targets embedded under a uniform surface profile
at x = 0.7m and x = 1.22m and having relative dielectric permittivities of εr = 3 and εr = 4.5,
respectively. While the first one (on left) is at a depth of 5 cm from the surface, the second one on the
right is at 15 cm. Since the dielectric permittivity of the right one is larger, its dielectric contrast with
the background is smaller compared to the left one. Hence, it poses a more difficult detection problem
than the left one. As shown in Fig. 6, the full B-scan is again dominated by the surface scattering. The
signature from the deeper target is almost invisible at this stage. Once the aforementioned procedure
is applied, several distinct patterns become available for further analysis. For example, it is observed
that the first dominant singular value distribution along the survey path is relatively constant except
for a small fluctuation over the shallower target. Albeit small, this can be considered as peaks over
the target locations. On the other hand, the second dominant singular value distribution exhibits an
increase as the GPR unit gets closer to the scatterers along with a null just over the scatterers. The null
value seems to be sharper when a larger L value is utilized. Thus, in some cases merely monitoring the
changes in the singular value distributions along the survey path can provide partial target localization
information. As for the synthetic singular vector distributions, the first one C1(RN−L+1

1 , t) in this case
is also dominated by the surface scattering whereas the remaining ones exhibit two hyperbolic curves
each corresponding to different targets. Tracking the maxima of the hyperbola curves at this stage
allows lateral target localization. Also, relative differences between the maxima provide relative depth
information about the scatterers. Once the singular values and vectors are used together and subtracted
from the full B-scan, the resulting residual synthetic B-scans (Si(RN−L+1

1 , t)) again reveal the hyperbola
curves corresponding to the two targets in the domain without any ground reflection. Note also that
if the full B-scan was used in this case, the obtained time-domain signals would be linear combination
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of the signatures from both targets as they are not well resolved. Using localized information through
sliding windows is helpful to distinguish both target signatures in this case.

3.2. Single Dielectric Target under Rough Surface Profile

In many practical scenarios, the ground surface can exhibit roughness. In this section, we apply the
algorithm for a single dielectric target of εr = 3 under randomly fluctuating surface profile as shown in
Fig. 1. The surface has a standard deviation of 5 cm and correlation length of 30 cm. The corresponding
full B-scan for this case is already shown in Fig. 2. Corresponding singular value distributions along
the lateral position are shown in Fig. 7. The first two singular values are dominated by the surface
scattering, thus do not exhibit a certain profile. However, similar to the uniform surface case, the 3rd
and 4th singular value distributions demonstrate increasing patterns as the GPR unit gets closer to the
target and partial null focusing above the scatter location. Once the associated synthetic singular vector
distributions shown in the same figure are analyzed, it is observed that when the surface is random,
the first two singular vector distributions are mainly dominated by surface reflections. Although some
traces of hyperbola can be distinguished in the second distribution, no clear hyperbola exists in the first
distributions. As for the third distribution, the hyperbola is clearer but there is also contributions from
the surface scattering. A similar pattern exists for the fourth distribution with clearer hyperbola curve.
Once the residual distributions are obtained by subtracting the singular vectors weighted by associated
singular values from the full B-scan, the response from the dielectric target becomes more visible. This
is somewhat expected as the surface scattering mainly dominates the higher singular values/vectors and
as they are taken out of the full B-scan, remaining contributions reveal the dielectric target response.
Note also that once the larger contributions of the surface scattering are less pronounced (e.g., in C3

or C4), then time gating can be applied to further reveal the hyperbola curves observed in synthetic
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singular vector distributions (not applicable to residual distributions if their complete subtractions are
considered).

3.3. Single Metallic Target under Rough Surface Profile

It is observed that with the rough surface and shallowly buried dielectric target, the dominant singular
values and vectors are mainly due to the surface reflection. Thus, the performance of the proposed
method degrades with the rough surface case. However, when the target contrast is higher (e.g., in the
case of metallic unexploded ordnances) and the surface is rough, the algorithm can still be helpful in
distinguishing different scattering mechanism of a given scenario. For this purpose, we apply the method
to an embedded metallic scatterer under a rougher surface profile with variance of 10 cm. The resulting
singular value and vector distributions are shown in Fig. 8. Similar to the previous cases, the first two
singular values are dominated by the surface scattering. However, an increasing pattern when the GPR
unit is closer to the scatterer is clearly visible for both third and fourth singular value distributions.
As for the synthetic singular vector distributions, the contributions from the surface scattering are
clearly visible in all four distributions with C4(RN−L+1

1 , t) being the least affected. Hyperbola curves
are clearly visible for the second, third and fourth cases revealing the lateral location of the isolated
scatterer. Similarly, resulting residual distributions clearly show the response of the metallic scatterer.

4. CONCLUSIONS AND FUTURE WORKS

We introduced a GPR signal processing method based on the sliding-window space-frequency matrices.
A full B-scan obtained during a GPR survey is decomposed into submatrices using the sliding windows.
Each submatrix is later processed similar to the space-frequency TR imaging concept of [15]. The
processing provides localized scattering center signatures in a combined fashion cast in terms of so-
called synthetic singular vector distributions. Once combined with the associated singular values and
subtracted from the full B-scan, the method can achieve GPR signal enhancement by mainly reducing
clutter from the surface reflection. The method also has the potential for utilization with other methods
such as time gating for improved performance. Although subsurface application is shown here, the
method can also be applied to other applications such as through-wall imaging (TWI). Using the same
method, the wall reflections in a TWI scenario can be successfully removed. This also constitutes one
of our avenues for future work. Similarly, the same method can be applied to the detection of reservoir
beds by classifying the scattering centers appropriately. Extension to array configurations instead of
single transceivers can also be considered.
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